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Chaotic dynamics of an air-damped bouncing ball
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A ball bouncing elastically upon a vertically vibrated platform is one of the simplest examples of a chaotic
system. If dissipation is introduced at each bounce through a coefficient of restitution, the motion is no longer
chaotic; the trajectories exhibit locking solutions that result in periodic behavior. Here we investigate the
dynamics of a bouncing ball influenced by air damping. We consider the effects of both static air and air
moving with the platform, and show that there is an exact mapping between them. In either case, the system
has a rather complex dynamical behavior including truly chaotic trajectories. Our results highlight the impor-
tance of air effects for fine particulate systems.
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One of the simplest examples of a nonlinear dynam
system is a ball bouncing elastically upon a vertically
brated surface@1#. Such a system exhibits a range of com
plex behavior including periodic motion, a period-doublin
cascade, and fully developed chaos, depending upon the
plitude and frequency of the surface vibration@2#. This ide-
alized system captures many of the features observed ex
mentally @3–7#. However, in reality, the ball undergoe
inelastic collisions with the surface, dissipating energy.
this energy loss is accounted for by introducing a cons
coefficient of restitutionr ,1, the resulting system is n
longer truly chaotic; it exhibits locking solutions@8,9#. The
relative velocity of the ball and the surface goes to z
within a large but finite time; the ball will then leave th
surface again when the downward acceleration exceedsg and
this behavior will repeat periodically@10#.

The inelastic bouncing ball has been used as a simpli
model of vibrated granular media@11#. Recently, however, it
has been realized that for fine particulates, the interactio
the particles with the surrounding air can have import
effects on the dynamical behavior@12#. Specifically, it has
been shown that air effects are the driving mechanism
Faraday piling@13#, the air-driven Brazil nut effect@14#, and
separation in a mixture of fine particulates@15#.

In this note, we consider the dynamical behavior of
single air-damped bouncing ball. It is well known that,
Stokes’s law damping is the only dissipative mechanism
ball dropped onto a stationary surface does not come to
in a finite time. This is because the dissipation goes to z
linearly with the ball’s velocity. Here we investigate the b
havior of the ball if the surface is vibrated vertically. W
consider two situations; either the air is assumed to m
with the surface or to remain static. We find that the dyna
ics exhibit many features in common with the elastic b
problem, in particular, the ball never comes to rest on
surface and the motion is thus truly chaotic.

Consider a single particle of massm moving vertically
above a sinusoidally vibrating surface under the influence
gravity and air damping. We will initially assume that the a
is moving with the surface and influences the ball throu
Stokes’s law drag. The dynamics of the ball can also
considered to be one dimensional. The vertical position
the ball,z, and the surface,zs , obey the equations
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1mS dz
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2

dzs

dt D1mg50 ~1!

and

zs5A sin~vt !, ~2!

respectively. Here,m is the viscous drag coefficient,A is the
amplitude of vibration, andv is the vibration frequency. It is
convenient to introduce dimensionless variables

y5
z

A
, t5vt ~3!

for the position of the particle,z, at timet, and

D5
m

mv
, G5

Av2

g
, ~4!

which characterize the viscous dissipation and accelera
of the surface, respectively.

Equations~1! and ~2! can readily be solved analyticall
for any initial conditions. Assume that at some~rescaled!
time t0, the particle leaves the surface at heighty0 with
vertical velocityv0. The corresponding height of the partic
and surface after a time intervalt are given by

y~t!5y02
t

GD
1

1

D S v01
1

GD D ~12e2Dt!

1
1

D
@a sin~t0!2b cos~t0!#~12e2Dt!

1a@cos~t1t0!2cos~t0!#1b@sin~t1t0!2sin~t0!#

~5!

and

ys~t!5sin~t1t0!, ~6!

where
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a52
D

11D2
, b5

D2

11D2
. ~7!

The ball next collides with the surface when

y~tF!5ys~tF!, ~8!

which defines the time of flighttF . If the collision is as-
sumed to be elastic, the ball will then leave the surface
ys(tF) with a velocity

v52
dys

dt U
tF

2
dy

dtU
tF

. ~9!

We have used the above equations to determine the
tion of the ball numerically. For given initial conditions, Eq
~8! can be solved to find the time of flight until the ne
collision. Equation~9! can then be used to calculate the ne
launch velocity, which acts as the input for the followin
interval of the motion. Repeating this procedure, one
build up the exact trajectory of the ball for all subseque
times.

Figure 1 shows a plot of the time of flighttF againstG.
We choose to plottF rather than the phase of the surface
the collision because it contains important information ab
the particle’s actual trajectory. The plot was generated
relaxing the system for 10 000 bounces at eachG and record-
ing the last 256 flight times. After each measurement,G was
increased by a small amount, which mimics the experime
method that would be used to determine such a plot@4#. The
value of D50.05 corresponds approximately to a bron
sphere of diameter 0.5 mm in the presence of air.

We first consider the dynamics of a ball, which initially
at rest on the surface. ForG slightly greater than 1, the ba
exhibits periodic motion with the period of the vibrating su
face,tF52p. As G increases, there are period-doubling b
furcations around this period-1 solution. However, forG
'1.23, the motion jumps to a two cycle centered on
period-2 solution,tF54p. On increasingG further, there is
a second bifurcation cascade up toG'1.38, beyond which
the system exhibits chaotic behavior. Even within the cha

FIG. 1. Bifurcation diagram forD50.05 plotted in the space o
tF vs G. At each value ofG, the system is relaxed for 10 00
bounces and the last 256 points are plotted.G is increased by 0.01
between measurements.
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regime, there are apparent discontinuous changes in the
sured flight time asG is varied. They are close to values o
tF that are integer multiples of the driving period,tF
52np.

To understand the existence of the discontinuous jum
between seemingly different solutions in Fig. 1, we ha
considered the behavior of the ball asG is reduced. This is
shown in Fig. 2. We have started from values ofG chosen to
illustrate specific behaviors. The detailed structure depe
very sensitively upon the way in whichG is reduced, for
example, during which part of the motion it is changed. T
ball can remain in a period-2 cycle even forG,1, or it can
revert to period-1 behavior as observed earlier. Simila
higher order branches can be accessed if the ball is give
large initial velocity, or if it is dropped onto the surface. F
each of the single-period branches with flight timestF
52np, a linear stability analysis shows that the first bifu
cation occurs when

G5~11D2!1/2S x21
1

D2
~12x!2D 1/2

, ~10!

wherex5npD coth(npD). For largen, this value ofG varies
linearly with n. The complex behavior shown in Fig. 1 re
sults from a superposition of the different stable branches
the bifurcation diagram. Which of the trajectories the b
takes depends upon the initial conditions and the way
which G is varied. The system thus exhibits extremely hy
teretic behavior.

For the range ofG that we have considered, we note th
there are very few values oftF,0.1. This suggests that th
ball does not undergo a rapid sequence of collisions resul
in a locking solution. To test this further, we have perform
long numerical calculations of the trajectories forG52. We
find that the ball remains in motion even for~unscaled! times
corresponding to several months. While no numerical w
can rule out the existence of locking solutions, our results
highly suggestive that the ball with air damping alone exh
its truly chaotic dynamics.

FIG. 2. Bifurcation diagram forD50.05 obtained by decreasin
G. Two different sets of data are shown. The upper branch
obtained starting atG51.4 ~within the chaotic region! and the
lower branch starting atG51.23. The measured values oftF are
very sensitive to the initial conditions and to the way in whichG is
varied.
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The bifurcation diagram for a higher value of the dampi
parameterD is shown in Fig. 3. It exhibits a much mor
complex structure than in the weakly damped case. Alo
with the period-doubling transitions leading to chaotic b
havior, we find values ofG where there are three cycles, an
regions where chaos gives way to simple periodic motion
general, increasingD tends to extend the region of stabilit
of the single-period motion to higher values ofG, as de-
scribed by Eq.~10!. Thus, the period-doubling cascades a
sociated with each of thetF52np solutions are more appar
ent. For the range of parameters that we have investiga
and the times that are accessible by our numerical met
we find no evidence that the ball comes to rest on the
face. Thus, even for high values of the damping parame
the motion remains chaotic.

FIG. 3. Bifurcation diagram forD50.5 obtained by increasing
G from 1.
,
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The dynamics described by Eq.~1! assumes that the air i
moving with the surface. If the surface is constructed to
permeable to air@14#, the air above the surface will remai
largely unaffected by the surface’s motion. The correspo
ing equations governing the ball’s motion are the same a
Eqs. ~6! and ~7! but with a and b both equal to zero. By
making the change of variableu05(11D2)1/2@v0
1a sin(t0)2b cos(t0)#, the recursion relation fortF in the
moving air problem maps exactly onto that for the static
problem. The only difference is thatG is rescaled by a facto
(11D2)1/2, i.e.,

Gm5~11D2!1/2Gs , ~11!

where the subscriptsm ands refer to the moving and static
air problems, respectively. Thus, the bifurcation diagrams
the static air problem have exactly the same structure as
scribed above for the moving air problem. Note, that in ord
to achieve the same flight time,Gm must be greater thanGs .
Thus, for a givenG, a ball damped by static air will be mor
active than a ball influenced by moving air. This has imp
tant consequences for fine granular materials vibrated in
rous containers.

It is clear that the model that we have considered rep
sents a rather idealized treatment of an air-damped boun
ball. However, given the simplicity of the model, the syste
exhibits rather rich and complex dynamical behavior. O
findings show that the coupling between the particle’s m
tion and the motion of the air induced by vibration can ha
significant effects on the dynamics of the system.
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