

Polymer Engineering (MM3POE)

MELT RHEOLOGY & PROCESSING

http://www.nottingham.ac.uk/~eazacl/MM3POE

Contents

- Introduction to polymer processing Basic principles Common manufacturing methods
- General properties of polymer melts
- Flow properties

Power law fluid model Temperature & pressure effects

- Measurement of flow properties
- Melt flow calculations Pressure shear flow Drag flow Tensile flow

Principles of Polymer Processing:

- 1. Melting
- 2. Mixing & Homogenisation
- 3. Melt Transport
- 4. Primary Shaping
- 5. Secondary Shaping
- 6. Stabilisation of Shape
- 7. Finishing Operations

Profiles (eg. window frames) Insulation for cables

www.vuk.battenfeld.com

Injection Moulding

Typical products:

Automotive components Power-tool housings Safety helmets Telephone handsets Television cabinets Washing-up bowls

Melt Rheology & Processing

www.bpf.co.uk

Thermoforming

Melt Rheology & Processing

www.bpf.co.uk

Blow Moulding

www.plastics-car.com

Melt Rheology & Processing

(iv) Ejecting

7

www.bbc.co.uk

General properties of polymer melts:

- Low density ($\rho \approx 10^3 \text{ kg/m}^3$) (i)
- Low thermal conductivity (K \approx 0.1 W/mK) (ii)
- (iii) High shear viscosities ($\eta \approx 10^2 10^4 \text{ Ns/m}^2$)

(iv) NON-NEWTONIAN flow properties

(i) & (ii) \Rightarrow low thermal diffusivity & (iii) \Rightarrow laminar flow (i) $\alpha = K/\rho c_{p} \sim 10^{-7} m^{2}/s$ **Re** = ρ | *u* / η < 0.1 $\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$ (water = 1000 critical ~ 2000) Low $\alpha \Rightarrow$ long heating/cooling times $(\propto thickness^2)$

2.1 Non-Newtonian Flow

2.1 Non-Newtonian Flow

Typical experimental data:

Viscosity data for polymer melts:

- A LDPE (170 °C)
- B Propylene-ethylene copolymer (230 °C)
- C Acrylic (230 °C)
- D Acetal copolymer (200 °C)
- E Nylon 6,6 (285 °C)

From P C Powell, A Jan Ingen Housz (1998) Engineering with polymers, Stanley Thornes (Publishers) Ltd.

2.2 Power Law Fluid Model

12

• Over a small range of shear rates, shear thinning can be represented by:

2.2 Power Law Fluid Model

13

• Over a small range of shear rates, shear thinning can be represented by:

2.2 Power Law Fluid Model

• Over a small range of shear rates, shear thinning can be represented by:

<u>Worked Example</u> - Powel law fluid model

Using Figure 4, determine appropriate power law fluid models for this particular grade of acrylic resin, including *low stress/rate* and *high stress/rate* flow properties.

Page 10

2.2 Temperature & Pressure Effects In Nottingham

2.2 Temperature & Pressure Effects I Nottingham

Influence of mold properties on the quality of injection molded parts. J G Kovacs, T Bercsey, <u>Periodica Polytechnica Ser. Mech. Eng.</u> vol 49, no 2, 2005, pp 115-122.

Cone & plate rheometer

Malvern Instruments - http://www.bohlin.co.uk

3.1 Cone & Plate Rheometer

The shear stress is related to the torque:

Area of annulus $= 2\pi r dr$ Force $= 2\pi r dr. \tau$ (where $\tau =$ shear stress)Torque $= 2\pi r^2 dr. \tau$

Total torque:
$$T = \int_{0}^{R} 2\pi r^{2} \tau \, dr$$

 $\Rightarrow T = \frac{2}{3}\pi R^{3} \tau \qquad \dots (4)$

3.1 Cone & Plate Rheometer

Since viscosity is the ratio between shear stress and strain rate, then from Eqns. 4 and 5: $\eta = \frac{3T\alpha}{2\pi R^3 \dot{\theta}}$

Melt Rheology & Processing

20

3.3 Pressure Flow Rheometer

Ram Extruder

• Based on Newtonian analysis, for pressure drop P:

Apparent viscosity (because of NEWTONIAN ANALYSIS)

• Must also account for pressure losses at die entry

Ram Extruder – entry Loss

- Conduct series of tests with different die lengths
- Plot pressure (P) vs. die length (L):

Melt Rheology & Processing

3.4 Melt Flow Index (MFI)

• Single point test based on capillary flow rheometer (BS 2782)

 MFI = weight of polymer extruded in standard time at standard temperature for standard pressure

> High MFI \rightarrow low viscosity Low MFI \rightarrow high viscosity

Polymer Melt Rheology

 Thermoplastic polymers are processed by melting, shaping and cooling

- main processes are extrusion and injection moulding

- Polymer melt flow is non-Newtonian
 - power law model can be used over small range of rates/stresses

properties are highly dependent on temperature and pressure

Can characterise flow properties using rheometry
 - cone & plate (low rates), pressure flow (high rates)