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ABSTRACT

This paper examines the relationship between voting weights and
expected equilibrium payoffs in legislative bargaining and provides
a necessary and sufficient condition for payoffs to be proportional
to weights. This condition has a natural interpretation in terms
of the supply and demand for coalition partners. An implication
of this condition is that Snyder et al.’s (2005) result, that payoffs
are proportional to weights in large replicated games, does not
necessarily extend to the smaller games that arise in applications.
Departures from proportionality may be substantial and may arise
even in well-behaved (homogeneous) games.
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Many important collective bodies make decisions by weighted majority voting.
Examples are the Electoral College in the United States, the International
Monetary Fund, the European Union Council of Ministers, and any legislature
with disciplined political parties. An important question in this setting is
how the distribution of votes affects payoffs. Power indices such as the
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Shapley–Shubik index coincide with voting weights only rarely. In contrast,
Snyder et al. (2005, p. 982) argue that

Elementary microeconomic theory teaches that in competitive situ-
ations perfect substitutes have the same price. In a political setting
in which votes might be traded or transferred in the formation of
coalitions, one might expect the same logic to apply. If a player
has k votes, then that player should command a price for those
votes equal to the total price of k players that each have one vote.

Snyder et al. (2005) use a noncooperative bargaining game based on the
Baron and Ferejohn (1989) model to show that a voter’s expected payoff is
proportional to its voting weight. They mention two difficulties in proving
this result: corner solutions created by equal recognition probabilities, and
nonhomogeneity of the game. Equal recognition probabilities may lead to
low-weight voters having disproportionately high payoffs due to proposing
power, whereas nonhomogeneous games create a difficulty in that players may
be substitutes in some minimal winning coalitions but not in others, and it is
not immediately obvious what the competitive price for their votes should be.
They address these difficulties by making recognition probabilities proportional
to voting weights and by replicating the game a finite (though potentially
large) number of times [see Proposition 2 in Snyder et al. (2005)].

Given that the proof in Snyder et al. (2005) only covers replicated games,
how far this result extends to the legislatures with only a few parties that arise
in applications is an open question. The present paper provides a necessary
and sufficient condition for proportional equilibrium payoffs. This necessary
and sufficient condition is relevant for any weighted voting game; the only
assumption needed is that recognition probabilities are proportional to the
voting weights. This condition can be interpreted in economic terms: there
is no excess supply or demand of any player type. An implication of this
condition is that, even in the intuitively most favorable case (i.e., uniquely
defined homogeneous weights and recognition probabilities proportional to
those weights) the equilibrium of the game is not necessarily competitive. It
may be possible for larger players to get a disproportionate payoff even if
cheaper perfect substitutes appear to be available.

In order to get a rough idea of how often proportional payoffs are predicted
in applications, the condition is used to calculate the frequency with which
the model actually predicts proportional payoffs in Snyder et al.’s data set
of coalition governments in 14 countries from 1946 to 2001. Proportional
payoffs are predicted for about 69% of the legislatures; this proportion varies
between countries and can be as high as 100% (for Australia and Austria) or
as low as 28% (for Italy). The difference between equilibrium and proportional
payoffs may be substantial, both quantitatively and qualitatively, and this is
illustrated with some examples from the data set. Perhaps the most important
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qualitative deviation is that it is possible for asymmetric parties to have the
same equilibrium expected payoff, even though one of the parties is a more
desirable coalition partner and has a greater probability of being proposer.
Also, minimal winning coalitions are not necessarily proposed in equilibrium
(surplus coalitions in which the proposer is the only nonpivotal player are also
possible).

Preliminaries

Weighted Voting Games

N = {1, . . . , n} is the set of players, S ⊆ N represents a generic coalition
and X is the set of alternatives. In the legislative bargaining model under
consideration, there is a budget of size 1 to be divided and X = {x|xi ≥ 0
for all i and

∑
i∈N xi ≤ 1} is the set of all possible allocations. Player i’s

preferences are described by the utility function ui(x) = xi.
The voting game is described by a set of winning coalitions W , where

a winning coalition is a coalition that can enforce any alternative in X. A
voting game is proper if a coalition S and its complement N\S cannot both be
winning. A voting game is strong if ties are not possible, that is, S and N\S
cannot both be losing. I assume henceforth that the voting game is proper, but
not necessarily strong. A minimal winning coalition (MWC) S is a coalition
that is just large enough to win, that is, S is winning but no T  S is winning.

The voting game is weighted if it is possible to assign a number of votes
(weight) wi ≥ 0 to each player and to set a threshold q such that S is winning
if and only if

∑
i∈S wi ≥ q. The combination [q;w1, . . . , wn] is a representation

of the voting game. Many representations [q;w1, . . . , wn] are equivalent in
that they produce the same set of winning coalitions. A representation
[q;w1, . . . , wn] is called homogeneous if all minimal winning coalitions have
the same total weight. For example, [5; 4, 3, 2] is not homogeneous because
coalition {1, 2} has a weight of 7, whereas coalition {2, 3} has a weight of 5.
A homogeneous representation of the same game is [2; 1, 1, 1]. Homogeneous
representations are preferred because they give a more transparent description
of the situation: [2; 1, 1, 1] reflects the fact that all three players are in a
symmetric position (i.e., they are perfect substitutes) since any two of them can
form a winning coalition. A game that admits a homogeneous representation
is a homogeneous game.

Homogeneous voting weights are not necessarily unique. For example,
[5; 3, 2, 2, 1] and [7; 4, 3, 3, 1] are homogeneous representations of the same
game. A possible approach to deal with this indeterminacy is to use minimal
integer weights (MIWs); this approach has been taken in the empirical lite-
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rature1 (Ansolabehere et al., 2005; Cutler et al., 2014; Snyder et al., 2005).
A representation has minimal integer weights if all wi’s are integer numbers
and there is no representation with smaller weights (see Freixas and Molinero,
2009; Ostmann, 1987).

The Noncooperative Model

The noncooperative model is the Baron and Ferejohn (1989) model with
weighted voting. Given a set of players N and an associated set of winning
coalitions W , bargaining proceeds as follows. Nature randomly selects one
of the players to be the proposer, according to a vector θ := (θ1, . . . , θn) of
recognition probabilities, where θi ≥ 0 for all i ∈ N and

∑n
i=1 θi = 1. The

proposer then proposes a distribution (x1, . . . , xn) of a budget, with xj ≥ 0
for all j = 1, . . . , n and

∑n
j=1 xj ≤ 1. This proposal is then voted upon.2 If

the set of voters in favor of the proposal is a winning coalition, the proposal is
implemented and the game ends; otherwise the game proceeds to the next round
in which the process is repeated. Players share a discount factor δ ∈ (0, 1].

A (pure) strategy for player i is a sequence σi = (σti)
∞
t=1, where σti , the tth

round strategy of player i, prescribes:

1. A proposal, denoted by x.

2. A response function assigning “yes” or “no” to all possible proposals by
the other players.

Players may condition their actions on the history of play; however, the
literature focuses on equilibria in which they do not condition on any elements
of history other than the current proposal, if any. These equilibria are called
stationary subgame perfect equilibria (SSPE).3 Stationarity requires that players
follow the same strategy at every round t regardless of past offers and responses
to past offers. An SSPE always exists (Banks and Duggan, 2000). For a fixed
δ < 1, all SSPE involve immediate agreement (Okada, 1996) and lead to the
same expected payoffs (Eraslan and McLennan, 2013). Expected equilibrium
payoffs are usually unique even if δ = 1; when they are not, it is possible to

1A large body of empirical literature is devoted to testing Gamson’s law, which states
that ministerial portfolios are allocated proportionally to the seat shares of parties in
government irrespective of the voting weights (see Warwick and Druckman, 2006). Cutler
et al. (2014) incorporate both seat shares and MIWs in their statistical model, and find that
MIWs have a bearing on which parties get into government, whereas portfolio allocation
follows Gamson’s law.

2Voters are assumed to vote on the proposal sequentially. This assumption can be
replaced by simultaneous voting plus the additional equilibrium refinement that voters
always vote as if their vote makes a difference (see Baron and Kalai, 1993).

3Baron and Ferejohn (1989) find a severe multiplicity of SPE in their model, and make
a case for the stationarity refinement on the grounds of simplicity of the strategies (Baron
and Kalai (1993) make this argument more formally).
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obtain a unique prediction by taking the limit when δ → 1. Calculations for
particular numerical examples assume δ → 1.

The logic of the Baron–Ferejohn model is simple. Take any stationary
strategy combination. Because of stationarity, player i’s expected payoff
computed at the start of any round is the same in all rounds irrespective of
history; denote this expected payoff by vi. Player i ’s expected payoff after a
proposal, has (just) been rejected (i’s continuation value), is then equal to δvi.
These continuation values act as prices. It is optimal for player i to accept any
proposal that guarantees him at least δvi as a responder and to reject all other
proposals.4 Given that responders follow these cutoff strategies, it is optimal
for player i as a proposer to find the cheapest group of players whose votes are
enough to form a winning coalition and to offer each of them exactly δvj . We
say that player i proposes coalition S if i ∈ S and the proposed payoff vector
x has xj = δvj for j ∈ S\{i}, xi = 1−

∑
j∈S\{i} δvj and xj = 0 for j ∈ N\S.

Let pi(S) be the probability that i proposes S. Any SSPE involves a vector of
players’ acceptance thresholds (δvi)i∈N and a vector of proposal probabilities
(pi(S))S3i,i∈N satisfying two conditions (see Okada, 1996, Theorem 2):

(1) Proposers propose only the cheapest coalitions available given responders’
acceptance thresholds, that is, any coalition with pi(S) > 0 must mini-
mize

∑
j∈T\{i} δvj (or, equivalently,

∑
j∈T vj) subject to the constraint

that T is a winning coalition with T 3 i.

(2) Responders’ acceptance thresholds coincide with their continuation va-
lues, or equivalently,

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δvj

+

 ∑
j∈N\{i}

θj
∑

S⊇{i,j}

pj(S)

 δvi.
Intuitively, this bargaining model is competitive because a player with a

disproportionately high vi would be overpriced and get few proposals if any,
which would make it difficult for the player to have a high vi in the first place.

Replicated Games

Given the original weighted majority game [q;w1, . . . , wn], the game with r
replications has rn players and a quota rq. The weight vector is found by
replacing each player i with r copies with weight wi.

Snyder et al. (2005) make no claims on how large r needs to be in order
to obtain proportional payoffs. Anecdotal evidence suggests that r is often
surprisingly small. However, as Laver et al. (2011) point out, the link between a

4There is little loss of generality in assuming that ties are always solved in favor of
acceptance (see Yan (2002), Proposition 2; Eraslan and McLennan (2013), Appendix A).
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replicated game and the original game may be tenuous. For example, [5; 4, 3, 2]
is a symmetric game with three interchangeable players but its replicated game
with r = 2, [10; 4, 4, 3, 3, 2, 2], has three noninterchangeable types of players.
Likewise, [3; 2, 1, 1] is a game in which player 1 belongs to all winning coalitions
and therefore has veto power, whereas the corresponding game with r = 2,
[6; 2, 2, 1, 1, 1, 1], has no veto players. Since the properties of replicated games
are not always a good guide to the properties of the original game, equilibria
of replicated games may be very different as well. The propositions in Snyder
et al. (2005) apply to larger, replicated games rather than to the original game.
Hence, the predictions they test are not necessarily equilibrium predictions.

Some Simple Examples of Nonproportionality

In this section, I discuss why equilibrium payoffs may deviate from proportio-
nality, using some simple examples.

The simplest examples of deviation from proportionality are games with
a veto player, such as [3; 2, 1, 1]. The veto player gets everything if δ → 1
(Winter, 1996) even though it has only half of the total weight. It is clear
that the substitution argument does not bite in this case, since the veto player
must be in all coalitions and cannot be replaced by other players.

Games with veto players are special since the veto player cannot be replaced
at all, hence we would not expect proportionality to hold.5 However, lack of
substitutability is not confined to games with veto players, as the following
example illustrates.

Consider the weighted voting game [5; 3, 2, 2, 1], discussed in Montero (2000).
This is a homogeneous game (without a unique homogeneous representation),
and the weights reported are MIWs. There are two types of MWCs: the large
party together with one of the medium-size parties, and the three smaller
parties together. Let v[3], v[2], and v[1] denote the expected equilibrium payoffs
for a player with 3, 2, and 1 votes, respectively. Since each medium-size party
can form a coalition with either the large party or the two smaller parties,
one would expect v[3] = v[2] + v[1]. However, there is no particular reason to
expect v[2] = 2v[1]. A player with two votes need not command a price equal
to that of two players with one vote each, since no two players with one vote
are available to replace the player with two votes.6

Example 1. Consider the weighted voting game [5; 3, 2, 2, 1]. Let θ =
( 3
8 ,

2
8 ,

2
8 ,

1
8 ). It is easy to see that v 6= ( 3

8 ,
2
8 ,

2
8 ,

1
8 ). All SSPE have v[3] = 5

14 ,

v[2] = 4
14 and v[1] = 1

14 .

Proof. See Online Appendix.
5Indeed, Snyder et al. (2005) exclude games with veto players from their analysis.
6Situations where one player cannot be replaced by smaller players in an MWC are

known as games with steps (see Ostmann, 1987).
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Note that equilibrium payoffs are quite different from the MIWs we started
from. In particular, the ratios v[3]/v[1] and v[2]/v[1] are 5 and 4, respectively,
instead of 3 and 2. Intuitively, there is an excess demand for the medium-size
players. There is competition for the medium-size players, since they are
needed by both the large and the small player, and there is no competition
at all for the small player. As a result, the medium-size players receive too
many proposals and the other two players do not receive enough proposals to
sustain payoffs proportional to θ.

The ambiguity of the perfect substitutes argument (or, equivalently, the
lack of uniqueness of the homogeneous representation) is not the only reason
why equilibrium payoffs may differ from the MIWs. The following example
illustrates the lack of proportionality of equilibrium payoffs in a particularly
surprising setting, where this issue does not arise.

Example 2. Consider the game [20; 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1]. There
are two types of MWC in this game: four of the large players, or three of
the large players together with five of the small players. The game is clearly
homogeneous; furthermore, it has a unique homogeneous representation (up to
a multiplicative constant). The substitutability argument points in a very clear
direction: a large player can be replaced by five small players, and should get five
times as much. Suppose players are recognized with probabilities proportional
to their voting weight, that is, a large player is recognized with probability
5
34 and a small player is recognized with probability 1

34 . It turns out that the
equilibrium is such that v[5] = 50

331 and v[1] = 9
331 . Hence, the large players are

getting a disproportionately high payoff since v[5] > 5v[1].

Proof. In order to show that this is an equilibrium, we need to find strategies
that lead to the expected payoffs and are optimal given the expected payoffs.
The strategies are as follows: all players propose a coalition of three large
players and five small players, and the proposer offers the coalition partners
either 50

331 (for large players) or 9
331 (for small players). As a responder, a large

player votes in favor of any proposal that gives him at least 50
331 , and a small

player votes in favor of any proposal that gives him at least 9
331 . Proposers

are acting optimally given the responders’ prices: no other winning coalition
would be cheaper. Responders are acting optimally provided that expected
payoffs are indeed those, so it only remains to check that expected payoffs are
as assumed given the strategies:

v[5] =
5
34

[
1− 2× 50

331
− 5× 9

331

]
+

20
34

2
4

50
331

+
9
34

3
5

50
331

=
50
331

v[1] =
1
34

[
1− 3× 50

331
− 4× 9

331

]
+

25
34

5
9

9
331

+
8
34

4
8

9
331

=
9

331
.
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It is tempting to conclude that the trouble with the previous example is
that there are not enough smaller players to replace the large players. All
coalitions that form in equilibrium are of type [55511111]. Proposers would
rather replace one of the coalition partners of type [5] with five players of type
[1], but this is not possible because there are only nine of those and five are
already in the coalition. Indeed, adding another small player would lead to
proportional payoffs. Interestingly, this is not the whole story: removing one
of the small players would also lead to proportional payoffs (more on this in
the next section).

A Necessary and Sufficient Condition for Proportionality

Balanced Collections of Coalitions

Given a weighted voting game [q;w1, . . . , wn], let W ∗ denote the col-
lection of winning coalitions with minimum total weight, that is, W ∗ =
arg minS∈W

∑
i∈S wi. If the prices players charge for their cooperation are

proportional to the weights, W ∗ is the set of coalitions that are likely to form
since they are the cheapest. But are those prices competitive? Suppose a
player i belongs to all coalitions in W ∗, and another player j does not belong
to any of them. Clearly, player i is underpriced relative to j. More generally,
even if all players belong to at least one coalition in W ∗, no player should
be systematically overrepresented or underrepresented in the list of cheapest
coalitions. This idea is formalized by requiring that W ∗ is a weakly balanced
collection of coalitions (the definition of a balanced collection of coalitions
goes back to Bondareva (1963); see also Shapley (1967)).

Definition 1. Let W ∗ be the set of winning coalitions with minimum total
weight. For each S ∈W ∗, let λS ≥ 0 be a weight assigned to S. The set W ∗
is weakly balanced if there is a set of weights (λS)S∈W∗ such that for every
voter i ∈ N it is the case that

∑
S3i λS = 1.

The property of weak7 balancedness can be interpreted as follows. If W ∗ is
weakly balanced, we can construct a probability distribution over the coalitions
in W ∗ such that all players are equally likely to be in the coalition that forms.
This probability distribution is found by renormalizing the weights so that
they add up to 1, that is, p(S) = λS∑

T∈W∗ λT
for each S ∈W ∗.

The collection of coalitions W ∗ is weakly balanced if and only if the
following system of equations has a solution. Find (λS)S∈W∗ such that∑

S3i
λS = 1 for all i ∈ N

λS ≥ 0 for all S ∈W ∗.
(1)

7The word “weak” refers to the fact that λS ≥ 0 is required rather than λS > 0.
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I now illustrate the definition with some examples.

Example 3. Consider the game [3; 2, 1, 1, 1]. All MWCs have the same total
weight, hence W ∗ = Wm = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. The relevant
system of equations is

λ{1,2} + λ{1,3} + λ{1,4} = 1

λ{1,2} + λ{2,3,4} = 1

λ{1,3} + λ{2,3,4} = 1

λ{1,4} + λ{2,3,4} = 1

λ{1,2}, λ{1,3}, λ{1,4}, λ{2,3,4} ≥ 0.

The (unique) solution to this system is λ{1,2} = λ{1,3} = λ{1,4} = 1
3 ,

λ{2,3,4} = 2
3 . If we renormalize these values such that they add up to 1, they

can be interpreted as probabilities of the respective coalitions: p({1, 2}) =
p({1, 3}) = p({1, 4}) = 1

5 and p({2, 3, 4}) = 2
5 . Given these probabilities, each

of the players is included in the final coalition with probability 3
5 . Player 1 is

in more MWCs than other players, but this difference can be compensated by
making coalition {2, 3, 4} more likely.

Example 1, on the other hand, is a clear case of violation of this condition.
Since the game is homogeneous, all MWCs have the same total weight and
W ∗ = Wm = {{1, 2}, {1, 3}, {2, 3, 4})}. The system is then

λ{1,2} + λ{1,3} = 1

λ{1,2} + λ{2,3,4} = 1

λ{1,3} + λ{2,3,4} = 1

λ{2,3,4} = 1

λ{1,2}, λ{1,3}, λ{2,3,4} ≥ 0.

The fourth equation requires λ{2,3,4} = 1. Substituting this value into the
second and third equations gives λ{1,2} = λ{1,3} = 0, which then contradicts
the first equation. The system has no solution, hence the set W ∗ is not weakly
balanced. Player 4 is an inferior player (Napel and Widgrén, 2001) in that it
can only be in an MWC when players 2 and 3 are also present; since player 1
also needs either player 2 or player 3, it is impossible for all players to be in
the final coalition with equal probability.

Example 2 is a more subtle instance of the same problem. There are two
types8 of MWC, [5555] and [55511111]. Even in the most favorable case for the

8Note that it is sufficient to search for solutions of system (1) such that λS = λS′ if S
and S′ are of the same type. If a solution to the system exists, a symmetric solution must
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small players, which is when the only coalition type that forms is [55511111], it
is still the case that a type [5] player ends up in the coalition with probability
3
5 , whereas a type [1] player only ends up in the coalition with probability
5
9 <

3
5 .

Either adding or removing a player of type [1] to Example 2 would make the
balancedness property hold. Adding a player would introduce a new type of
MWC that favors the small players, [551111111111]. Removing a player leaves
the two types of MWC unchanged, but it gives individual type [1] players a
greater chance of being part of coalition type [55511111].

The Result

The main result of this paper is that weak balancedness of the set W ∗ is a
necessary and sufficient condition for the existence of an equilibrium with
proportional payoffs.

Proposition 1. Let [q;w1, . . . , wn] be an arbitrary weighted majority game,
normalized so that

∑
i∈N wi = 1, and let θ = w. There exists an SSPE with

v = w if and only if W ∗ is weakly balanced.

Proof. See next section.

Note that the value of the discount factor δ ∈ (0, 1] does not affect the
necessary and sufficient condition. If the condition is satisfied, an equilibrium
with proportional payoffs exists irrespective of δ, and the only effect of impa-
tience is that all continuation values shrink proportionally and the proposer
advantage increases. If the condition is not satisfied, expected equilibrium
payoffs cannot be proportional for any δ > 0, and their actual value does in
general depend on δ.

There are no requirements on [q;w] in order for the condition to apply.
Note, however, that the condition has almost no chance to hold if w is the
vector of seat shares, since in general not all parties belong to a coalition with
the minimum number of seats.9 MIWs, on the other hand, ensure that all
players belong to a winning coalition of minimum total weight, though even in
this case the condition does not necessarily hold as we have seen.10

also exist (given an asymmetric solution, we can construct a symmetric one by setting each
λS equal to the average weight of coalitions of that type).

9For example, assuming simple majority voting, the German Bundestag as of September
2014 would be associated with the weighted majority game [316; 311, 192, 64, 63]. There
are four minimal winning coalitions: {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}. The coalition with the
minimum total number of seats is {2, 3, 4}, with 319 seats. Party 1 does not belong to any
coalition with 319 seats, hence the corresponding W ∗ would not be balanced.

10Even though there are no requirements on [q;w] in order for the condition to apply,
there is an important requirement on the game form: recognition probabilities must be
proportional to w. As Kalandrakis (2006) has shown, recognition probabilities have a strong
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In order to check whether the condition holds, one needs to solve a system of
n (the number of players) linear equations with m (the number of winning coa-
litions of minimum weight) unknowns, with m additional constraints requiring
the value of each of the unknowns to be nonnegative. Just writing down the
equations can be a lengthy process. For example, one of the games in the da-
tabase is [314; 116, 108, 108, 98, 39, 33, 29, 18, 14, 13, 11, 10, 6, 6, 5, 4, 3, 2, 1, 1, 1],
which has 10,790 MWCs, of which 8,616 are inW ∗!11 As to solving the system,
note that (1) looks like a linear programming problem (each equality can be
transformed into two inequalities) except that there is no objective function;
hence the matter at stake is whether the program is feasible. One can use
linear programming methods to answer this question (see Vanderbei, 2008,
Chapter 2).12

Proposition 1 strengthens an earlier result of Montero (2006). Montero
(2006) shows that, if θ coincides with the nucleolus (Schmeidler, 1969), v
coincides with the nucleolus as well. A sufficient condition automatically
follows from that earlier result: if the weights happen to be proportional to the
nucleolus, expected payoffs are proportional to the weights. Peleg (1968) shows
that MIWs are proportional to the nucleolus for all strong homogeneous games,
hence the game being in this class is a sufficient condition for the proportionality
of expected payoffs. The condition in Montero (2006) is sufficient but not
necessary.13 The condition in Proposition 1 is both necessary and sufficient,
as shown in the next section.

It is worth noting that the condition does not have a straightforward
connection with other properties such as the homogeneity of the game. The
condition always holds for strong homogeneous games, but may hold for other
games as well. For example, it holds for the game [30; 14, 14, 12, 4, 4, 4, 4, 1, 1] ,
which is neither homogeneous nor strong.14

influence on equilibrium payoffs. Diermeier and Merlo (2004) found some empirical support
for the hypothesis of formateur selection being proportional to seat shares. To the best of my
knowledge there has been no empirical testing of selection proportional to voting weights.

11I am grateful to Jean Derks for providing MATLAB code that automatically generates
the equations taking (q, w) as an input.

12A more roundabout way of checking the condition involves solving a related linear
programming problem and comparing the optimal value of the objective function with
1−minS∈W

∑
i∈S wi. This method is based on Derks and Kuipers (1997) and Peleg and

Rosenmüller (1992), and is discussed in the Online Appendix.
13For example, the nucleolus of the game [10; 3, 3, 3, 2, 2, 2] is ( 2

9 ,
2
9 ,

2
9 ,

1
9 ,

1
9 ,

1
9 ), which is

not a system of weights at all, and nevertheless expected payoffs are proportional to the
MIWs. I am grateful to Peter Sudhölter for pointing out this example, which appears in
Kopelowitz (1967).

14Putting Proposition 1 together with Proposition 2 in Snyder et al. (2005), it follows
that the condition must be satisfied for sufficiently large replica games. Kurz et al. (2014)
show a stronger result: weights of large replica games coincide with the nucleolus.
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Relation to Repeated Bargaining

A very substantial literature analyzes repeated bargaining with dynamic
linkages between different bargaining games. The most common assumption
in this literature is that the agreement reached in one stage game becomes
the status quo for the next stage game (see Kalandrakis, 2004). Even though
the motivation of the present paper is very different, Proposition 1 has some
implications for repeated bargaining where the dynamic linkage works through
the recognition probabilities. Specifically, suppose players play the bargaining
game repeatedly, with the status quo remaining at 0 and the voting weights
and quota remaining constant, but with an endogenous recognition rule such
that each player’s recognition probability equals its expected equilibrium
payoff (rather than its realized payoff as in Jeon (2015)) from the previous
game. Suppose furthermore that players are farsighted within a game but
do not take into account that an agreement reached in the current game
affects the recognition probabilities in the next one. Under these assumptions,
Proposition 1 can be modified to obtain a characterization of the set of
interior fixed points of this process.15 The price to pay for the adaptation
of Proposition 1 to an arbitrary payoff vector is that (a) the characterization
only applies to payoff vectors x with xi > 0 for all i, while the result on
weights allows wi = 0, which is an important case since parties with a positive
number of seats may nevertheless have a 0 voting weight in a minimal integer
representation; and (b) the proof is slightly more lengthy. To state the result
formally, denote the set of winning coalitions with minimum

∑
i∈S xi asW∗(x).

This set generalizes the set W ∗, which would be W∗(w) in this notation.

Corollary 1. Let [q;w1, . . . , wn] be an arbitrary weighted majority game, and
x be a payoff vector (not necessarily a set of weights for the game) such that
xi > 0 for all i ∈ N and

∑
i∈N xi = 1. Let θ = x. There exists an SSPE with

v = x if and only if W∗(x) is weakly balanced.

Proof. See Online Appendix.

Proof of Proposition 1

Because there are no restrictions on [q;w1, . . . , wn], it is possible that no
coalition has exactly q votes. Let minS∈W

∑
i∈S wi := q.16

15I am grateful to an anonymous referee for pointing this out.
16For example, if w = ( 5

13 ,
4
13 ,

4
13 ) and q = 7

13 , there is no coalition with exactly 7
13 votes

and q = 8
13 .
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1. Necessity. Suppose we have an SSPE with v = w. Expected payoffs are
given by

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δvj

+ riδvi,

where vi is i’s expected payoff, θi is the probability that i is selected to be
proposer, pi(S) is the probability that i proposes S conditional on i being the
proposer, and ri is the probability that i receives a proposal from another
player.

Consider first the case in which wi > 0 for all i and each player belongs to
at least one coalition in W ∗. Then, if expected payoffs coincide with w, the
optimal coalitions for the proposer are the coalitions in W ∗ to which it belongs.
Since these coalitions have a total weight of q,

∑
j∈S\{i} vj = q − wi for all

the proposed coalitions, and
∑
S:S3i pi(S)[1−

∑
j∈S\{i} δvj ] can be written as

1− δ(q −wi). Since both vi and θi coincide with wi for all i, we can write the
equation for expected payoffs as

wi = wi [1− δ(q − wi)] + riδwi.

Dividing by wi (which by assumption is positive) and re-arranging terms, we
find δ(q−wi) = δri, which implies q = ri+wi since δ > 0. Given that wi is also
the probability of being proposer, we see that the total probability of being part
of the final coalition (the probability of being proposer, wi, plus the probability
of being responder, ri) must be the same for all players. This implies that, if
p(S) is the equilibrium probability of coalition S forming,

∑
S3i p(S) = q for

all i. Note also that only coalitions with q votes form in equilibrium (other
coalitions are too expensive), so we may write

∑
S:S∈W∗,S3i p(S) = q for all i.

If we divide both sides of the equation by q and define λS := p(S)/q, we obtain∑
S:S∈W∗,S3i λS = 1 for all i. In other words, the set of minimal winning

coalitions with q votes must be weakly balanced.
If there is a player with wi > 0 who does not belong to any of the coalitions

with exactly q votes, this player needs to buy more than q − wi votes, and its
payoff as a proposer is less than 1− δ(q − wi). We may then write

vi < θi[1− δ(q − wi)] + riδvi.

If we replace vi and θi by wi and divide everything by wi, collecting terms
we find ri + wi > q. Since q > 1

2 we find that ri + wi >
1
2 , that is, player

i’s probability of being in the final coalition is above 1
2 . Let S be one of the

coalitions with q votes. Players in S never include i in their proposal. But
this then implies that player i is in the final coalition with a probability of at
most 1− q , which is less than 1

2 . Hence, there cannot be an equilibrium with
v = w in which a player does not belong to any coalition in W ∗.
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If v = w and wi = 0 for some i, we can still show that the set W ∗ must be
weakly balanced. Note that players with wi = 0 trivially belong to at least one
coalition in W ∗. If wi = 0, the coalition that forms can be viewed as including
i (since i receives δvi ) or excluding i (since i receives 0). Choose a player k
with wk > 0 and adopt the arbitrary accounting convention that players with
wi = 0 are considered part of the coalition if and only if player k is part of
the coalition.17 It follows from the analysis above that

∑
S∈W∗,S3i λS = 1 for

all j.
2. Sufficiency. Suppose W ∗ is weakly balanced. As in Montero (2006), we

can use the weights λS to construct a mixed strategy equilibrium in which
v = w. As a proposer, player i proposes one of the coalitions in W ∗ to which
it belongs according to the probability distribution pi(S) = λS for all S such
that S ∈W ∗, S 3 i; pi(S) = 0 for all other S. Proposing S means that player
i sets xj = δwj for all j ∈ S\{i}, xi = 1 −

∑
j∈S\{i} δwj and xj = 0 for all

j ∈ N\S. Since by assumption
∑
S3i λS = 1 for all i, the strategy is well

defined. As a responder, player i accepts proposals if and only if xi ≥ δwi.
I now show that this strategy combination leads to vi = wi for all i. This

is trivially the case if wi = 0, since by assumption this player has no chance of
being proposer and no other player offers i a positive payoff as a responder. If
wi > 0, player i’s expected payoff given this strategy combination equals

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δwj

+

 ∑
j∈N\{i}

θj
∑

S⊇{i,j}

pj(S)

 δwi.
By assumption, θi = wi. Player i’s payoff as a proposer can be written as

1− δ(q − wi) since player i only proposes coalitions in W ∗ and by definition
these coalitions have a total weight of q. The probability of receiving a propo-
sal,

∑
j∈N\{i} θj

∑
S⊇{i,j} pj(S), can be rewritten as

∑
S3i
∑
j∈S\{i} θjpj(S).

Hence,

vi = wi[1− δ(q − wi)] +

∑
S3i

∑
j∈S\{i}

θjpj(S)

 δwi.
Since by construction only coalitions in W ∗ are proposed and those have

pj(S) = λS , we can write

vi = wi[1− δ(q − wi)] +

 ∑
S:S3i,S∈W∗

∑
j∈S\{i}

θjλS

 δwi
17The assumption that w is a weight vector for the game rather than an arbitrary payoff

vector plays an important role here. It is because wi is both i’s payoff and i’s weight that
we can add or remove player i at will from coalitions in W ∗ and still get a coalition in W ∗.
If w is not a vector of weights, removing i from a coalition may produce a losing coalition,
that is, a coalition outside W ∗.
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= wi[1− δ(q − wi)] +

 ∑
S:S3i,S∈W∗

λS
∑

j∈S\{i}

θj

 δwi.
Furthermore, since θj = wj and

∑
j∈S\{i} wj = q − wi for all S ∈W ∗ we

have
∑
j∈S\{i} θj = q − wi. We can then write

vi = wi[1− δ(q − wi)] +

 ∑
S:S3i,S∈W∗

λS(q − wi)

 δwi
= wi[1− δ(q − wi)] +

(q − wi)
∑

S:S3i,S∈W∗
λS

 δwi = wi

where the last equality follows from
∑
S:S3i,S∈W∗ λS = 1.

Because vi = wi for all i, players are behaving optimally both as proposers
and as responders. Proposers propose only the cheapest coalitions availa-
ble given the responders’ acceptance thresholds (i.e., coalitions in W ∗) and
responders accept proposals if and only if xi ≥ δvi. Hence, we have an SSPE.

Predicted Deviations from Proportionality in Applications

Predicted Frequency of the Deviations

Because the condition in Proposition 1 is necessary and sufficient we have a
characterization, and are able to answer the question of whether equilibrium
payoffs are proportional to the voting weights in any particular case. Table 1
shows the frequency of the proportional equilibrium payoffs prediction for the
weight distributions in Snyder et al.’s (2005) data set.18 This frequency provides
some guidance as to how likely the condition is to hold in applications.19 As a
byproduct, it also indicates the proportion of cases in which the predictions
tested by Snyder et al. are supported by the equilibrium of their theoretical
model.

Some of these observations correspond to trivial cases in which either one
party has the overall majority or all parties are de facto symmetric. If trivial
cases (defined as cases in which all minimal integer weights are 0 or 1) are
excluded, the overall frequency of the proportional equilibrium prediction
drops to about 59%.

18These calculations use the MIWs provided by Snyder et al. in their supplementary
material. All frequencies are computed as a fraction of the total number of observations in
the data set, where each government is an observation.

19Another potential application is the EU Council of Ministers. The condition fails to
hold for most of the historical weight distributions (see Le Breton et al., 2012).
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Table 1: Frequency of proportional equilibrium prediction.

Observations Proportional Frequency
Australia 26 26 1
Austria 23 23 1
Belgium 36 25 0.69
Denmark 32 25 0.78
Finland 44 19 0.43
Iceland 22 18 0.82
Ireland 22 12 0.55
Italy 46 13 0.28
Luxembourg 17 11 0.65
Netherlands 23 10 0.43
Norway 27 26 0.96
Portugal 15 11 0.73
Sweden 25 24 0.96
(West) Germany 20 19 0.95

All countries 378 262 0.69

Predicted Size of the Deviations

The necessary and sufficient condition in Proposition 1 provides a yes/no
answer on proportionality: if it fails, expected equilibrium payoffs cannot be
proportional. But how far are they from being proportional? The Online
Appendix compares equilibrium payoffs and weights for all games in the data
set with at most seven players that fail to satisfy the condition (excluding
games with a veto player, of which there are two in the database). In this
section, I look at the difference between proportional and equilibrium payoffs
in two examples from the database, [9; 5, 4, 4, 1, 1, 1] and [17; 9, 8, 5, 4, 4, 1, 1].

Figure 1 shows the weights wi (the MIWs, normalized so that they add
up to 1) and expected equilibrium payoffs vi for these two games. Each bar
represents one player. Most players get an expected payoff that is not too far
from their voting weight; for example, player 1 in game [17; 9, 8, 5, 4, 4, 1, 1]
has an expected payoff of 0.278 (this is also player 1’s predicted payoff as a
coalition partner) and a normalized voting weight of 0.281. However, there
are also players whose expected payoffs are substantially different from their
weight shares, and this is often true for the smallest player type, as the Online
Appendix illustrates. In game [17; 9, 8, 5, 4, 4, 1, 1], player 7 has a weight share
of 0.031 but an expected payoff of only 0.014. Taking weights rather than
expected payoffs as the theoretical prediction for realized allocations matters
more or less depending on which players are the coalition partners; in particular,
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Figure 1: Equilibrium versus proportional payoffs in two examples.
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Figure 2: Ratio of payoffs to weights in two examples.

if player 2 is the proposer and player 1 is the coalition partner, the difference
is almost imperceptible.

Figure 2 shows vi

wi
, the ratio of payoffs to weights, for the same two

examples. This ratio measures how much of a player’s weight is translated into
expected equilibrium payoffs; if expected equilibrium payoffs were proportional
to weights it would always be 1. Even though most player types have ratios
close to 1, the smallest player types get only about 44% of their weight share
in these two examples. The picture can also be interpreted as a comparison of
payoffs per vote for different players. The smallest players get a much lower
payoff per vote.

A third measure of deviation from proportionality is the relative payoffs
vi/vn, that is, the exchange rate between players according to equilibrium
predictions. If expected equilibrium payoffs were proportional, this exchange
rate would always be equal to wi/wn (in particular, if wn = 1, this ratio would
replicate the MIWs). Because player n often gets very little, the ratios between
a player’s payoff and the payoff of the smallest player are very different from
wi/wn. In the game [9; 5, 4, 4, 1, 1, 1], a player with 5 votes does not get 5
times as much as a player with 1 vote, but about 12 times as much. In the
game [17; 9, 8, 5, 4, 4, 1, 1], a player with 9 votes does not get 9 times as much
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Figure 3: Relative weights versus relative payoffs in two examples.

as a player with 1 vote, but about 20 times as much. Figure 3 illustrates how
relative payoffs deviate very substantially from relative weights.

These examples and the ones in the Online Appendix show a similar pattern.
On the one hand, many of the larger players have an expected payoff close to
wi, such that their predicted payoff as coalition partners is similar to their
weights. On the other hand, the implied exchange rates between players may
deviate substantially from the relative weights, and this is often the case when
the smallest player type is involved.

Qualitative Equilibrium Phenomena

An alternative way of looking at the importance of deviations is to focus not on
their size, but on the presence of equilibrium phenomena that would be ruled
out if payoffs were proportional to the MIWs. I discuss three such phenomena:
players that are not interchangeable may have the same expected equilibrium
payoffs, some players may be too expensive to receive any proposals, and
surplus coalitions may form. All three phenomena can be illustrated using one
of the weighted majority games in the data set, [13; 7, 6, 4, 3, 3, 1], corresponding
to Belgium in 1972.

Example 4. Consider the weighted majority game [13; 7, 6, 4, 3, 3, 1]. Note
that types [7] and [6] are genuinely asymmetric: coalition [733] is winning but
coalition [633] is losing. Likewise, types [4] and [3] are genuinely asymmetric
because [643] is winning but [633] is losing. Let θ = ( 7

24 ,
6
24 ,

4
24 ,

3
24 ,

3
24 ,

1
24 ). All

SSPE have v[7] = v[6] = 46
164 , v[4] = v[3] = 23

164 , and v[1] = 3
164 .

Proof. See Online Appendix.

Asymmetric Players May Have the Same Payoff

Example 4 shows that it is possible for two players to have the same equilibrium
expected payoffs, even though one of the players is more valuable as a coalition
partner and has the additional advantage of a higher recognition probability.
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Some intuition for this result can be obtained by inspecting the list of
MWCs. There are seven MWCs of five types: [76], [743], [733], [643], [6331].
All MWCs have exactly 13 votes except for the two coalitions of type [743].
If v[7] > v[6] and v[4] > v[3], coalition [743] would be too expensive to be
proposed by any player type, because the alternative coalitions [643] and [733]
would be cheaper. This leaves four coalition types that could potentially be
proposed, [76], [733], [643], and [6331]. Given this list, player [1] would need
the cooperation of player [6] and both players of type [3], whereas player [4]
would need player [6] and one of the players of type [3]. Likewise, player [7]
would need either player [6] or both players of type [3]. Types [6] and [3] would
be more in demand than types [7] and [4], and it would not be possible to
have v[7] > v[6] and v[4] > v[3] . It turns out that, in equilibrium, v[7] = v[6]
and v[4] = v[3].

Some Players May Be Too Expensive to Receive Proposals

The equalities v[7] = v[6] and v[4] = v[3] have two implications. On the one
hand, coalition type [743] becomes relevant, because it is just as expensive as
[643] and [733] despite having one more vote. On the other hand, coalition
type [6331] becomes too expensive for anybody other than player [1] even
though it only has 13 votes. Players [6] and [3] would rather propose [643] than
[6331], since its total cost is v[6] + v[4] + v[3] = v[6] + 2v[3] < v[6] + 2v[3] + v[1].

Note that the substitutability logic applies to this example, but in a
somewhat perverse way. Instead of applying to the MWCs with 13 votes
(coalition types [76], [733], [643], and [6331]), it applies to coalition types [76],
[733], [643], and [743].

Looking at the SSPE payoffs, player [1] appears underpriced since it only
expects about 0.02 even though its weight share is about 0.04. Types [6]
and [3] are getting a disproportionately high payoff compared to their weight
share but this does not result in their exclusion; instead, it is type [1] that is
excluded. Indeed, given that v[7] = v[6] and v[4] = v[3], player type [1] would
be perceived as too expensive for any positive value of v[1].

Surplus Coalitions May Form

The original Baron–Ferejohn model with symmetric players always leads to
minimal winning coalitions, since the proposer could otherwise drop one of
the responders and still have a winning coalition. With asymmetric players,
it is still true that all coalition partners must be pivotal, but the proposer is
not necessarily pivotal. In the previous example, type [1] finds it optimal to
propose surplus coalitions such as [7331] or [7431], since they are as expensive
as the minimal winning coalition [6331] given that v[7] = v[6] and v[4] = v[3].
Hence, surplus coalitions are not ruled out in equilibrium under weighted
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voting, though the only type of surplus coalition that may form is one in which
the proposer is the only member of the coalition who is not pivotal.

Concluding Remarks

This paper provides a necessary and sufficient condition for equilibrium payoffs
to be proportional in the Baron–Ferejohn model with weighted voting. When
the condition is satisfied, the set of available coalitions is sufficiently rich so
that none of the parties appears systematically too often (excess demand) or
too seldom (excess supply) in the final coalition. The condition is relatively
easy to check in applications since all equations involved are linear. Using
the condition, it is found that the frequency of legislatures in the field with
proportional equilibrium payoffs is about 69%, though there is a lot of variation
across countries. This frequency may be viewed as sufficiently high to support
empirical work, specially in the countries where it is highest.

Most counterexamples are not a result of the competitive bargaining logic
failing, but rather of its working in unexpected ways. However, in these cases
the deviations from proportionality may be substantial, both quantitatively
and qualitatively, as the examples provided illustrate.
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