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Abstract

This paper studies non-cooperative bargaining with random pro-
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equal probability, and the proportional protocol, which selects each

player with a probability proportional to his number of votes. Ex-
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1 Introduction

An apex game is a simple n-player game with one major player (the apex

player) and n − 1 ≥ 3 minor players (also called base players). A winning
coalition can be formed by the apex player together with at least one of

the minor players or by all the minor players together. Apex games can be

interpreted as weighted majority games in which the major player has n− 2
votes, each of the n − 1 minor players has one vote, and n − 1 votes are
required for a majority.

Since the apex player only needs one of the minor players he can play

them off against each other to obtain favorable terms. Each minor player

has two options: try to unite with the other minor players (and run the risk

that one of them accepts an offer of the apex player) or compete with them

for the favor of the apex player. Apex games have received a lot of attention

in the literature, starting with von Neumann and Morgenstern (1944).

This paper addresses three questions concerning apex games:

1) What coalition(s) are likely to form?

2) How will the gains from cooperation be divided for each possible coali-

tion?

3) What are the ex ante expected payoffs for the players?

There are very different answers in the literature to the first question.

Some papers (Cross (1967), Albers (1974), Bennett (1983), Morelli and Mon-

tero (2001)) predict that all minimal winning coalitions are possible, whereas

others limit the possible outcomes to the coalition of all small players (Au-

mann and Myerson (1988), Hart and Kurz (1983,1984)) or to coalitions of

the major player with a minor player (Chatterjee et al. (1993)). Coalitions

larger than minimal winning are possible in the bargaining set literature

(indeed the classical bargaining set1 is nonempty for any possible coalition

structure).

1We refer to the bargaining set M(i)
1 (Davis and Maschler (1967)); other variants of

the bargaining set appear in Aumann and Maschler (1964).
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As for the second question, equal division of gains seems indicated if all

minor players form a coalition. If the apex player forms a coalition with a

minor player, the division of gains is not so clear-cut. The answers given in

the literature range from the ”egalitarian” 1
2
: 1
2
split corresponding to the

kernel (Davis and Maschler (1965)) to the ”proportional” (to the number

of votes) n−2
n−1 :

1
n−1 split that comes from observing that a small player can

not expect more than 1
n−1 if all the minor players form a coalition2. The

classical bargaining set and the Zhou (1994) bargaining set include these two

extremes and all outcomes in between. The Mas-Colell (1989) bargaining set

excludes the two extremes.

Most of the literature has little to say about ex ante payoffs. They are

either very extreme (as the major player receives a payoff of zero) or un-

determined (when several coalitions are possible, ex ante expected payoffs

depend on the likelihood of each coalition, and this is left undetermined).

On the other hand, ex ante concepts like the Shapley value give no predic-

tions about coalitions or division of gains. The current paper attempts to

provide an answer to the three questions simultaneously.

In this paper a noncooperative procedure with random proposers (see

Baron and Ferejohn (1989) and Okada (1996)) is used to model bargaining in

apex games3. Two natural protocols are examined: the ”egalitarian” protocol

in which each player is selected to be the proposer with equal probability,

and the ”proportional” protocol, in which each player is selected with a

probability proportional to his number of votes4. The solution concept is

2Several solution concepts predict the proportional split, including von Neumann and

Morgenstern’s (1944) main simple solution and Horowitz’s (1973) competitive bargaining

set. Horowitz’s paper was actually motivated by apex games.
3Other extensions of the Baron-Ferejohn model include Eraslan (1998), Eraslan and

Merlo (1999) and Banks and Duggan (2000). Eraslan (1998) shows uniqueness of (sta-

tionary subgame perfect) equilibrium payoffs in symmetric majority games. Eraslan and

Merlo (1999) extend Eraslan (1998) to stochastic environments and show existence of

equilibrium. Banks and Duggan (2000) show existence of equilibrium in fairly general

(deterministic) environments.
4This would be the case in a parliamentary system where the probability of a party
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stationary subgame perfect equilibrium.

Intuitively, the apex player should benefit from a proportional protocol

since he is chosen more often to be the proposer. However, we show that

this is not the case if players are patient: expected equilibrium payoffs are

proportional to the number of votes of the players for both protocols. The

reason is that equilibrium strategies change so as to compensate changes in

the protocol: if the protocol selects a player to be the proposer with a higher

probability, the other players make offers to him with a lower probability so

that his ex ante expected payoff remains unchanged.

We also show that all minimal winning coalitions may form, and the

probability of a coalition being formed depends on the protocol (the coalition

of all minor players being more frequent under a proportional rule). Ex post

payoff division is rather asymmetric, with the proposer obtaining more than

half of the total payoff.

The rest of the paper is organized as follows: section 2 contains the model

and the results, section 3 relates the resulting expected payoffs to the kernel

and section 4 concludes.

2 Bargaining with random proposers in apex

games

2.1 The model

Let N = {1, 2, ..., n} be the set of players. A game is a weighted majority
game if there is a vector of nonnegative numbers or weights w := (w1, ..., wn)

and a quota q such that for all nonempty S ⊆ N , v(S) = 1 ifPi∈S wi ≥ q and
0 otherwise. We will only consider weighted majority games with q >

P
i∈N wi
2

.

A weighted majority game can be denoted by (q;w). A coalition S in a

weighted majority game is called winning if v(S) = 1 and losing if v(S) = 0.

A player i ∈ S is called pivotal if v(S) = 1 and v(S\{i}) = 0. If all players
being asked to form a government is proportional to the number of seats it holds.
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in S are pivotal S is called a minimal winning coalition. Apex games are a

special class of weighted majority games in which a major player has n− 2
votes, n− 1 players have one vote, and q = n− 1.5
Bargaining in apex games is modeled as a noncooperative game with

random proposers6. Given the underlying cooperative (apex) game (N, v),

bargaining proceeds as follows: At every round t = 1, 2, ... Nature selects a

player randomly to be the proposer. This player proposes a coalition S ⊆ N
to which he belongs and a division of v(S), denoted by xS = (xSi )i∈S. The
ith component xSi represents a payoff for player i in S. Given a proposal,

the rest of players in S (called responders) accept or reject sequentially (the

order does not affect the results). If all players in S accept, the proposal is

implemented and the game ends7. If at least one player rejects, the game

proceeds to the next period in which nature selects a new proposer (always

with the same probability distribution). Players are risk-neutral and share a

discount factor 0 < δ < 1.8 Thus, if a proposal xS is accepted by all players

in S at time t, each player in S receives a payoff δt−1xSi . A player not in S
remains a singleton and receives zero.

A (pure) strategy for player i is a sequence σi = (σti)
∞
t=1, where σti , the

tth round strategy of player i, prescribes

(i) A proposal (S, xS).

(ii) A response function assigning ”yes” or ”no” to all possible proposals

of the other players.

The solution concept is stationary subgame perfect equilibrium (SSPE).

Stationarity requires that players follow the same strategy at every round t.

Concerning the probability of players being selected to be proposers, we

will call the probability vector used by Nature a protocol, and we will denote

5This is only one of many possible vectors of weights. We have chosen a homogeneous

representation, in which all minimal winning coalitions have the same number of votes.
6The games with random proposers build on Binmore’s (1987) variant of the seminal

work by Rubinstein (1982).
7Ending the game after one coalition has been formed does not affect the results.
8Alternatively, after a proposal is rejected the game ends with probability 1− δ.
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it by θ := (θi)i∈N , where θi > 0 ∀i ∈ N and
P

i∈N θi = 1.

Two protocols suggest themselves: the egalitarian protocol θE := ( 1
n
, ..., 1

n
),

which selects each player with the same probability, and the proportional pro-

tocol θP := ( n−2
2n−3 ,

1
2n−3 , ...,

1
2n−3), which selects each player with a probability

proportional to his number of votes.

We will denote the noncooperative game described above G(N, v, θ, δ),

where (N, v) is an apex game unless otherwise specified.

2.2 The equilibrium

The following lemma corresponds to theorem 1 in Okada (1996). Even though

the original theorem assumes the egalitarian protocol θE, it can be applied

to any protocol θ. The proof is included for completeness.

Lemma 1 (Okada, 1996) Consider a zero-normalized, essential and super-

additive9 game (N, v). In any SSPE of the game G(N, v, θ, δ), every player

i in N proposes a solution (Si, x
Si) of the maximization problem

max
S3i,x

(v(S)−
X

j∈S,j 6=i
xj) (1)

s.t. xj ≥ δyj ∀j ∈ S\{i}

where yj is the equilibrium expected payoff of player j. Moreover, the

proposal (Si, x
Si) is accepted.

Proof. In an SSPE, any proposal that offers each responder j more than

δyj will be accepted. Since the characteristic function is superadditive we

have v(N) ≥ Pj∈N yj. Furthermore, since in equilibrium
P

j∈N yj > 0, we

have v(N) > δ
P

j∈N yj. Thus, player i can get more than δyi by proposing

the grand coalition and offering each responder j slightly more than δyj.

Since he only gets δyi when a proposal is rejected, it pays to always make

acceptable proposals.

9A cooperative game (N, v) is zero-normalized and essential if v(i) = 0 ∀i ∈ N and

v(N) > 0; it is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) ∀S, T ⊆ N , S ∩ T = ∅.
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Finally, in an SSPE the proposer must offer each responder j exactly δyj;

moreover, only coalitions that solve (1) can be proposed.

Notice that all ”nontrivial” weighted majority games (that is, all games

with
P

i∈N wi ≥ q > wi for all i) satisfy the assumptions of lemma 1.

Corollary 2 Consider a zero-normalized, essential and superadditive game

(N, v). In any SSPE of G(N, v, θ, δ), yi > 0 for all i in N. For apex games,

this implies that only minimal winning coalitions are proposed.

Proof. From the proof of Lemma 1 we know that each player gets a

strictly positive expected payoff as a proposer (at least (1 − δ)v(N) > 0).

As a responder, he can guarantee himself a payoff of zero by rejecting all

proposals. Since θi > 0 for all i, yi > 0. This implies that players will

only propose winning coalitions in which all responders are pivotal. The

proposer may in general not be pivotal, but in apex games there are no

winning coalitions in which all players but one are pivotal.

Let (N, v) be a weighted majority game. We say that players i and j are of

the same type iff v(S∪{i}) = v(S∪{j}) for all S such that i /∈ S, j /∈ S. The
following lemma states a symmetry property of stationary subgame perfect

equilibria

Lemma 3 Let i and j be two players of the same type. If θi = θj, then any

SSPE of the game G(N, v, θ, δ) satisfies yi = yj.

Proof. Suppose there is an SSPE with yi 6= yj. Without loss of generality
let yi > yj. Expected equilibrium payoffs satisfy the following equations

yi = θiy
i
i + riδyi (2)

yj = θjy
j
j + rjδyj. (3)

where ykk is the expected equilibrium payoff of player k conditional on

being the proposer, and rk is the probability that player k receives a proposal

in the equilibrium.
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First we show that ri ≤ rj. Players other than i and j will propose to j at
least as often as to i. How about i and j themselves? If j proposes to i with

positive probability there is a winning coalition S containing i and j such

that 1 − δyi − δ
P

k∈S\{j,i} yk ≥ 1 − δ
P

k∈T\{j} yk for all winning coalitions
T 3 j. Then i must propose to j with probability 1.
Second, since i has better alternatives than j, it is clear that yii ≥ yjj .
Third, yii − yjj ≤ yi − yj. If yii = yjj , this is obvious. If y

i
i > yjj , this

means that i proposes to j. We do not know if j proposes to i as well. If j

proposes to i, yii − yjj = δ(yi − yj). If j does not propose to i he must have
another alternative that is at least as good, thus yjj is at least as large as in

the previous case.

Let yii − yjj = yi − yj − ² (² > 0). Substracting (3) from (2) and taking

into account that θi = θj, we get

(yi − yj)(1− θi − riδ) = −²θi − (rj − ri)δyj.

Since the right-hand side is negative and the left hand side is positive, we

have reached a contradiction.

Lemma 3 implies that if the protocol treats all minor players equally, they

all must have the same expected payoffs in any equilibrium. Since we will

only consider protocols with this property, we may denote expected payoffs

by ym for a minor player and ya for the apex player.

In any SSPE the apex player makes a proposal to a minor player. The

behavior of the minor players depends on how ya compares to (n − 2)ym
(or, equivalently, on how ya compares with

n−2
2n−3); if ya < (n − 2)ym, all

minor players propose to the apex player; if ya > (n− 2)ym all minor players
propose the minor player coalition; if ya = (n − 2)ym, the equilibrium is in

(possibly degenerated) mixed strategies. Which type of equilibrium actually

arises depends on the parameters.

8



Proposition 4 Let (N, v) be an apex game, θ a protocol with θi = θj if i

and j are minor players, and δ arbitrarily close to 1. Then10

a) There is no SSPE such that all minor players propose to the apex

player.

b) There is an SSPE in which all minor players propose the minor player

coalition provided that θa ≥ 1
2
.

c) There is an SSPE in which the minor players are indifferent between

proposing to the apex player and proposing the minor player coalition provided

that θa <
1
2
.

Proof. a) Suppose there is an SSPE such that all minor players propose

to the apex player. Then the apex player’s expected equilibrium payoff equals

ya = θa(1− δym) + (1− θa)δya. (4)

Since there is no delay in any SSPE and a winning coalition always forms,

ya + (n− 1)ym = 1. (5)

The two equations together imply ya =
θa(n−1−δ)

n−1−δ(n−1−(n−2)θa) . If δ is arbitrarily
close to 1, ya is also arbitrarily close to 1, and the minor players would rather

propose the minor player coalition.

b) Suppose there is an SSPE such that all minor players propose the

minor player coalition. Then

ya = θa(1− δym) (6)

which, together with (5), implies ya =
θa(n−1−δ)
n−1−δθa ; ym can then be found

from (5). It is easy to check that, for δ close to 1, ya > (n− 2)ym provided
that θa ≥ 1

2
.

10It suffices to describe the equilibrium strategies of the players by a probability distri-

bution over the coalitions they propose. Lemma 1 implies that each responder j is offered

exactly δyj and all responders accept. This fact together with the probability distribution

used by the proposers determines (yj)j∈N .
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c) Suppose there is an SSPE such that the minor players are indifferent

between proposing to the apex player and proposing the minor player coali-

tion. The indifference condition (n − 2)ym = ya together with the no delay
condition (5) imply

ya =
n− 2
2n− 3 (7)

ym =
1

2n− 3 (8)

Let λi (i 6= 1) be the probability that i proposes to the apex player

conditional on i being the proposer, and λ :=
P
i∈N\{1} λi
n−1 . Then

ya = θa(1− δym) + (1− θa)λδya

Plugging the values of ya and ym from (7) and (8), we obtain λ = λ(θ) =
n−2−θa(2n−3−δ)
δ(1−θa)(n−2) . For δ close to 1, λ > 0 requires θa <

1
2
.

There is a continuum of equilibria, all of them with the same value of λ.

Given a collection of strategies for the minor players (λi)i∈N\{1} with average
λ, we can find the corresponding strategy of the major player such that each

minor player has the same payoff: players with large λi are less likely to

receive proposals from the apex player, so that all minor players have the

same probability of becoming responders. The probability that the apex

player proposes to player i given λi is
1−λi
n−2 for θ = θP and (for δ close to 1)

about 1− λi for θ = θE.

Corollary 5 Let δ be close to 1. Since both θE and θP have θa <
1
2
, the

unique equilibrium payoffs are the same for both protocols. λ(θE) is close to
n−2
n−1 , whereas λ(θ

P ) equals 1
n−1 .

The reason why payoffs are the same for both protocols is that equilibrium

strategies change so as to compensate changes in the protocol: if the protocol

selects a player to be the proposer more often equilibrium strategies adjust

so that he becomes a responder less often and his expected payoff remains

unchanged.
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It is easy to check that if the parameters lie outside the region of mixed-

strategy equilibria the value of ya is increasing in θa, so that the intuition

that the apex player benefits from an increase in θa is confirmed
11, the reason

being that the minor players are already playing an extreme strategy and

cannot adjust it any further.

It can be shown that the SSPE of the apex game is unique in terms of

expected payoffs regardless of whether δ is close to 1. The type of equilib-

rium given (N, v) and θ may depend on the value of δ. For θa =
n−2
2n−3 , the

equilibrium is in mixed strategies regardless of δ. However, for θa =
1
n
, the

equilibrium is in mixed strategies only if δ is close enough to 1. The larger the

value of n, the closer to 1 δ has to be. If δ is not large enough, the equilibrium

with the egalitarian protocol is such that all minor players propose to the

apex player, and the apex player benefits from a proportional protocol. In

the limit when δ tends to 0, the region where a mixed strategy equilibrium is

played shrinks around one point (θa =
n−2
2n−3) and expected payoffs are strictly

increasing almost everywhere in the recognition probabilities.

Remark 6 The proposer gets at least half of the total payoff.

In the mixed strategy region expected payoffs are proportional to the

share of the total votes, and the proposer only needs to ”buy” less than half

of the votes. Outside this region the situation is even more favorable to the

proposer.

Remark 7 The coalition of all minor players is more frequent under a pro-

portional protocol than under an egalitarian protocol.

The payoff a player gets as a proposer and the payoff he gets as a responder

do not depend on whether the protocol is egalitarian or proportional. Since

the apex player is selected to be the proposer more often by θP , the total

probability that he is in a coalition must be smaller under θP in order to keep

11A related result can be found in Eraslan (1998): for symmetric majority games, the

players’ expected payoffs are non-decreasing in the recognition probabilities.
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ya constant. The exact probabilities of the minor player coalition forming

are found by plugging the appropriate values of θa and λ into equation (1−
θa)(1 − λ). In the limit when δ tends to 1, these values are 1

n
and n−2

2n−3
respectively.

The probability that a given coalition including the apex player is formed

depends on the concrete equilibrium; if we restrict ourselves to symmetric

equilibria (λi = λ for all i ∈ N\{1}) and take the limit when δ tends to

1, then each of these coalitions forms with probability 1
n
given θE and 1

2n−3
given θP .

3 Apex games and the kernel

Consider a cooperative game (N, v). Assume v(S) ≥ 0 ∀S ⊆ N and v(i) = 0

∀i ∈ N. An outcome of the game is denoted by (x;B) where xi denotes
the payoff to the ith player and B ≡ {B1, ..., Bm} the coalition structure
(partition of N) that was formed. The payoff vector is assumed to satisfy

xi ≥ 0, i = 1, 2, ..., nP
i∈Bj xi = v(Bj), j = 1, 2, ...,m

A payoff vector satisfying these two conditions is called an imputation12.

The space of all imputations for the coalition structure B is denoted by X(B).
Let x be an imputation in a game (N, v) for an arbitrary coalition struc-

ture. The excess of a coalition S at x is e(S, x) := v(S)−Pi∈S xi.
Let (x;B) be an outcome for a cooperative game, and let k and l be two

distinct players in a coalition Bj of B. The surplus of k against l at x is
sk,l(x) := max

k∈S,
l/∈S

e(S, x)

Let (N, v) be a cooperative game and let B be a coalition structure. The
kernel K(B) for B is
K(B) := {x ∈ X(B) : sk,l(x) > sl,k(x)⇒ xl = 0, ∀ k, l ∈ B ∈ B, k 6= l} (9)

12The terminology is taken from Maschler (1992).
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Suppose (N, v) is an apex game and consider the coalition structure

B ={N}. The only payoff vector in the kernel is ( n−2
2n−3 ,

1
2n−3 , ....,

1
2n−3). If we

interpret apex games as weighted majority games, the kernel predicts payoffs

that are proportional to the number of votes of the players13.

We now come back to the equilibrium of the noncooperative game de-

scribed in section 2. The first condition we derived there was that all minor

players must have the same expected payoffs, that is, if i and j are minor play-

ers, yi = yj = ym. We may rewrite this condition as 1−ya−yi = 1−ya−yj. In
the language of the kernel, the surplus of i over j equals the surplus of j over

i. Second, the indifference condition of the minor player, ya = (n − 2)ym,
implies 1 − ya − ym = 1 − (n − 1)ym. In the language of the kernel, the
surplus of the apex player against a minor player equals the surplus of a

minor player against the apex player. Finally, because there is no delay in

equilibrium (and players always propose winning coalitions), the sum of all

expected payoffs equals 1, that is ya + (n− 1)ym = 1. In the language of the
kernel, (yi)i∈N is an imputation.

4 Concluding remarks

The solution concepts based on the stability of demand vectors make intuitive

predictions about the ex post payoff division in apex games, but have nothing

to say about ex ante expected payoffs14. We have made intuitive predictions

about the ex ante expected payoffs in apex games, though at the cost of very

extreme ex post predictions (the proposer, even if he is a minor player in an

apex game with very large n, gets at least half of the total payoff).

Chatterjee et al. (1993) consider a proposal-making model in which a

rule of order selects the first proposer and the order in which players respond

13While proportional payoffs may seem only too obvious, one must take into account

that neither the Shapley value nor the Banzhaf value assign proportional payoffs in an

apex game.
14This is also the case if the situation is modeled as an extensive form game (Selten

(1981), Bennett and van Damme (1991), Bennett (1997), Morelli (1999)).
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to a proposal, and the first player to reject becomes the next proposer. This

model predicts that a coalition of the apex player and a minor player will

form and split the payoff roughly equally regardless of the number of players.

The reason is that the game fails to reflect the competition between the

minor players. A minor player who rejects an offer will propose to the apex

player in the next period, so that his continuation value is zm = δ(1 − za)
regardless of the proposing strategy of the apex player and the number of

players; this equation together with za = δ(1 − zm) determine za and zm
regardless of n. In games with random proposers, the payoff of a player who

rejects a proposal depends on how often other players propose to him, so

that competitive pressures affect expected payoffs.

There is a significant literature focusing on the relation between non-

cooperative equilibria and cooperative solution concepts. Krishna and Ser-

rano (1996) and Hart and Mas-Colell (1996) consider unanimity bargaining,

and are therefore not applicable to majority games. Gul (1989) and Ser-

rano (1997) provide noncooperative foundations of the Shapley value and

the kernel respectively using bargaining procedures based on pairwise meet-

ings. While this paper covers only apex games, the noncooperative model is

very natural in the context of majority games.

We have pointed out a relation between the definition of the kernel and

the indifference conditions corresponding to mixed strategy equilibria. This

relation is not exclusive of apex games but extends to other majority games:

if we have an equilibrium in mixed strategies of the random proposer game

such that the probability that player i proposes to player j is strictly between

0 and 1 for all i and j, i 6= j, then expected equilibrium payoffs must belong
to the kernel of the grand coalition.

The strong invariance result found for apex games generalizes to weighted

majority games with one large player and n− 1 small players, but not to all
weighted majority games. For example, expected payoffs for the egalitarian

protocol and for the proportional protocol differ in a game as simple as

(4; 2, 2, 1, 1, 1).
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Finally, we have limited ourselves to homogeneous weights. The equilib-

rium for the apex game given a protocol proportional to some nonhomoge-

neous weights may not coincide with the kernel of the grand coalition.
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