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We consider the power of unit root tests for different deviations of the initial observation

from the deterministic component of the series. Following recent work highlighting the

relative power performance of extant tests, we propose a new procedure based on a data-

dependent weighted average of the standard Dickey-Fuller and Elliott-Rothenberg-Stock

tests, with the weight determined by an estimate of the initial observation’s deviation from

the deterministics. Simulation of the new test’s power reveals very good performance

across different magnitudes of the initial condition. The procedure’s value is further

highlighted by application to US producer price inflation.
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The issue of whether an economic time series is best characterised by either a unit root or a

stationary process has assumed great importance in both the theoretical and applied time

series econometrics literature. As a consequence, tests of the null hypothesis that a series

is integrated of order one, I(1), against the alternative hypothesis that it is integrated

of order zero, I(0), have received much attention. In a recent important paper, Müller

and Elliott (2003) extend the literature on these testing procedures by highlighting the

dependence of the power of all unit root tests on the deviation of the initial observation

of the series from its underlying determinstic component. These authors show that the

well-known augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) has power that

increases with the magnitude of this initial deviation, although for small initial conditions,

power is dominated by other available procedures. On the other hand, the test proposed

by Elliott, Rothenberg and Stock (ERS, 1996), based on GLS-detrending, is optimal when

the initial deviation is zero, but the test’s power shrinks to zero as the deviation of the

initial observation from the deterministic component becomes large.

In this paper, we consider an alternative approach which attempts to try and capture

the attractive power performance of both the ERS test for small initial conditions and the

ADF test for large initial conditions. The technique we propose is to use a data-dependent

weighted average of the ADF and ERS test statistics, with the weight determined by an

estimate of the deviation of the initial observation from the underlying deterministics.

This procedure is shown to have reliable power performance across different initial obser-

vations, almost dominating ADF while retaining much of the ERS power when the initial

deviation is small.

The paper is structured as follows: Section 1 reviews in detail the power of the ADF

and ERS tests for a range of initial conditions, using Monte Carlo simulation. Section

2 introduces the new weighted average test, provides its asymptotic distribution and

investigates its power performance, again by simulation. The value of the new procedure

is further highlighted by application of the extant and new tests to US producer price

inflation in Section 3. Section 4 concludes the paper.

1. POWERS OF STANDARD TESTS

Consider the following data generating process (cf. Müller and Elliott, 2003):
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yt = dt + wt t = 1, . . . , T

wt = ρwt−1 + νt t = 2, . . . , T

w1 = ξ

(1)

where dt denotes the deterministic component of the series, and νt is a stationary process.

In this paper we consider the two standard forms of deterministics: the mean case, where

dt = µ, and the trend case, where dt = µ + βt. Following Müller and Elliott (2003), let

ξ = ασw, where σ2
w is the unconditional variance of wt (defined over t = 2, . . . , T ), so

that α represents the magnitude of the initial observation of wt relative to the process

standard deviation.

In this framework, Müller and Elliott (2003) note that, under the null hypothesis,

standard unit root tests such as ADF and ERS will be invariant to the initial observation.

Thus, the standard null limit distributions of these test statistics are valid irrespective of

the magnitude of α, and the test procedures have correct size. It is under the alternative

hypothesis that the initial observation has an effect, and the powers of tests vary according

to α and the testing approach employed.

Müller and Elliott (2002, 2003) examine the powers of several extant unit root tests

for a range of α values. Their results show that when α is zero or small, the t-ratio

versions of the GLS-detrended tests proposed by ERS achieve the greatest power, while for

larger α values, standard t-ratio ADF tests perform best. Focusing on these two popular

approaches, we conducted a set of Monte Carlo simulation experiments to investigate

the tests’ powers in detail. We simulated both finite sample and asymptotic behaviour

for the mean and trend cases under the local-to-unity alternative hypothesis, with ρ =

1 + c/T , c = −5,−10,−15 and T = 100, 200,∞, for tests with 5% nominal size (the

ERS tests were implemented with the recommended c̄ values of −7 and −13.5 for the

mean and trend cases respectively). The finite sample experiments were conducted with

νt ∼ IIN(0, 1) in (1), and with no additional lag augmentation in the test statistics.

The limiting distributions are given in Müller and Elliott (2003), and were simulated by

approximating the Wiener processes using IIN(0, 1) random deviates, with the integrals

approximated by normalized sums of 1,000 steps. Critical values were first obtained in

each case using 50,000 replications, and the subsequent power experiments were conducted

using 20,000 replications. All calculations were performed in GAUSS. Figures 1–3 provide

the results of these experiments (ADF and ERS tests are denoted by τ̂ i
ADF and τ̂ i

ERS
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respectively, with i = µ, τ corresponding to the mean and trend cases respectively), and,

where comparable, these concur with those of Müller and Elliott (2002, 2003).

The ERS tests have greater power than the ADF procedures for α values approximately

less than one in the mean case, and approximately less than 1.5 in the trend case, with

the degree of power dominance increasing as α shrinks towards zero. Reverse rankings

are obtained for greater α magnitudes: as α increases, so does ADF test power, while the

power of ERS tests converges to zero. This pattern of behaviour arises since ADF tests

implicitly place a large weight on extreme initial observations, in contrast to the tests of

ERS which are derived under an assumption of ξ bounded in probability, attributing more

weight to moderate deviations of the initial observation from the underlying process.

2. A WEIGHTED AVERAGE TEST

Given the results of the previous section, it is worthwhile considering whether a different

testing procedure can be adopted which capitalises on the power of ERS tests when α is

small, but also achieves the power gains of ADF tests when α is large. One possibility is

to consider a simple weighted average of the two tests, i.e.

τ̂ i
AV = λτ̂ i

ADF + (1 − λ)τ̂ i
ERS, 0 ≤ λ ≤ 1, i = µ, τ (2)

Within this framework, the next issue concerns determination of the weight λ. One

approach would be to use an exogenously chosen weight based on simulation results under

the alternative hypothesis. In unreported simulations, we investigated this possibility for

a grid of values for λ, and found that λ = 0.75 yielded the most appealing powers for

different values of α. The powers of this procedure for the representative mean case of

T = 100, c = −10 are given in Figure 4. The simulation experiments were identical to

those of the previous section, and the weighted average test is denoted by τ̂µ
AV(0.75). It

can be seen that this fixed weight approach has some value: for small values of α, the

test outperforms ADF, achieving approximately half the gains offered by ERS, while for

larger α values, the test shares the desirable ADF property of increasing power with α.

Power never falls below 36%, and for 1 ≤ α ≤ 1.7, power is greater than for either of

the constituent tests. The procedure is not entirely satisfactory, however, since for the

majority of α values, the test’s power is substantially outperformed by either the ADF or

ERS approaches.
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A natural generalisation of the weighted average approach, which might be expected

to offer more appealing power performance, is to consider a data-dependent estimate of

λ, rather than an exogenous choice. Since the behaviour of the unit root tests under the

alternative hypothesis depend on the magnitude of α, it makes sense to base the estimated

weight λ̂ on an estimate of α. Given that α = ξ/σw, the obvious estimator is:

α̂ = (y1 − d̂1)/σ̂w (3)

where d̂t and σ̂2
w = V̂ (wt) are obtained from ordinary least squares estimation of the

regression:

yt = dt + εt, t = 2, . . . , T (4)

with d̂t denoting the fitted values and σ̂2
w = (T − 1)−1 ∑T

t=2 ε̂2
t .

The value of α̂ obtained from (3) must then be transformed into a weight λ̂ on the

interval [0, 1] so that the weighted average statistic can be constructed. The method

we propose is to apply the logistic smooth transition function (as used by, for example,

Granger and Teräsvirta (1993) and Lin and Teräsvirta (1994) in the context of modelling

structural change) to α̂, i.e.

λ̂ = [1 + exp{−v(α̂ − m)}]−1 (5)

This function ensures that for small α, the weight in the linear combination will be

zero, while for large α, the weight will be one, as desired. The mid-point parameter m

determines the location in α̂ space where the balance of weight switches from ERS to

ADF, while the velocity v controls the rate at which the weight moves from zero to one

as α̂ increases (when v → ∞, λ̂ switches instantaneously from zero to one at α̂ = m).

The test resulting from this procedure is then given by:

τ̂ i
AV(α̂; v, m) = λ̂τ̂ i

ADF + (1 − λ̂)τ̂ i
ERS, i = µ, τ (6)

The asymptotic distribution of the new weighted average statistic under the null

(ρ = 1) and local alternative (ρ = 1 + c/T , c < 0) hypotheses can be obtained by

application of the continuous mapping theorem (CMT) to (5) and (6), once the limiting

distributions of τ̂ i
ADF and τ̂ i

ERS (assuming these tests are appropriately augmented to ac-

count for autocorrelation), and α̂ have been established. The first two of these required

results are provided in Müller and Elliott (2003), and the last is derived in the Appendix.
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Under Assumption 1 of the Appendix, the new test’s asymptotic distributions are given

by:

τ̂ i
AV(α̂; v, m) ⇒ λc(v, m)τ i

c,ADF + [1 − λc(v, m)]τ i
c,ERS, i = µ, τ (7)

where ‘⇒’ denotes weak convergence in distribution, λc(v, m) = [1+exp{−v(Ai
c −m)}]−1

and

Aµ
c =

−
∫ 1
0 Kc(r)dr

√

∫ 1
0 Kµ

c (r)2dr
, Aτ

c =
−

∫ 1
0 Kc(r)dr + 6

∫ 1
0 (r − 1

2
)Kc(r)dr

√

∫ 1
0 Kτ

c (r)2dr

τµ
c,ADF =

Kµ
c (1)2 − Kµ

c (0)2 − 1

2
√

∫ 1
0 Kµ

c (r)2dr
, τ τ

c,ADF =
Kτ

c (1)2 − Kτ
c (0)2 − 1

2
√

∫ 1
0 Kτ

c (r)2dr

τµ
c,ERS =

Kc(1)2 − Kc(0)2 − 1

2
√

∫ 1
0 Kc(r)2dr

, τ τ
c,ERS =

Kτ,c̄
c (1)2 − Kτ,c̄

c (0)2 − 1

2
√

∫ 1
0 Kτ,c̄

c (r)2dr

with

Kc(r) =











W (r) c = 0

α(erc − 1)(−2c)−1/2 +
∫ r
0 e(r−s)cdW (s) c < 0

Kµ
c (r) = Kc(r) −

∫ 1
0 Kc(s)ds

Kτ
c (r) = Kµ

c (r) − 12(r − 1
2
)
∫ 1
0 (s − 1

2
)Kc(s)ds

Kτ,c̄
c (r) = Kc(r) − r(1 − c̄)(1 − c̄ + c̄2

3
)−1Kc(1) + 3(1 − r)

∫ 1
0 sKc(s)ds

Under an alternative hypothesis where ρ < 1 is fixed, standard results show that µ̂

and β̂ in d̂t consistently estimate µ and β respectively, and also that σ̂w
p

−→ σw; thus α̂

is a consistent estimator of α as desired.

Now the critical values and power performance of the test will depend on the choice

of the smooth transition parameters v and m. In order to determine appropriate values

for these terms, we simulated the powers of τ̂µ
AV(α̂; v, m) and τ̂ τ

AV(α̂; v, m) for a grid of v

and m values, using experiments identical to those described in Section 2. Results for

the mean case with T = 100 and c = −10 are reported in Table 1, allowing the impact

for test power of changing the velocity and mid-point of the transition to be seen. Our

preference is for parameters that yield a test whose minimum power is decent, while also

achieving high power when α = 0 and when α is large. Balancing these considerations,

we concluded that the best row of Table 1 corresponds to a transition velocity of 0.75,

and a mid-point of 1.25. This mid-point choice is also intuitively appealing since α = 1.25
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is approximately where ADF power starts to exceed ERS power, as seen in Figures 1–3.

Simulations for a finer grid of transition parameter values revealed a little improvement

by reducing the velocity slightly, and our recommended parameter choices for τ̂µ
AV(α̂; v, m)

are v = 0.73, m = 1.25. A similar analysis for the trend case found that these values were

also appropriate for τ̂ τ
AV(α̂; v, m).

Finite sample and asymptotic critical values for the weighted average tests at con-

ventional significance levels are provided in Table 2. As before, these were obtained by

simulation using the method outlined in Section 1. The powers of our recommended tests

were simulated for the full range of sample sizes and values of c considered earlier in the

paper, and the results are shown in Figures 1–3. These graphs clearly highlight the value

of the new procedure: the weighted average test is close to dominating the ADF approach,

while achieving much of the small α power gains of ERS, and there is always a region of

α values where the new test outperforms both of the standard approaches.

Examining a relevant case such as T = 100, c = −10, power is always greater than

40% (as opposed to 31% and 0% for ADF and ERS respectively), is close to 60% for α = 0

(compared to 31% and 73% for the standard tests), and shares the ADF power of 70%

for α = 4 (in contrast to ERS zero power). Indeed the power of the weighted average

test is not far off the envelope of the powers of ADF and ERS together, exceeding it for

moderate α, and only losing out by around 13% for the smallest values of α. Although

the powers involved vary across the different T and c values considered, and from the

mean to the trend case, the overall patterns of behaviour under the alternative described

in this representative case are observed generally.

Figure 4 also shows the comparison of this new test against the fixed weight test

τ̂µ
AV(0.75). The data-dependent smooth transition approach clearly dominates the exoge-

nously chosen weight method, with greater power for all α values, particularly at the

extremes.

The proposed procedure relies on knowledge of the sign of α, and the analysis thus far

has implicitly assumed α ≥ 0; if it is known that α < 0, the appropriate modification is

simply to replace α̂ in (5) with −α̂ (the critical values are unaffected by such a transfor-

mation). This assumption of the sign of α being known is likely to most admissible when

α is relatively large. However, even when α is relatively small and some doubt exists con-

cerning its true sign, we still recommend maintaining the “known sign” assumption. Our
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justification for this is on grounds of power. If the known sign assumption is dismissed,

the obvious alternative is to employ a new procedure with |α̂| replacing α̂ in (5), thereby

permitting the analyst to be truly agnostic with regard to α’s sign. Such a modification

clearly alters the critical values (they will be larger in absolute value), and impacts the

power of the test. Using the now-familiar simulation analysis, we estimated the power of

this procedure (denoted τ̂ i
AV(|α̂|; 0.73, 1.25)), for a range of positive and negative values of

α in the representative mean case of T = 100, c = −10. Figure 5 contains the results of

this experiment, along with the corresponding powers for τ̂µ
ADF, τ̂µ

ERS and τ̂µ
AV(α̂; 0.73, 1.25)

(always assuming α > 0). For positive values of α, the power of the “absolute” procedure

loses approximately 10% power relative to the approach assuming α > 0 in each case.

Moreover, for small negative values of α, the known sign version of the test outpeforms

the absolute version, even though the wrong sign is being assumed in these cases. It is

only as α becomes more substantially negative that the absolute version achieves gains,

but as α decreases away from zero, the true negative sign of α will rapidly become obvi-

ous, thereby justifying the known sign assumption again, only now using −α̂. Therefore,

although there is a small region where the power of the absolute approach gains relative

to the known sign procedure, we consider such gains to be far outweighed by the overall

power losses that the former technique exhibits for α values in general.

3. EMPIRICAL APPLICATION

In this section, we assess the behaviour of the newly proposed and standard unit root

tests when applied to producer price inflation in the US. The data are first differences of

the logarithms of the US producer price index, using monthly observations from 1973:1–

2003:3, obtained from the Economagic website (www.economagic.com). A plot of this

time series is given in Figure 6. Visual inspection clearly suggests that the series is mean-

reverting, thus we would expect, a priori, unit root tests to reject the null hypothesis.

In order to examine how the different tests behave under different initial conditions,

we applied the τ̂µ
ADF, τ̂µ

ERS and τ̂µ
AV(α̂; 0.73, 1.25) tests to the series using thirty different

starting points. The start date varies from 1973:1–1975:6, with the sample size ranging

from 334–363 observations. This period was chosen because it includes a number of both

relatively large and relatively small initial observations, so the effect of the beginning of

the series on the tests will be highlighted. Since the initial observations over this period
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are predominantly above mean, we generally assumed knowledge of α > 0; the exceptions

were three start dates (1973:7, 1973:9, 1973:10) where the initial observation is clearly

below mean—in these cases, we assumed knowledge of α < 0. In order to allow for

additional autocorrelation in the series, eleven difference lags were included in the ADF

and ERS regressions to admit AR(12) dynamics. Asymptotic critical values of the tests

were employed in each case. The results of this empirical application are provided in

Table 3.

The ADF test rejects the unit root null in favour of I(0) behaviour for the first fifteen

of the thirty starting values, but not the latter fifteen. In general, the deviations of the

initial observations from the mean are much larger in absolute value for the first half of

the starting values considered than for the second half; this can be observed from Figure 6

and also from the reported values of α̂ in Table 3. The ERS test, in contrast, only rejects

the unit root null when the initial observation is small (more specifcally when |α̂| < 0.7),

with only seven rejections out of the thirty series analysed. The pattern of rejections

for the ADF and ERS tests are broadly consistent with the results from the simulation

experiments discussed in Section 1, with the magnitude of the initial observation playing

a large role in the power performance of the tests.

The new weighted average test rejects the null hypothesis much more frequently than

either of the standard tests: rejections in favour of the I(0) alternative are obtained for

all but six of the thirty starting values. The new approach completely dominates ADF

and ERS in this application, in that whenever either or both of the ADF and ERS tests

reject, the weighted average test also rejects, plus there are four further cases where neither

ADF nor ERS reject, but the new procedure does. These findings are consistent with the

simulation results obtained in the previous section, and clearly highlight the benefits of

employing the new test. The weighted average approach is less sensitive to the initial

condition than its rivals, and provides a reliable method for testing for a unit root, with

decent power obtained regardless of the magnitude of the initial observation relative to

the underlying process.

4. CONCLUSION

In practical applications, it is common to find series where the initial observation is

small relative to the series mean or trend, and also series where the initial condition
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is large. Given that the power of currently available tests varies considerably with the

magnitude of the initial condition, it is worthwhile to have available a unit root testing

procedure whose power is more robust to the deviation of the initial observation from the

underlying deterministic component. One would not, however, wish to sacrifice too much

power in order to obtain such robustness. The weighted average test proposed in this

paper achieves good power performance for all initial observation magnitudes, unlike the

standard ADF and ERS tests currently used in the literature; the new procedure shares

the power advantages of ADF for large initial deviations, while retaining most of the ERS

power gains when the initial condition is small. Thus, we would strongly recommend use

of the new test in empirical applications, since it broadly achieves the desired robustness

to the initial condition without large power sacrifices relative to available alternatives.

APPENDIX: ASYMPTOTIC DISTRIBUTION OF α̂

Since α̂ of (3) is invariant to µ and β in dt, we can let µ = β = 0 without loss of generality,

i.e. yt = wt. Further, under both the mean and trend cases, the regressor dt in (4) contains

at least a mean component, thus α̂ can equivalently be obtained from the transformed

regression:

w∗

t = dt + ε∗t , t = 2, . . . , T

where w∗

t = wt − w1. Denoting the fitted values obtained from the regression by d̂∗

t , an

alternative expression for α̂ is given by

α̂ = (w∗

1 − d̂∗

1)/σ̂
∗

w = −d̂∗

1/σ̂
∗

w

where σ̂∗

w
2 = (T − 1)−1 ∑T

t=2 ε̂∗t
2.

Decomposing w∗

t yields

w∗

t = w̃t + (ρt−1 − 1)w1

where w̃t = ρw̃t + νt with w̃1 = 0.

Assumption 1: The stationary sequence νt has a strictly positive spectral density func-

tion; it has a moving average representation νt =
∑

∞

j=0 δjηt−j where the ηt are identically

and independently distributed random variables with finite second and fourth moments,

and
∑

∞

j=0 j|δj| < ∞.
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Under the local alternative hypothesis and Assumption 1, σ2
w = ω2T/(−2c) + o(T ),

yielding

T−1/2w∗

[rT ] = T−1/2w̃[rT ] + (ρ[rT ]−1 − 1)α
√

ω2/(−2c) + o(1)

⇒ ω
∫ r
0 e(r−s)cdW (s) + (erc − 1)αω(−2c)−1/2

where ω2 is the long-run variance of νt and W (r) is a standard Wiener process, using the

standard result of Phillips (1987) and the fact that ρ[rT ]−1 → erc. The limiting behaviour

under the null hypothesis can be obtained by letting c → 0, with the above result reducing

to T−1/2w∗

[rT ] ⇒ ωW (r). Summarising we have

T−1/2w∗

[rT ] ⇒ ωKc(r)

where

Kc(r) =











W (r) c = 0

α(erc − 1)(−2c)−1/2 +
∫ r
0 e(r−s)cdW (s) c < 0

as in Müller and Elliott (2003).

In the mean case, applying the CMT to the above result gives:

d̂∗

t = (T − 1)−1 ∑T
s=2 w∗

s

T−1/2d̂∗

1 ⇒ ω
∫ 1
0 Kc(r)dr

and

ε̂∗t = w∗

t − (T − 1)−1 ∑T
s=2 w∗

s

T−1/2ε̂∗[rT ] ⇒ ω
[

Kc(r) −
∫ 1
0 Kc(s)ds

]

≡ ωKµ
c (r)

allowing the limiting distribution of α̂ in the mean case to be obtained using the CMT:

α̂ = −T−1/2d̂∗

1/
√

T−1σ̂∗

w
2

⇒
−

∫ 1
0 Kc(r)dr

√

∫ 1
0 Kµ

c (r)2dr
≡ Aµ

c

In the trend case we have:

d̂∗

t = (T − 1)−1∑T
s=2 w∗

s + β̂∗

[

t − (T − 1)−1 ∑T
s=2 s

]

where

β̂∗ =
[

∑T
s=2 sw∗

s − (T − 1)−1 ∑T
s=2 w∗

s

∑T
s=2 s

]

/
[

∑T
s=2 s2 − (T − 1)−1(

∑T
s=2 s)2

]

T 1/2β̂∗ ⇒ 12ω
∫ 1
0 (r − 1

2
)Kc(r)dr

giving

T−1/2d̂∗

1 ⇒ ω
[

∫ 1
0 Kc(r)dr − 6

∫ 1
0 (r − 1

2
)Kc(r)dr

]
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and

ε̂∗t = w∗

t − (T − 1)−1∑T
s=2 w∗

s − β̂∗

[

t − (T − 1)−1 ∑T
s=2 s

]

T−1/2ε̂∗[rT ] ⇒ ω
[

Kµ
c (r) − 12(r − 1

2
)
∫ 1
0 (s − 1

2
)Kc(s)ds

]

≡ ωKτ
c (r)

The limiting distribution of α̂ in the trend case is then:

α̂ = −T−1/2d̂∗

1/
√

T−1σ̂∗

w
2

⇒
−

∫ 1
0 Kc(r)dr + 6

∫ 1
0 (r − 1

2
)Kc(r)dr

√

∫ 1
0 Kτ

c (r)2dr
≡ Aτ

c
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Lin, C. J., and Teräsvirta, T. (1994), “Testing the Constancy of Regression Parameters

Against Continuous Structural Change,” Journal of Econometrics, 62, 211–228.

Müller, U. K., and Elliott, G. (2002), “Tests for Unit Roots and the Initial Condition,”

Discussion Paper 2002-2, University of St. Gallen, Department of Economics.

——— (2003), “Tests for Unit Roots and the Initial Condition,” Econometrica, 71, 1269–

1286.

Phillips, P. C. B. (1987), “Towards a Unified Asymptotic Theory for Autoregression,”

Biometrika, 74, 535–547.

11



Table 1. Powers of τ̂µ
AV(α̂; v, m), 5% Nominal Size, T = 100, c = −10.

v m α = 0 α = 0.5 α = 1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4

0.25 0.50 0.61 0.58 0.50 0.41 0.36 0.36 0.38 0.42 0.48
0.25 0.75 0.62 0.59 0.50 0.41 0.35 0.34 0.36 0.41 0.46
0.25 1.00 0.62 0.59 0.50 0.41 0.35 0.33 0.35 0.39 0.44
0.25 1.25 0.63 0.60 0.50 0.40 0.34 0.32 0.33 0.37 0.42
0.25 1.50 0.63 0.60 0.50 0.40 0.33 0.30 0.31 0.35 0.40
0.25 1.75 0.64 0.61 0.51 0.39 0.31 0.29 0.30 0.33 0.38
0.25 2.00 0.65 0.61 0.51 0.39 0.31 0.27 0.28 0.31 0.35

0.50 0.50 0.58 0.55 0.49 0.44 0.43 0.47 0.52 0.59 0.67
0.50 0.75 0.59 0.56 0.49 0.43 0.42 0.45 0.50 0.57 0.65
0.50 1.00 0.60 0.57 0.49 0.42 0.40 0.43 0.48 0.55 0.63
0.50 1.25 0.61 0.58 0.49 0.41 0.39 0.41 0.46 0.53 0.60
0.50 1.50 0.62 0.59 0.49 0.40 0.37 0.38 0.43 0.50 0.57
0.50 1.75 0.63 0.60 0.49 0.39 0.35 0.36 0.40 0.47 0.54
0.50 2.00 0.64 0.60 0.49 0.38 0.32 0.33 0.37 0.43 0.51

0.75 0.50 0.53 0.52 0.47 0.45 0.47 0.52 0.60 0.68 0.76
0.75 0.75 0.55 0.53 0.47 0.44 0.45 0.50 0.58 0.66 0.74
0.75 1.00 0.57 0.54 0.47 0.43 0.44 0.49 0.56 0.64 0.73
0.75 1.25 0.59 0.56 0.47 0.42 0.42 0.47 0.54 0.62 0.70
0.75 1.50 0.60 0.57 0.47 0.40 0.40 0.44 0.51 0.59 0.68
0.75 1.75 0.62 0.58 0.47 0.38 0.36 0.41 0.47 0.55 0.64
0.75 2.00 0.64 0.59 0.47 0.37 0.34 0.37 0.44 0.52 0.60

1.00 0.50 0.50 0.50 0.46 0.45 0.49 0.56 0.65 0.72 0.80
1.00 0.75 0.52 0.50 0.45 0.44 0.48 0.55 0.63 0.71 0.79
1.00 1.00 0.54 0.52 0.45 0.42 0.46 0.52 0.61 0.70 0.78
1.00 1.25 0.56 0.53 0.45 0.41 0.44 0.50 0.59 0.68 0.76
1.00 1.50 0.58 0.55 0.45 0.39 0.41 0.47 0.56 0.65 0.74
1.00 1.75 0.61 0.57 0.45 0.38 0.38 0.44 0.53 0.62 0.71
1.00 2.00 0.63 0.58 0.45 0.35 0.34 0.40 0.48 0.57 0.67

1.25 0.50 0.48 0.47 0.45 0.46 0.51 0.59 0.67 0.75 0.82
1.25 0.75 0.49 0.49 0.45 0.45 0.50 0.58 0.66 0.74 0.82
1.25 1.00 0.51 0.49 0.44 0.43 0.48 0.56 0.65 0.73 0.81
1.25 1.25 0.54 0.51 0.43 0.41 0.45 0.53 0.63 0.72 0.79
1.25 1.50 0.56 0.53 0.43 0.39 0.42 0.50 0.60 0.69 0.78
1.25 1.75 0.59 0.55 0.43 0.36 0.39 0.47 0.56 0.66 0.75
1.25 2.00 0.62 0.57 0.43 0.34 0.35 0.42 0.52 0.62 0.72

1.50 0.50 0.46 0.46 0.44 0.47 0.53 0.61 0.68 0.76 0.83
1.50 0.75 0.47 0.47 0.44 0.45 0.51 0.59 0.68 0.76 0.83
1.50 1.00 0.49 0.48 0.43 0.43 0.49 0.58 0.67 0.75 0.83
1.50 1.25 0.52 0.49 0.42 0.41 0.47 0.56 0.65 0.74 0.82
1.50 1.50 0.55 0.50 0.41 0.38 0.43 0.53 0.63 0.72 0.80
1.50 1.75 0.58 0.53 0.41 0.35 0.39 0.48 0.59 0.69 0.78
1.50 2.00 0.61 0.55 0.41 0.32 0.35 0.44 0.54 0.65 0.75
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Table 2. Critical Values for τ̂ i
AV(α̂; 0.73, 1.25).

τ̂
µ
AV(α̂; 0.73, 1.25) τ̂ τ

AV(α̂; 0.73, 1.25)

T 10% 5% 1% 10% 5% 1%

50 -2.19 -2.51 -3.14 -3.00 -3.30 -3.92
100 -2.08 -2.38 -2.97 -2.88 -3.17 -3.73
200 -2.00 -2.30 -2.88 -2.81 -3.10 -3.64
∞ -1.91 -2.21 -2.80 -2.75 -3.03 -3.60

Table 3. Results of Tests for US PPI Inflation.

Start date τ̂
µ
ADF τ̂

µ
ERS τ̂

µ
AV(α̂; 0.73, 1.25) α̂

1973:1 -2.84* -1.26 -2.00* 1.09
1973:2 -3.24** -0.74 -2.31** 1.97
1973:3 -3.23** -0.57 -2.48** 2.53
1973:4 -3.09** -2.79*** -2.88*** 0.17
1973:5 -3.02** -0.71 -2.25** 2.18
1973:6 -3.10** -0.63 -2.37** 2.43
1973:7 -3.06** -0.89 -2.31** -2.12
1973:8 -3.81*** 0.01 -3.77*** 7.31
1973:9 -4.04*** -1.25 -3.35*** -2.79
1973:10 -3.61*** -1.50 -2.70** -1.64
1973:11 -3.83*** -3.36*** -3.51*** 0.16
1973:12 -3.44*** -0.73 -2.56** 2.24
1974:1 -3.18** -0.40 -2.91*** 4.32
1974:2 -2.99** -0.70 -2.32** 2.48
1974:3 -2.65* -1.17 -1.92* 1.29
1974:4 -2.42 -1.62 -1.94* 0.71
1974:5 -2.55 -0.93 -1.91 1.83
1974:6 -2.46 -2.36** -2.39** 0.14
1974:7 -2.38 -0.56 -2.29** 5.23
1974:8 -2.47 -0.56 -2.35** 4.93
1974:9 -2.36 -1.96** -2.05* -0.42
1974:10 -2.38 -0.87 -1.91* 2.34
1974:11 -2.39 -1.47 -1.88 0.95
1974:12 -2.33 -1.43 -1.61 -0.69
1975:1 -2.33 -2.30** -2.31** -0.14
1975:2 -2.33 -1.09 -1.29 -0.96
1975:3 -2.32 -0.79 -1.00 -1.24
1975:4 -2.31 -1.34 -1.82 1.21
1975:5 -2.35 -1.75* -1.98* 0.66
1975:6 -2.32 -2.29** -2.30** -0.15

NOTE: *, ** and *** denote significance at the 10%-, 5%- and 1%-levels
respectively.
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Figure 1. Powers of Tests, 5% Nominal Size, c = −15: - - -, τ̂
i
ADF; – – , τ̂

i
ERS; , τ̂

i
AV(α̂; 0.73, 1.25).
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Figure 2. Powers of Tests, 5% Nominal Size, c = −10: - - -, τ̂
i
ADF; – – , τ̂

i
ERS; , τ̂

i
AV(α̂; 0.73, 1.25).
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Figure 3. Powers of Tests, 5% Nominal Size, c = −5: - - -, τ̂
i
ADF; – – , τ̂

i
ERS; , τ̂

i
AV(α̂; 0.73, 1.25).
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Figure 4. Powers of Tests, 5% Nominal Size, c = −10: - - -, τ̂
µ
ADF

; – – , τ̂
µ
ERS

;
, τ̂

µ
AV(α̂; 0.73, 1.25); – · –, τ̂

µ
AV(0.75).

Figure 5. Powers of Tests, 5% Nominal Size, c = −10: - - -, τ̂
µ
ADF; – – , τ̂

µ
ERS;

, τ̂
µ
AV

(α̂; 0.73, 1.25); · · ·, τ̂
µ
AV

(|α̂|; 0.73, 1.25).
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Figure 6. US PPI Inflation, 1973:1–2003:3.
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