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ABSTRACT

We present a test of the null hypothesis of stationarity against unit root alternatives for panel

data that allows for arbitrary cross-sectional dependence. We treat the short run time series

dynamics non-parametrically and thus avoid the need to fit separate models for the individual

series. The statistic is simple to compute and is asymptotically normally distributed, even in the

presence of a wide range of deterministic components. Taken together, these features provide

a generally applicable solution to the problem of testing for stationarity versus unit roots in

macro-panel based data. The test is applied to assess the validity of the purchasing power parity

hypothesis and finds significant evidence against the hypothesis being true.
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1 Introduction

Relatively long time series of many core macroeconomic variables are now available for the ma-

jority of developed economies and the use of panel data unit root, or stationarity, tests as a means

of empirically validating various important macroeconomic theories has become a rapid growth

area of applied econometric research in recent years. For example, panel tests have been used

to assess the evidence for the hypotheses of purchasing power parity, for convergence of growth

rates, for mean reversion of inflation rates and for the real interest rate parity hypothesis.

These tests attempt to exploit the potential power gains that are offered by analyzing a time

series panel as opposed to individual series and, as such, they have the potential to provide more

compelling evidence for, or against, certain models of economic behaviour. Recent tests have been

proposed by, inter alia, O’Connell (1998), Maddala and Wu (1999), Hadri (2000), Choi (2001,

2002), Chang and Song (2002), Levin, Lin and Chu (2002), Chang (2003) and Im, Pesaran and

Shin (2003).

The two major factors that any panel test needs to be able to address are cross-sectional

dependence and time series dynamics, if reliable inference is to be made in practical situations.

Cross-sectional dependencies are likely to be the rule rather than the exception in many empirical

settings. For example, in studying cross-country data, dependence is very likely to arise due to

the existence of strong inter-economy linkages. The tests of Hadri (2000), Choi (2001), Levin,

Lin and Chu (2002) and Im, Pesaran and Shin (2003) all assume independence across the panel

and their size properties are uncertain outside of this rather unrealistic assumption.2 The test

of O’Connell (1998) allows for cross-sectional dependence, but this is restricted to the innovation

term driving an assumed finite order AR process in their models. Choi (2002) permits cross-

sectional dependence but only after imposing a common additive error component across the panel.

The testing approach adopted by Chang and Song (2002) provides, at least in theory, the most

general treatment of the problem of cross-sectional dependence up until now, but their procedure

relies on user-supplied parameters, whose values are a function of the dependence structure itself,

which rather limits its practical appeal. Maddala and Wu (1999) and Chang (2003) approach

the problem indirectly, relying on bootstrap procedures but the underlying tests are not pivotal.

Regarding time series dynamics, with the exception of the test of Hadri (2000), all of these tests

rely on fitting an appropriately specified time series regression model to each individual series in

the panel (a tedious and error prone undertaking unless the cross-sectional dimension is relatively

small). For tests that allow cross-sectional dependence, this is a doubly vital requirement, as any

notion of these tests’ robustness to cross-sectional dependence is intimately reliant on the correct

modelling of the time series dynamics.

It would seem, then, that none of the extant tests offers a totally satisfactory solution to the

problem of testing for unit roots, or stationarity, when the cross-sectional dependence structure

and time series dynamics are both unknown. In contrast, the new stationarity test statistic we

suggest in this paper is constructed so as to overcome both these problems. We allow for arbitrary

unknown cross-sectional dependence between the series in the panel, where the series may be

contemporaneously or cross-serially dependent. We also permit a wide range of heterogeneous

stationary time series dynamics, which includes the conventional ARMA class.

Our statistic is based on a vector version of the stationarity test of Harris, McCabe and Ley-

bourne (2003) (rather than a KPSS -type stationarity test as in Hadri (2000)). The statistic is,

in essence, the sum of the lag-k sample autocovariances across the panel, suitably studentized,

where we allow k to be a simple increasing function of the time dimension. By controlling k in

such a way, we remove any need to explicitly model the time series dynamics of each series in the

2O’Connell (1998) shows that the test of Levin, Lin and Chu (2002) can suffer severe size distortions if applied
to panels where independence does not hold.
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panel, even though their time series dynamics may be quite heterogeneous. At the same time, the

studentization automatically robustifies the statistic to the presence of any form of cross-sectional

dependence. Our statistic is simple to construct and, conveniently, possesses a limiting null dis-

tribution which is standard normal under quite general linear process assumptions.3 Asymptotic

normality also holds when the statistic is calculated using residuals from deterministic regression

models fitted to each series. These may include polynomial trends or even structural breaks and

there is no requirement that the same deterministic model be fitted to each series. As such, the

test can be applied across a range of empirically relevant modelling situations without reference

to model-dependent null critical values, or the need to compute bootstrap critical values.

The plan of the paper is as follows. In the next section we motivate the statistic, showing

how it can be used to distinguish between stationarity and unit roots in the panel context. In

Section 3, we demonstrate asymptotic standard normality of the test under the stationary null

hypothesis, and show consistency under the unit root alternative. Section 4 reports the results

of a number of Monte Carlo experiments to gauge the empirical size and power of the test. The

results are very encouraging. In particular, the robustness of the test’s size to different patterns

of cross-sectional dependence and time series dynamics stands out as a prominent characteristic.

Finally, Section 5 demonstrates an empirical application of our test in the context of testing for

the null hypothesis of purchasing power parity in a panel of U.S. Dollar real exchange rates.

2 A Panel Test of Stationarity

By way of motivation of our statistic, consider for the moment a single series, yt, of T observations,

generated by an AR(1) process

yt = φyt−1 + εt, φ ≤ 1

where the disturbance term εt is white noise with variance σ
2. Suppose that we wish to assess

if this series is stationary or possesses a unit root. An obvious test statistic is the lag-1 sample

covariance (suitably studentized):

C1 = T
−1/2

TX
t=2

ytyt−1.

In the case of testing the null of a unit root, the (studentized) lag-1 sample covariance is equivalent

to the usual Dickey-Fuller procedure.

In many applications it is more natural to test the composite null hypothesis of stationarity,

φ < 1, against the unit root alternative φ = 1.4 The problem with using C1 under the stationary

null is that since

E [C1] ' T 1/2σ2φ/(1− φ2),

its distribution depends on φ. An alternative is to consider instead the lag-k autocovariance

Ck = T
−1/2

TX
t=k+1

ytyt−k

3Our asymptotics are based on a fixed cross-section dimension, and passing the time series dimension to infinity.
For many macroeconomic applications, the assumption of a fixed cross-section dimension would appear reasonable,
however.

4For example, the purchasing power parity hypothesis would imply stationarity of real exchange rates.
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where

E [Ck] ' T 1/2σ2φk/(1− φ2).

Now suppose that we set k = k(T ) = o(T ) so that k increases simultaneously with T . It is then

clear that E [Ck] will converge to zero, eliminating any dependence of E [Ck] on the parameter

φ. Suitably studentized then, Ck will have an asymptotic normal distribution free of unwanted

parameters (see Harris, McCabe and Leybourne (2003)). Thus Ck may be used to test the null

of stationarity and, since E [Ck] ' σ2T 3/2 when φ = 1, the test may be expected to be consistent

under the unit root alternative.

Consider now a panel ofN time series yit, each of T observations, generated byAR(1) processes

yit = φiyi,t−1 + εit, φi ≤ 1 (1)

i = 1, 2, ...,N , t = 1, 2, ..., T

where the disturbance term εit is (temporarily) white noise with variance σ
2
i . Throughout, we

consider N to be fixed and we shall let T grow in our limit theory.5 We wish to test the null

hypothesis of joint stationarity

H0 : φi < 1 for all i

against the unit root alternative

H1 : φi = 1 for at least one i.

The above analysis, together with the corresponding literature on panel Dickey-Fuller tests, sug-

gests that

Sk =

NX
i=1

Ci,k, Ci,k = T
−1/2

TX
t=k+1

yityi,t−k

could be used as a test statistic. Under H0, it is easily seen that

E [Sk] ' T1/2
NX
i=1

σ2iφ
k
i /(1− φ2i )

and, setting k as before, E [Sk]→ 0 as T →∞ since N is fixed. This eliminates the dependence

of E [Sk] on all of the φi simultaneously. As shown below, when suitably studentized Sk will

have an asymptotic normal distribution free of unwanted parameters under H0. Thus Sk may be

used to test the null of stationarity in the panel. Under H1 where, without loss of generality, we

suppose only the first M ≤ N of the φi = 1,

E [Sk] ' T3/2
MX
i=1

σ2i + T
1/2

NX
i=M+1

σ2iφ
k
i /(1− φ2i ),

so that the leading right hand side term once more suggests that the test should be consistent.

It proves convenient, for what follows later, to define the generic long-run variance estimator

of a sequence of variables a1, ..., aT as

ω̂{at}2 = γ̂0{at}+ 2
lX

j=1

µ
1− j

l

¶
γ̂j{at}, γ̂j{at} = T−1

TX
t=j+1

atat−j.

5It is possible to allows the number of observations to vary with the individual time series involved but we use

a single T for notational convenience.
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In practical situations it is generally the case that some deterministic function, such as a

constant or linear trend, will be fitted to the yit. Thus, in place of (1), we will consider the model

given by

yit = β0ixit + eit. (2)

eit = φiei,t−1 + εit, φi ≤ 1
i = 1, 2, ...,N , t = 1, 2, ..., T

and let êit denote an OLS residual from the regression (2). In addition, it is usually considered a

desirable property that a statistic be invariant to relative rescaling and rebasing of indices. Hence,

in what follows, in place of yit in the definition of Sk we will use instead the standardized residuals

ẽit = êit/γ̂0{êit}1/2. The next section derives the limiting distribution of (studentized) Sk under
H0, when εit is a linear process. We also demonstrate test consistency under H1.

3 Distribution Theory

We make the following assumptions regarding time series dynamics of εt = [ε1t, ..., εNt]
0.6

Assumption 1

Let εt be an N × 1 vector of fixed dimension generated by the linear process
εt = A (L) ξt,

where A (L) =
P∞
j=0AjL

j and Aj (N ×N) and ξt (N × 1) satisfy
(i) A0 = IN ,

(ii)
P∞
j=0 j

2 kAjk2 <∞,
(iii) A (1) has full rank,

(iv) {ξt,=t} is a martingale difference sequence where =t = σ
©
ξt−j, j ≥ 0

ª
,

(v) E
¡
ξtξ

0
t

¯̄=t−1¢ = Σ a.s., for all t,
(vi)

°°E ¡ξtξ0t ⊗ ξtξ0t ¯̄=t−1¢°° < κ <∞ a.s. for all t and some fixed constant κ.

This assumption permits arbitrary cross-sectional dependence between the series in the panel

and the series may also be contemporaneously or cross-serially dependent. In addition, it allows for

heterogeneity across the panel. The series may exhibit a range of individual temporal dependence

structures, including those of stationary ARMA processes. The next assumption defines the class

of regression deterministics that are catered for in xit.

Assumption 2

Suppose that êit are the OLS residuals

êit = yit −
³
β̂i − βi

´0
xit,

and let xit denote a vector of deterministic regressors with the properties

D−1iT xi[Tτ ] → Xi (τ) <∞,
uniformly in τ , for some DiT , and

T−1
TX
t=1

D−1iT xitx
0
itD

−10
iT →

Z 1

0
Xi (τ)Xi (τ)

0 dτ > 0.

6For any matrix A let kAk =ptr (A0A) .
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Assumption 2 is quite general, allowing for a wide range of deterministic regression functions

including polynomial trends and dummy variable/structural break models. In the current context,

leading examples are a constant term: xit = 1, DiT = 1 and Xi (τ) = 1, or a constant and linear

trend: xit = [1, t0], then DiT = diag[1, T ] and Xi (τ) = [1, τ ]0. The next condition controls the
rate of increase of k and the lag truncation parameter l.

Condition 3.

Let k→∞ and l→∞ as T →∞ such that k = O(T 1/2) and l = o (k).

We have the following Theorem, the proof of which is given in the Appendix.

Theorem 1 If Assumption 1, 2 and Condition 3 hold then, under H0,

Ŝ = ω̂{at}−1Sk
⇒ N [0, 1]

where

Sk =

NX
i=1

Ci,k, Ci,k = T
−1/2

TX
t=k+1

ẽitẽi,t−k,

and at =
PN
i=1 ẽitẽi,t−k.

The role of Condition 3 is to remove the effects of temporal dependence in individual series

from the asymptotic distribution of Ŝ. Hence, there is no need to individually model the temporal

dependence structure of each series. The long-run variance estimator ω̂{at}2 essentially removes
the effects of cross-sectional dependence between series as it correctly estimates the variance of

Sk. Again, there is no need to model the cross-sectional dependence structure.

The next Theorem establishes consistency of Ŝ.

Theorem 2 If Assumption 1, 2 and Condition 3 hold then, under H1, Ŝ diverges to +∞.
This last result shows that an upper tail test is appropriate for testing H0 against H1.

When dealing with a small number of series, the N(0, 1) asymptotic null distribution of Ŝ often

proves to be an adequate approximation for its finite sample distribution. However, if the panel

dimension is not relatively small, individual finite sample biases occurring in the distributions of

the Ci,k, that arise from the estimation of regression models, combine in the construction of the

aggregate numerator Sk =
PN
i=1Ci,k and can significantly effect the finite sample null distribution

of Ŝ.

To illustrate the source of the bias, we consider the leading case of a constant and a single

deterministic regressor, x2,it fitted to yit, denoting the OLS residual êit = yit− β̂1,i− β̂2,ix2,it. Let
ŷit represent a fitted value from this regression. Also, purely for transparency, we temporarily

assume that the Ci,k are calculated from unstandardized êit. So, assume H0 is true and write

Ci,k = T−1/2
TX

t=k+1

êitêi,t−k

= T−1/2
TX

t=k+1

êit (yi,t−k − ŷit−k)

= T−1/2
TX

t=k+1

êityi,t−k.
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After a little manipulation, and approximating the sums in yi,t−k by those in yit, we find

Ci,k ≈ T−1/2
TX

t=k+1

yityi,t−k (3)

−T−1/2
T−1Ã TX

t=k+1

yit

!2
+ q−1T

Ã
TX

t=k+1

(x2,it − x̄2,i) yit
!2 (4)

where qT =
PT
t=k+1 (x2,it − x̄2,i)2. Since the êit are invariant to β1,i and β2,i and we may, for the

purposes of the present argument, assume they are zero without loss of generality. Hence, the

ideal statistic to use is (3) above; in practice though we must compute the full expression. Under

H0, the two terms in square brackets in (4) are both Op(1) and so the whole term is Op(T
−1/2).

It is the term (4) that induces a negative finite sample bias into each individual statistic, and the

amplification of this problem is obvious when we subsequently consider Sk =
PN
i=1Ci,k. Since we

are conducting upper tail tests, ceteris paribus, we would conjecture that the effect of this is to

reduce the size of the test.

It is, however, possible to produce a finite sample correction for Ci,k by using the expected

value of (4) term and subtracting it from Ci,k. Notice that E

·
T−1

³PT
t=k+1 yit

´2¸
is the long

run variance of T−1/2
PT
t=k+1 yit and that this expectation may be estimated by ω̂{yit}2. Simi-

larly, the expectation of the second term in (4) may be estimated using ψ̂{yit (x2,it − x̄2,i)}2 =
Tq−1T ω̂{yit (x2,it − x̄2,i)}2.

In practice, then, we suggest that, in the case of a constant and a single deterministic regressor,

when constructing the numerator term of Ŝ, we replace Sk, with S
∗
k defined by

S∗k =

NX
i=1

C∗i,k

C∗i,k = T−1/2
TX

t=k+1

ẽitẽi,t−k + T−1/2
h
ω̂{ẽit}2 + ψ̂{ẽit (x2,it − x̄2,i)}2

i
.

The following corollary demonstrates that the use of the bias correction in the case of a constant

and deterministic linear trend, and shows that it has no asymptotic effect on the null distribution

or consistency property of the test. Note in this case qT =
PT
t=k+1

¡
t− t¢2 = O(T 3).

Corollary 1 If Assumption 1, Assumption 2 with xit = (1, t)
0 and Condition 3 hold then i) under

H0, Ŝ = ω̂{at}−1S∗k ⇒ N [0, 1] where at =
PN
i=1 ẽitẽi,t−k and ii) under H1, Ŝ diverges to +∞

If a constant term alone is fitted, we omit the term ψ̂{ẽit (x2,it − x̄2,i)}2 from the bias correc-

tion. Part of the analysis of the next section is to assess the effectiveness of such a correction

under H0. In a similar fashion, we may also produce bespoke finite sample bias corrections for

other, more complicated, deterministic regression models.

4 Finite Sample Simulations

In this section we investigate, via Monte Carlo simulation, the finite sample size and power

properties of the test Ŝ. We consider a range of differing scenarios for cross-sectional dependence

and time series dynamics for N = 3, 5, 10, 20, 30 and T = 75, 150, 300. Throughout, we calculate Ŝ

fitting a constant term (i.e. êit is a deviation from a mean) and our default approach employs the
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corresponding finite sample bias correction of the previous section. As regards the user-supplied

parameters, based on experimentation we set k = (3T )1/2 and l = 12(T/100)1/4, both rounded

to the lowest integer, and all simulations are conducted using 10,000 replications. The data are

generated from the DGP (2) for yit, with βi = 0. The disturbance term εit is generated by an

MA(1) process εit = vit − θivit−1, with each vit being standard normal white noise. We define
ρij = E[vitvjt], the contemporaneous correlation between vit and vjt, i, j = 1, ...,N , i 6= j.

Our first simulations concern empirical size properties. These are reported in Table 1, where

table entries represent empirical rejection frequencies at asymptotic 0.05-level null critical values

of an upper tail test (i.e. for Ŝ > 1.65). As a benchmark, in Table 1(a) we set ρij = 0. That

is, the yit are uncorrelated processes. In the first column of this table, we set φi = θi = 0 , such

that the yit are uncorrelated white noise processes. The test Ŝ is seen to have close to nominal

0.05 size for each of the values of N and T we consider. The next four columns generates the yit
variously as uncorrelated stationary AR(1) or MA(1) processes, but where each of the N series

has identical time series dynamics. The final column of Table 1(a) generates the yit as stationary

ARMA(1, 1) processes. Here, the φi and θi are drawn from independent U [0, 0.8] distributions

(fixed over replications), thus introducing a degree of heterogeneity into the time series dynamics.

Once more, however, Ŝ generally displays very close to nominal size. Only when T = 75 and

N = 20, 30 do we see observe some noticeable departures from nominal size, and even these are

really quite modest in nature.

Table 1(b) repeats the same set of experiments of Table 1(a) except that now we generate

a moderate degree of equicorrelation, setting ρij = 0.5. The story is very much the same as in

Table 1(a). The overall sizes of Ŝ are a little closer to the nominal 0.05 value than was the case

previously, and particularly so for T = 75 and N = 20, 30. In Table 1(c) the analysis is repeated

for ρij = 0.9, representing the situation of a high degree of equicorrelation. It is clear that this

has no discernible effect on the size of Ŝ.

We also examine the behaviour of the test outside of the equicorrelated case. Whilst there

are numerous such ways in which this more general behaviour could be modelled, here we simply

assume that ρij = 0.9
|i−j|. For example, such a correlation structure might be considered appro-

priate to mimic the effects of spatial separation of economies, whereby neighbouring economies

are more highly correlated than ones which lie geographically further apart. Since the test Ŝ is

invariant under i-orderings the distance interpretation is meaningful. The results, shown in Table

1(d), indicate that such a correlation pattern has no untoward effect on the size of Ŝ.

Our final size simulations assess the impact of the finite sample bias correction. Table 1(e)

replicates the analysis of Table 1(a), this time without this bias correction. It is immediately

clear that Ŝ is generally quite badly undersized and that this problem becomes more severe as

N increases (particularly in the cases where φi > 0), which supports the conjecture of Section

3. As we would expect, increasing the sample size does improve the situation, but only rather

marginally, implying that large sample sizes are required before our asymptotic results apply. In

view of the comparable results in Table 1(a), we conclude that our finite sample bias correction

is extremely effective in alleviating these undersizing problems.

To examine the power of our test, we consider the DGP (2), where we set θi = 0, i = 1, ...,N ,

φi = 1, i = 1, ...,M and φi = 0, i = M + 1, ...,N . That is, the first M of the yit are generated

as random walks and the last N −M are white noise processes. The results, for various choices

of M and using the same values of N , T and cross-correlation structures as adopted in Table 1,

are presented in Table 2. Since size distortions under the null hypothesis do not appear to be an

issue, we report size-unadjusted empirical powers based on the asymptotic 0.05-level null critical

value.

Considering first Table 2(a), the base case of no cross-sectional correlation, we can draw a

number of conclusions. It is clear that for a fixed N , the power of Ŝ increases as M , the number
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of random walks, becomes a larger proportion of the total number of series, N . By the same

token, we see that for a fixed M , the power of Ŝ generally decreases as N increases. The power

advantages to be gained from the panel approach are also evident from Table 2(a). This is

perhaps most clearly illustrated by examining the case of N = M for T = 75, where we see a

steady growth in power as N increases. For example for N = M = 3, the power is 0.67, risings

to 1.00 for N =M = 20. Alternatively, when T = 75, we might compare N =M = 3 (0.67) with

N = 20, M = 10 (0.90), which demonstrates an increase in power, even though the proportion

of random walks has halved.

Table 2(b) repeats the analysis of Table 1(a) for moderate equicorrelation, ρij = 0.5. The

power of all tests are uniformly lower (apart for some entries where the power is still 1.00).

However, perhaps the main feature of this table is the power drop for a fixed M as N increases.

The power advantages from the panel approach are still evident, however; for T = 75 for example,

compare N = M = 3 (0.61) with N = M = 10 (0.75). Table 2(c) demonstrates the effects of

a high degree of equicorrelation, ρij = 0.9. The power drops off even more rapidly or a fixed

M as N increases. Moreover, by this point the power advantages of the panel approach have all

but evaporated; for T = 75 compare N = M = 3 (0.49), N = M = 10 (0.48) and N = M = 30

(0.49). The obvious reason for this phenomenon is that we are approaching the limit case in which

all the N series are perfectly correlated which is akin to having only a single series replicated N

times. In such a situation there is no new information to exploit across the i dimension to increase

test power above that obtainable from a test on a single series, and the panel approach therefore

becomes redundant. Of course, this argument is not unique to panel stationarity tests; it applies

equally to the power of panel unit root tests if, under the stationary alternative, all the series

are (near) perfectly correlated. Finally, Table 1(d) reports the results of the spatial correlation

model, ρij = 0.9
|i−j|. The power advantages of the panel approach are once more clear to see.

A plausible criticism of our statistic is that it only involves sample autocovariances at a single

lag, k, and that, potentially, power gains might be obtained by also incorporating sample autoco-

variances at higher lags. To this end, prompted by Tanaka (1999), we considered a panel analog of

our statistic which uses a weighted sum of all sample autocovariances from lag k onwards; that is,PN
i=1

PT−1
j=k

1
j−k+1Ci,j. We constructed an appropriately studentized version of this statistic

7 and

repeated the power analysis of Table 2(a) for both this statistic and Ŝ but without fitting constant

terms and making finite bias corrections. In every case the empirical power of Ŝ was found to be

at least as large as the test based on the weighted sum.8 Moreover, when constant terms were

fitted to both tests (without bias corrections), undersizing problems were found to be much more

severe for the test based on the weighted sum than for Ŝ. For example, in Table 1(e) whereas, for

T = 150, the first three sizes for Ŝ in the leading column are 0.04, 0.03, 0.03, the corresponding

sizes for the test based on the weighted sum are 0.01, 0.01, 0.00. Intuitively, this occurs because

each of the Ci,j terms in the weighted sum over j contributes towards a negative finite sample

bias. In addition, there does not seem to be a readily computable bias correction for this statistic.

Hence, because the weighted sum test appears to add nothing in terms of extra power, and also

suffers more from undersizing problems, we feel that there is considerable justification for using

our simple variant.9

7It can be shown that such a statistic also has a limiting standard normal distribution under H0.
8We do not report the actual results here. They are available upon request.
9Of course, statistics which are other functions of higher order sample autocovariances might also be considered.

We conjecture, however, that these will always prove rather more susceptible to bias (and hence size) problems than

the test based on a single autocovariance, and will not yield substantial compensatory improvements in power.
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5 Testing the Purchasing Power Parity Hypothesis

In this section, we empirically test the purchasing power parity (PPP) hypothesis, which is a

fundamental ingredient of macroeconomic models of bilateral exchange rate behaviour. The va-

lidity of the PPP hypothesis has been an issue that has attracted a vast amount of attention in

recent times and has been tested extensively using different panel unit root tests. In general, little

evidence in support of PPP has been uncovered. For example, Papell (1997), O’Connell (1998),

Cheung and Lai (2000), Wu and Wu (2001) and Chang and Song (2002) are unable to provide

strong evidence against the unit root null.10 A failure to reject this null does not, however, pro-

vide compelling evidence against the PPP hypothesis, not least because low test power may be an

issue here since real exchange rates tend to be highly correlated as they are typically constructed

using a common numeraire currency and price index.

In view of this, it makes some sense to apply our panel stationarity test in this context. Here,

the PPP hypothesis is represented by the stationary null and a rejection can, ceteris paribus,

fairly unambiguously be interpreted as evidence against the PPP hypothesis being true.

We consider monthly real exchange rates against the US Dollar for the following countries:

Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Nether-

lands, Norway, Portugal, Spain, Sweden, Switzerland and the UK. The real exchange rate data

was constructed from raw nominal exchange rate and consumer price index data taken from the

IMF International Financial Statistics database. It covers the period of the recent float 1973.01

to 1998.12. We have N = 17 and T = 312. In our notation we take yit to be the natural log

of the real exchange rate. The statistic Ŝ is calculated using ẽit = êit/γ̂0{êit}1/2 where êit is a
residual from a regression of yit on a constant (a linear trend not being consistent with the PPP

hypothesis). The user supplied parameters k and l are chosen as in the previous section (yielding

k = 31 and l = 15). We first applied the test Ŝ to each of the 17 series individually (i.e. assuming

N = 1). The test results are given in Table 3, together with the p-value of each the test. We see

that there is evidence against the null hypothesis of stationarity being true in 4 of the 17 cases,

assuming such evidence is indicated by a p-value of 0.05 or smaller. We also calculate the mean of

the individual p-values. This yields a value of 0.126. Hence, at least informally, individual tests

would not appear to provide much evidence against the PPP hypothesis.

In Table 4, the column labelled N = 17 gives summary information from the sample cross-

correlation matrices of ẽit and ∆ẽit. The results indicate the presence of a substantial degree of

positive cross-correlation - in either case over 80% of cross-correlations exceed 0.5. Thus, regardless

of whether testing the stationary or unit root null, the need to employ a test whose behaviour is

robust to cross-correlation is clear if reliable inference is to be made. When the test Ŝ is applied

to the panel of all N = 17 series, we obtain a value of 1.95, which has approximate p-value of

0.026. This, it would appear, provides rather substantial evidence against the null hypothesis

of joint stationarity, and hence the PPP hypothesis - notwithstanding the fact that, in the light

of the results of the last section, we might expect the relatively high degrees of cross-correlation

present here to have an adverse effect on the power of the test Ŝ.

We also applied the test to the subset of European economies that excludes Canada and

Japan. Now, according to the individual tests the null hypothesis of stationarity is true in 2 of

the 15 cases (the average p-value is 0.142). The cross-correlation structure is summarized in the

column labelled N = 15 of Table 4. As may be expected, this subset of geographically closely

related economies exhibits an even more pronounced degree of positive cross-correlation - over

95% exceed 0.5. The statistic Ŝ now yields a value of 1.65, which has a p-value of 0.049. Thus,

although the strength of rejection is lower than for the full panel, we are still able to reject the null

10In fact, what little empirical evidence there is in support of PPP has mainly arisen from application of tests

that do not account for cross-sectional dependence at all; see Oh (1996) and Wu (1996).
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of stationarity at the 0.05-level. We consider, therefore, that, in contrast to previous analyses, our

present analysis provides rather compelling evidence against the validity of the PPP hypothesis.
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6 Appendix

6.1 Proof of Theorem 1

Let êt = (ê1t, ..., êNt)
0 and ẽt = (ẽ1t, ..., ẽNt)0. Then the numerator term of Ŝ can be written as

Sk = d
0vec

"
T−1/2

TX
t=k+1

ẽtẽ
0
t−k

#

for a selector vector d defined as d = vec[IN2]. Now,

vec

"
T−1/2

TX
t=k+1

ẽtẽ
0
t−k

#
= vec

"
T−1/2Ĝ−10

TX
t=k+1

êtê
0
t−kĜ

−1
0

#

= (Ĝ−10 ⊗ Ĝ−10 )vec
"
T−1/2

TX
t=k+1

êtê
0
t−k

#

where Ĝ0 = diag[γ̂0{ê1t}1/2, ..., γ̂0{êNt}1/2]. It follows from Harris, McCabe and Leybourne

(2003), Theorem 8, that

vec

"
T−1/2

TX
t=k+1

êtê
0
t−k

#
⇒ N [0,Ω]

on noting that ηt = diag[(1−φ1L)−1, .., (1−φNL)−1]εt also satisfies the conditions of Assumption
1. Moreover, since Ĝ0 ⇒G0 = diag[E(ηtη

0
t)
1/2],

Sk ⇒ N [0,d0(G−10 ⊗G−10 )Ω(G−10 ⊗G−10 )d]

by the continuous mapping theorem (CMT). Next, with at =
PN
i=1 ẽitẽi,t−k and bt = vec[ẽtẽ

0
t−k]

and ct = vec[êtê
0
t−k], we may write

ω̂{at}2 = d0Ω̂{bt}d
= d0(Ĝ−10 ⊗ Ĝ−10 )Ω̂{ct}(Ĝ−10 ⊗ Ĝ−10 )d

where, for any vector sequence f1, ..., fT ,

Ω̂{ft} = Γ̂0{ft}+
lX

j=1

µ
1− j

l

¶³
Γ̂j{ft}+ Γ̂j{ft}0

´
, Γ̂j{ft} = T−1

TX
t=j+1

ftf
0
t−j.

From Harris, McCabe and Leybourne (2003), Theorem 8, for a specified matrix Ω,

Ω̂{ct}⇒ Ω

and hence, by the CMT,

ω̂{at}2 ⇒ d0(G−10 ⊗G−10 )Ω(G−10 ⊗G−10 )d

so that Ŝ = ω̂{at}−1Sk ⇒ N [0, 1].
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6.2 Proof of Theorem 2

Suppose, without loss of generality, that φi = 1 for i = 1, ...,M, 0 < M ≤ N and φi < 1 for

i =M + 1, ...,N (with the obvious modification for M = N). Now

T−1/2Sk =
MX
i=1

T−1
TX

t=k+1

ẽitẽi,t−k +
NX

i=M+1

T−1
TX

t=k+1

ẽitẽi,t−k,

and the second term is Op
¡
T−1/2

¢
from the proof of Theorem 1. Noting that T−1γ̂0{êit} = Op (1)

for i = 1, . . . ,M , the first term satisfies

MX
i=1

T−1
TX

t=k+1

ẽitẽi,t−k =

MX
i=1

1

T−1γ̂0{êit}
T−2

TX
t=k+1

êitêi,t−k

=

MX
i=1

1

T−1γ̂0{êit}
T−2

TX
t=1

ê2it + op (1)

= M + op (1) .

Thus,

Sk = T
1/2M + op

³
T 1/2

´
. (5)

Next, with at =
PN
i=1 ẽitẽi,t−k,

l−1ω̂{at}2 = l−1
γ̂0{at}+ 2

lX
j=1

µ
1− j

l

¶
γ̂j{at}

 ≤ 3γ̂0{at} (6)

where

γ̂0{at} = T−1
TX

t=k+1

Ã
NX
i=1

ẽitẽi,t−k

!2
.

Thus

γ̂0{at} ≤
NX
i=1

NX
j=1

T−1
TX
t=1

ẽ2itẽ
2
jt (7)

= Op (1)

since for i, j =M + 1, . . . , N ,

T−1
TX

t=k+1

ẽ2itẽ
2
jt =

1

γ̂0{êit}.γ̂0{êjt}
T−1

TX
t=k+1

ê2itê
2
jt = Op (1)

for i, j = 1, . . . ,M ,

T−1
TX

t=k+1

ẽ2itẽ
2
jt =

1

T−1γ̂0{êit}.T−1γ̂0{êjt}
T−3

TX
t=k+1

ê2itê
2
jt = Op (1)

13



and for i =M + 1, . . . ,N and j = 1, . . . ,M,

T−1
TX

t=k+1

ẽ2itẽ
2
jt =

1

γ̂0{êit}.T−1γ̂0{êjt}
T−2

TX
t=k+1

ê2itê
2
jt = Op (1) .

(and similarly for j =M + 1, . . . ,N and i = 1, . . . ,M). Combining (5), (6) and (7) we find, as

T →∞,

P [Ŝ > c] = P

"
M + op(1)
l

T 1/2
Op(1)

> c

#
→ 1

since l = o(T 1/2).

6.3 Proof of Corollary 1

i) Under H0, we have

l−1ω̂{ẽit}2 = l−1

γ̂0{ẽit}+ 2 lX
j=1

µ
1− j

l

¶
γ̂j{ẽit}


≤ 3γ̂0{ẽit}
= 3

since γ̂0{ẽit} = 1. Hence T−1/2ω̂{ẽit}2 = op (1) as l = o(T 1/2). Similarly,

l−1ψ̂{ẽit
¡
t− t¢}2 = Tq−1T l

−1ω̂{ẽit
¡
t− t¢}2

≤ Tq−1T 3γ̂0{ẽit
¡
t− t¢}

= T 3q−1T 3γ̂0{ẽit[
¡
t− t¢ /T ]}

= Op (1)

since T 3q−1T = O(1) and γ̂0{ẽit[
¡
t− t¢ /T ]} = Op (1). So T

−1/2ψ̂{ẽit
¡
t− t¢}2 = op (1) as l =

o(T 1/2). Because ω̂{at} converges in probability to a positive constant, ω̂{at}−1S∗k = ω̂{at}−1Sk+
op(1) and so the corrected statistic has the same limiting null distribution as the original.

ii) Under H1, the result follows trivially since T
−1/2(ω̂{ẽit}2 + ψ̂{ẽit

¡
t− t¢}2) is non-negative.
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Table 1. Empirical size of Ŝ based on a fitted constant at asymptotic 0.05-level critical values.

(a) ρij = 0.0.

N T
φi = 0.0

θi = 0.0

φi = 0.4

θi = 0.0

φi = 0.8

θi = 0.0

φi = 0.0

θi = 0.4

φi = 0.0

θi = 0.8

φi = U [0, 0.8]

θi = U [0, 0.8]

3 75 0.05 0.06 0.06 0.04 0.04 0.05

5 75 0.05 0.06 0.06 0.05 0.04 0.05

10 75 0.05 0.07 0.05 0.05 0.04 0.05

20 75 0.07 0.08 0.04 0.05 0.05 0.05

30 75 0.07 0.07 0.02 0.04 0.04 0.05

3 150 0.05 0.05 0.05 0.05 0.05 0.05

5 150 0.05 0.05 0.06 0.05 0.05 0.05

10 150 0.05 0.06 0.05 0.05 0.05 0.05

20 150 0.06 0.07 0.05 0.05 0.05 0.05

30 150 0.06 0.07 0.05 0.04 0.04 0.05

3 300 0.05 0.05 0.05 0.05 0.05 0.05

6 300 0.05 0.05 0.05 0.05 0.05 0.05

10 300 0.06 0.06 0.05 0.05 0.05 0.05

20 300 0.05 0.05 0.04 0.05 0.05 0.05

30 300 0.05 0.05 0.04 0.05 0.05 0.05

(b) ρij = 0.5.

N T
φi = 0.0

θi = 0.0

φi = 0.4

θi = 0.0

φi = 0.8

θi = 0.0

φi = 0.0

θi = 0.4

φi = 0.0

θi = 0.8

φi = U [0, 0.8]

θi = U [0, 0.8]

3 75 0.04 0.05 0.07 0.04 0.04 0.04

5 75 0.05 0.06 0.06 0.04 0.04 0.05

10 75 0.05 0.05 0.06 0.04 0.04 0.04

20 75 0.05 0.06 0.06 0.04 0.04 0.05

30 75 0.05 0.05 0.05 0.05 0.04 0.05

3 150 0.05 0.06 0.06 0.05 0.05 0.05

5 150 0.05 0.05 0.05 0.05 0.05 0.05

10 150 0.05 0.05 0.06 0.05 0.05 0.05

20 150 0.05 0.05 0.06 0.05 0.05 0.04

30 150 0.05 0.05 0.06 0.04 0.04 0.05

3 300 0.05 0.05 0.06 0.05 0.05 0.05

5 300 0.05 0.05 0.06 0.05 0.05 0.05

10 300 0.05 0.05 0.05 0.05 0.05 0.05

20 300 0.05 0.06 0.05 0.05 0.05 0.05

30 300 0.05 0.05 0.05 0.05 0.05 0.05
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(c) ρij = 0.9.

N T
φi = 0.0

θi = 0.0

φi = 0.4

θi = 0.0

φi = 0.8

θi = 0.0

φi = 0.0

θi = 0.4

φi = 0.0

θi = 0.8

φi = U [0, 0.8]

θi = U [0, 0.8]

3 75 0.04 0.05 0.07 0.04 0.04 0.04

5 75 0.04 0.05 0.07 0.04 0.04 0.04

10 75 0.05 0.05 0.06 0.04 0.05 0.05

20 75 0.05 0.05 0.06 0.05 0.05 0.05

30 75 0.04 0.05 0.6 0.04 0.04 0.05

3 150 0.05 0.05 0.06 0.05 0.05 0.05

5 150 0.05 0.05 0.05 0.05 0.05 0.04

10 150 0.05 0.05 0.06 0.05 0.04 0.05

20 150 0.05 0.05 0.06 0.05 0.05 0.05

30 150 0.05 0.05 0.05 0.05 0.05 0.05

3 300 0.05 0.05 0.05 0.05 0.05 0.05

5 300 0.05 0.05 0.06 0.05 0.05 0.05

10 300 0.05 0.05 0.06 0.05 0.05 0.05

20 300 0.05 0.05 0.05 0.05 0.05 0.05

30 300 0.05 0.05 0.05 0.05 0.05 0.05

(d) ρij = 0.9
|i−j|.

N T
φi = 0.0

θi = 0.0

φi = 0.4

θi = 0.0

φi = 0.8

θi = 0.0

φi = 0.0

θi = 0.4

φi = 0.0

θi = 0.8

φi = U [0, 0.8]

θi = U [0, 0.8]

3 75 0.04 0.05 0.07 0.04 0.04 0.04

5 75 0.04 0.05 0.07 0.04 0.04 0.04

10 75 0.05 0.05 0.06 0.04 0.04 0.04

20 75 0.05 0.05 0.06 0.04 0.04 0.05

30 75 0.05 0.05 0.06 0.04 0.04 0.05

3 150 0.05 0.05 0.06 0.05 0.05 0.05

5 150 0.05 0.06 0.05 0.04 0.05 0.05

10 150 0.05 0.05 0.06 0.05 0.05 0.05

20 150 0.05 0.05 0.05 0.05 0.05 0.04

30 150 0.05 0.05 0.06 0.05 0.05 0.05

3 300 0.05 0.05 0.05 0.05 0.05 0.05

5 300 0.05 0.05 0.05 0.05 0.05 0.05

10 300 0.05 0.05 0.05 0.05 0.05 0.05

20 300 0.05 0.05 0.05 0.05 0.05 0.05

30 300 0.05 0.05 0.05 0.05 0.05 0.05
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(e) ρij = 0.0, no bias correction.

N T
φi = 0.0

θi = 0.0

φi = 0.4

θi = 0.0

φi = 0.8

θi = 0.0

φi = 0.0

θi = 0.4

φi = 0.0

θi = 0.8

φi = U [0, 0.8]

θi = U [0, 0.8]

3 75 0.03 0.02 0.01 0.03 0.04 0.03

5 75 0.02 0.02 0.01 0.03 0.03 0.02

10 75 0.02 0.01 0.00 0.03 0.03 0.02

20 75 0.02 0.01 0.00 0.03 0.03 0.03

30 75 0.01 0.00 0.00 0.03 0.03 0.03

3 150 0.04 0.03 0.02 0.05 0.05 0.04

5 150 0.03 0.02 0.01 0.04 0.04 0.03

10 150 0.03 0.02 0.00 0.04 0.04 0.03

20 150 0.02 0.01 0.00 0.04 0.04 0.03

30 150 0.02 0.01 0.00 0.03 0.04 0.03

3 300 0.04 0.04 0.02 0.05 0.05 0.04

5 300 0.04 0.03 0.02 0.05 0.05 0.04

10 300 0.04 0.02 0.01 0.05 0.04 0.04

20 300 0.03 0.02 0.00 0.04 0.04 0.03

30 300 0.03 0.02 0.00 0.04 0.05 0.03
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Table 2. Empirical power of Ŝ based on a fitted constant at asymptotic 0.05-level critical values.

(a) ρij = 0.0.

N T M = 1 M = 3 M = 5 M = 10 M = 20 M = 30

3 75 0.34 0.67 - - - -

3 150 0.57 0.92 - - - -

3 300 0.81 0.99 - - - -

5 75 0.28 0.64 0.81 - - -

5 150 0.50 0.90 0.98 - - -

5 300 0.74 0.99 1.00 - - -

10 75 0.20 0.52 0.74 0.95 - -

10 150 0.40 0.86 0.97 1.00 - -

10 300 0.66 0.98 1.00 1.00 - -

20 75 0.16 0.40 0.62 0.90 1.00 -

20 150 0.29 0.77 0.95 1.00 1.00 -

20 300 0.55 0.97 1.00 1.00 1.00 -

30 75 0.15 0.35 0.54 0.87 0.99 1.00

30 150 0.25 0.69 0.92 1.00 1.00 1.00

30 300 0.43 0.95 1.00 1.00 1.00 1.00

(b) ρij = 0.5.

N T M = 1 M = 3 M = 5 M = 10 M = 20 M = 30

3 75 0.34 0.61 - - - -

3 150 0.55 0.87 - - - -

3 300 0.79 0.98 - - - -

5 75 0.21 0.55 0.69 - - -

5 150 0.41 0.83 0.92 - - -

5 300 0.68 0.97 0.99 - - -

10 75 0.14 0.37 0.57 0.75 - -

10 150 0.23 0.71 0.89 0.98 - -

10 300 0.47 0.95 0.99 1.00 - -

20 75 0.09 0.21 0.33 0.63 0.81 -

20 150 0.12 0.41 0.68 0.95 0.99 -

20 300 0.24 0.74 0.95 1.00 1.00 -

30 75 0.07 0.14 0.23 0.49 0.76 0.83

30 150 0.09 0.26 0.47 0.84 0.99 1.00

30 300 0.14 0.50 0.83 1.00 1.00 1.00
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(c) ρij = 0.9.

N T M = 1 M = 3 M = 5 M = 10 M = 20 M = 30

3 75 0.29 0.49 - - - -

3 150 0.50 0.71 - - - -

3 300 0.75 0.90 - - - -

5 75 0.16 0.44 0.49 - - -

5 150 0.30 0.66 0.71 - - -

5 300 0.58 0.88 0.91 - - -

10 75 0.09 0.25 0.40 0.48 - -

10 150 0.14 0.49 0.65 0.73 - -

10 300 0.29 0.78 0.89 0.93 - -

20 75 0.07 0.14 0.22 0.40 0.49 -

20 150 0.09 0.23 0.43 0.68 0.74 -

20 300 0.14 0.46 0.73 0.90 0.94 -

30 75 0.06 0.09 0.14 0.28 0.45 0.49

30 150 0.08 0.16 0.27 0.54 0.71 0.74

30 300 0.09 0.26 0.50 0.82 0.92 0.94

(d )ρij = 0.9
|i−j|.

N T M = 1 M = 3 M = 5 M = 10 M = 20 M = 30

3 75 0.30 0.49 - - - -

3 150 0.51 0.73 - - - -

3 300 0.76 0.91 - - - -

5 75 0.17 0.46 0.52 - - -

5 150 0.31 0.68 0.77 - - -

5 300 0.59 0.89 0.94 - - -

10 75 0.10 0.27 0.43 0.58 - -

10 150 0.17 0.54 0.71 0.88 - -

10 300 0.35 0.82 0.93 0.98 - -

20 75 0.08 0.17 0.28 0.49 0.73 -

20 150 0.10 0.32 0.55 0.81 0.96 -

20 300 0.19 0.63 0.84 0.98 1.00 -

30 75 0.07 0.14 0.21 0.40 0.67 0.81

30 150 0.10 0.25 0.41 0.73 0.94 0.99

30 300 0.14 0.48 0.75 0.96 1.00 1.00
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Table 3. Values of Ŝ for individual countries.

Ŝ p-value

Austria 1.49 0.068

Belgium 1.37 0.085

Canada 2.02 0.022

Denmark 1.27 0.102

Finland 0.33 0.371

France 1.01 0.157

Germany 1.33 0.092

Greece 2.40 0.008

Italy 1.08 0.139

Japan 2.77 0.003

Netherland 0.09 0.463

Norway 1.09 0.137

Portugal 2.62 0.004

Spain 1.60 0.055

Sweden 1.36 0.086

Switzerland 1.47 0.070

U.K. 0.57 0.286

Table 4. Summary of cross—correlation matrix.

N = 17 N = 15

ẽit ∆ẽit ẽit ∆ẽit
% of cross-correlations > 0.0 97 100 100 100

0.3 89 88 100 100

0.5 81 84 97 100

0.7 57 48 73 62

0.9 12 7 15 10
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