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'. « . God, in the beginning form'd Matter in solid,

massy, hard, impenetrable, moveable particles . ., '

Newton, Opticks, 1717, Query 31.



(iii)

Abstract
Hydrodynamic shape functions for modelling biological macromolecules
in solution in terms of an elliﬁsoid of revolution model ars reviewed.
Several new, hitherto unpublished shape functions whose experimental
determination does not require knowledge of the swollen molscular volums
in solution, are given. The limitations and inadequacies of this model
arse explained. The viscosity increment v for a dilute dispersion of tri-
axial ellipsoids of semi-axes a> b> ¢, under dominant Brownian motion is
derived and an explicit expression in terms of a, b and c is given.
Knowledge of the viscosity increment alone is not sufficient to uniquely
determine the axial ratios (a/b, b/c) becauss (i) in order to determine
v, knowledge of the swollen volume in solution is required and (ii) a
particular value for v has a line solution of possible values for (a/b,
Q/c). (i) is dealt with by combining v with the tri-axial frictional
ratio function P to give the tri-axial R function and (ii) by combining
graphically the R line solution with 8, and §_ swelling independent line
solutions. The experimental detsrmination of 6+ and §_ requires the
resolution of a 2-term electric birefringence decay into its component
relaxation times; current data analysis techniques are however ﬁot
satisfactory for resolving close relaxation times (as for globular
proteins) with the current experimental precision. It is howsver shown by
exhaustive computer simulation that using a new R-constrained non-
linear least squares iterative analysis this is now possible. It is
thus concluded that the general tri-axial sllipsoid as a model for the
gross conformation of biological macromolecules in solution can now be

employed.
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Preface

Thers are two basic approaches for determining the gross
conformation of a biological macromoleculs in solution. One is to assume
a structure (generally an array of spheres of varying sizes) and then
calculate its hydrodynamic propsrties, for example the intrinsic
viscosity, sedimentation coefficient, translational diffusion coefficient,
and then sese how much these predicted properties differ from the
experimentally determined propertiss for the unknown structure. The
model is then successively changed or 'refined! until the predicted
propertiess converge to agree with the actual properties. This method has
been developed by Bloomfield, Garcia de la Torrs and co-workers
(Bloomfield et al, 1967, Garcia de la Torre & Bloomfield, 1977a,b,c, 1978,
Wilson & Bloomfield, 197%a,b, Garcia Bernal & Garcia de la Torre, 1980).
There is however a serious drawback in that the final calculated structure
may not be the only one which gives these properties.

The alternative approach is to calculats the structure directly from
the known hydrodynamic properties. Some general model must of course be
assumed, but although the models available from this approach are less
precise (the most general befors the commencement of this study being an
ellipsoid with two equal axes) it does not suffer from the uniqueness
problem. This approach waé first developed by Stokes (1851, 1880) in
tarms‘of a simple spherical model calculated from the translational
frictional property and the rotational frictional property and again for
a spherical model by Einstein (1906 - with a correction in 1911) from the
viscosity property. Although the current state of theorstical, experimental
and data analysis techniques allows use of the '2 equal axes' ellipsoid

("ellipsoid of revolution"), it is clear from a simple perusal of
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crystallographic mocdels that for many biological structures this model
is a very poor approximation to the true structure.

The aim of this thesis is thus twofold: the first is to review all
the current ellipsoid of revolution shape functions (in which some new,
hitherto unpublished functions ars given) and the second is to develop the
current theoretical and data analysis techniques to show that with current
experimental precision the restriction of two equal axes on the ellipsoid
model can now, in principle at least, be dispensed with to allow use of
the more general "tri-axial ellipsoid" model.

I would like to take this opportunity to express my deepest
gratitude to Or. A.J. Rowe for his expert guidance and supervision during
the course of this study.

I would also like to thank the following peopls for their help and
advice on,specific parts of this study: Dr. M.D. Dampier of the Mathematics
Department for helping me derive the viscosity increment for tri-axial
ellipsoids, Dr. K. Brodlie of the Computing Advisory Services for helping
me with the programming, particularly in the early stages; Drs. J. Rallison
& J. Hinch from Cambridge for helpful discussions on suspension rheoloby;
Professor B. Jennings and Drs, V. Morris and A. Foweracker of Brunel
University, Dr. Houssier of Liege University and Dr. J. Jost of the Union
0il Company, California for discussions and communications on electric
birefringence, Or. R. Dale of the Patterson Laboratoriss on the limitations
of fluorescencs depolarization, and Mr. A. Pancholi of this laboratory for
permission to Qse his viscosity data for hemoglobin.

I am grateful to the Science Research Council for a Research
Studentship and also Fisons Pharmaceuticals Limited for financial assistance

during this study.
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I would like to thank my friends and colleagues in this Department
for making my stay hers an enjoyable one, and finally my Mother for her

great patience whilst typing this manuscript.



CHAPTER 1

The Mass, Size and Shape of Macromolecules in

Solution: The Ellipsoid of Revolution Model



1.1. Macromolecular Structure in Solution

The concept of a unique structure for a biological macromolscule
in solution and in crystallized form has only relatively recently been
established beyond dispute. Prior to the work of Svedberg the view was
commonly taken (Sorensen, 1930) that proteins and other macromolecules
exist in solution not as unique structures but as dissociable complexes
containing possibly several components, that the equilibrium state was
dependent on circumstances (for example the composition of the solution)
and any components precipitated are not necessarily to bs identified with
those occurring in solution. Researchers were consequently surprised at
the ultracentrifuge results of Svedberg and his co-workers (Svedberg &
Pedersen, 1940) which strongly suggested the molecular homogeneity of
many protein systems. Thus, in striking contrast to the polydispsrsity
of many polymer systems (such as carbohydrates, rubber or polystyrene)
it was deduced that carefully prepared protein solutions contain one, or
at the most a few, different molecular spscies. This deduction was
derived mainly from the observation that boundary spreading observed in
the sedimentation of protein solutions could be identified with
separately measured translational diffusion coefficients. Bresler and
Talmud (1944) suggested however that a monodisperse protein really
contains a distribution of molecular weights with a sharply defined
maximum. This surmise is, on the other hand, strongly opposed by the
immunological propsrties of proteins (Alexander & Johnson, 1949)
together with the overwhslming evidence now available from protein
crystallography (Kendrew et al, 1958, Perutz st al, 1960, Blake st al,
1965, Feldman, 1976) which support the idea of discrets individual

structures.



X-ray crystallography is by far the most accurate method for
determining these structures. Unfortunately this technique is also the
most laborious, requiring several researchers working for a period of
months to determine the structure of a single globular protein. The
calculated structures are also of the 'fossilized' form of the
macromoleculs which may not necessarily be thse same in solution. There
are many techniques available, such as nuclear magnetic resonancs,
electron spin resonance, fluorescence and other spectroscopic techniques
which can give much detailed information about the dynamic properties of
localized regions of macromolecules in solution (for example, the active
sites of enzymes are being extensively studied). These techniques
cannot however give information as to the overall macromolecular mass,
size and shape. Ffor this one nesds to consider the hydrodynamic
properties of solutions of the macromolecule (although scattering
phenomena can also give useful information), which allows determination
of the molecular weight, simple 'hydrodynamically equivalent'
mathematical models for the structure and alsoc the size (including the

swelling due to solvent association) of the macromoleculs.

1.1.1. Mass

The 'inertial mass' of a body can be defined as the guantity of
matter in it, or as the ratio of the force applied to its acceleration
(Newton's 2nd Law of Motion). For a macromoleculs we conveniently
express the mass by the 'Molecular Weight' (Nr) which is defined as the
ratio of the mass of the macromolecule to that of one sixteenth of an
oxygen 016 atom, and is expressed in grams.

The mass of fluid displaced by a macromolecule in a solution will



equal the product of the volume displaced and the density of the solution
(MrG/NA)po, where M_ is the molecular weight, N, Avogadro's number, °_ the
solution density and v the partial specific volume of the macromolsculs,
i.s. the volumé increass when unit mass (generally one gram) of solute is
added to an infinite volume of the solvent at constant temperature and

pressure

<

[%]T’P (1)

The 'Archimedean mass' (i.e. ths buoyant mass) of a macromolecule

(Van Holde, 1971) in solution will equal the true mass minus the mass of
the fluid displaced:

Mr Mr - Mr -

(2)

The molecular weight of a macromolecular solute can be measured from many
methods, for example sedimentation velocity and translational diffusion,
osmosis, light or x-ray scattering, or most precisely from a sequence
analysis. A recent revisw of these methods is given by Rowe (1978).
The partial specific volume can be found eithsr from a concentration
determination followed by a densimstric analysis (Kratky et al, 1969,
1973), or for a protein, from Traubse's rule (Rows, 1978). This rule may

possibly alsoc be applicable to nucleic acids (Pearce et al, 1975).

1.1.2. Size
The size of a rigid macromolecule in solution will differ from that
in the anhydrous state because of associated solvent. The hydradynamic

or swollen specific volume Gs’ will now comprise of the partial specific



volume, v, the bound solvent that adheres to the hydrophilic particle
surface, and 'entrained' solvent which may be trapped in the various
cavities and indentations in the macromolecule (Figure 1). The ratio
Gs/ v is known as the 'swelling' of the macromolecule and is equal

to unity if the macromolecule is anhydrous and compact in solution.

The swollen specific volume can be simply related to the "effective"
hydrodynamic volume VB i.s. the swollen volume of a single macromolecule

in a homogeneous solution:

v M

(3)
1.1.3. Shaps

Owing to the aifficulties in developing theoretical relationships
between the shape of a macromolecule and experimentally measurabls
parameters, only rather simple 'hydrodynamically equivalent' models ars
currently available, the boundaries of which can be described by a simpls
mathematical equation; these ars (Figure 2) rods, discs and ellipsoids
of revolution (Tanford, 1961).

An sllipsoid of revolution is formed by rotating an ellipse either
about the major axis (prolate ellipsoid) or about the minor axis (oblats
ellipsoid) and thus has the necessary restriction that two of the three axses
must be equal. In the limit of large axial ratio, a prolate ellipsoid
(2 minor axes, 1 major) becomes a good approximation to a rod whilst an
oblate ellipsoid (2 major axes, 1 minor) becomes a good approximation to
a disc. Consequently, physical biochemists have tended to use the
ellipsoid of revolution model to detsrmine the hydrodynamically squivalent
shapse of a rigid macromolecule in solution.

It should be made clear at this stage that many macromolecules cannot

be modelled by any of these rigid structures as they have no prefsrred
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structure in solution: these 'randomly coiled' macromolecules can only be
represented by probability configurations. Many other macromolecules have
a well defined rigid structure but cannot be reasonably modelled, judging
from the x-ray models at least, by any ellipsoid. The L-shaped Transfer

RNA molecule is an outstanding example (Kim, 1974).

1.2. The Hydrodynamic Propertiss of a Macromolecular Sclution

The hydrodynamic properties of a macromolecular solution, which are
used to determine these structures, can be convenisntly divided into thres
broad classes:

(i) The viscosity property, which concerns the effect of the dissolved
macromoleculs on the bulk motion of the fluid when a shear gradient is
applied.

(ii) The translational frictional property, which concerns the movement

of the macromolecule through its solution when some form of external force
is applied. This can be a centrifugal field in a sedimentation expsriment
or a concsntration gradient (i.e. a gradient of chemical potential) in a
translational diffusion experiment.

(iii) The rotational frictional property, which concerns the disorienting
effect on the macromolecule by the local Brownian motion of the surrounding

solvent molscules.

1.3. The Viscosity Property of a Macromolscular Solution

The viscosity of a fluid is a measurs of its resistance to flow and may
¥*
be simply defined for a simple shearing flow (Figurs 3) in terms of the

shearing stress 0 and the shear rate G:

g =nG (4)

* For the equations describing a more general flow see Batchelor (1967).
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where n is known as the viscosity coefficient.” Ifn is a proportionality
constant independent of the shear rate the fluid is said to be Newtonian.
However, if the constituent molecules show preferred orientations, this
will alter the retarding forces betwsen adjacent fluid elements and hence
the internal friction or viscosity coefficient. This non-Newtonian
effect will occur in solutions containing highlyoasymmetric or seasily
deformabls molecules and at high shear rates (Batchelor, 1967); this forms
the basis of flow birefringence experiments (see 1.5.3). For characterizing
the macromolecule in solution we can set the conditions (i.e. very low shear
rates) so that the Newtonian condition prevails, whereas the chemical engineer
would be more interested in the general flow properties.

Using equation (4) we can simply relate the viscosity coefficient to
the energy dissipation during flow. Writing ¢ as a tangential forcs per unit
area (F/A) and the shear rate as the velocity gradient ( (dx/dt)/Ay ):

1

>|im
&l&

Multiplying both sides by G:

F dx

- 2
Ahydt " G

Since AAy is the volume of the slement under consideration, then
,%¥::> - sz
(5)
where <dw/dt> is thp mean energy dissipated per unit volume.
The effect of dissolved or suspended macromolecules which are assumed
to occupy a volume ¢ of fluid, is to disturb the streamlines of the
fluid motion and to reduce the volume of the fluid in which the same

overall deformation takes place. Thus the internal friction, the viscosity
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coefficient and hence the energy dissipated is increased. This increase

can be represented by:

dw _ A2 o2
> =6 Mm-n)=6 n vo

inc

(6)

where n is the viscosity coefficient of the solution and ng, that of the

solvent. Rewriting:

n=n (1+vé) (7)
Here v is defined as the viscosity increment and is a function of the

shape of the particle. Again, rewriting equation (7):

n = =
. 1= nsp = vé
where nsp is the specific viscosity. This squation only appliss to an

infinitely dilute sclution in which no solute-solute interactions occur.

For finite concentrations:

- 2 3
= + + *oiee cee
nsp vd + vié vod

or, replacing ¢ by ch,whera c is the concentration and US the swollen

specific volume:

n
=—SR= v+ 72 + V ;3.2
nred c \)Vs \)lvs C 2vs C + ) .« o0
where ]}ed is the reduced specific viscosity. As the concentration

approaches zero, N tends to a limiting value, known as the intrinsic

red

viscosity, [n] . This can thersfore be found by extrapolating a plot of-

n versus concentration to infinite dilution, and, if the swollen

red

specific volume, GS is known (section 1.1.2.), v can also be found:

N R
- VN, (8)
S
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An approximate value for V can be estimated for 'globular' proteins by
using the partial specific volume v and assuming that US/ v is ~1.4

for globular proteins. A full review of the experimental techniques for
determining the intrinsic viscaosity, [n] is given by Yang (1961).

Einstein (1906, 1911) was the first to determine an explicit value
for v for a specific particle shape, i.e. a sphere, by solving the
equations of motion for the flow using spherical harmonics. His
assumptions were:

(i) the particles are largs snough compared to the solvent molecules

so that the surrounding fluid can be regarded as a continuum and Euler's
(Batchelor, 1967) equations concerning the change of flow through specific
volume elements rather than the complicated Lagrange equations for

particle motion can be used,

(ii) the dimensions of the particles are however considered very much less
than the spatial variations in the velocity flow field,

(iii) the flow rates are small enough so that squared terms concerning the
velocity (and hence normal stress effects) can be neglected and that the
inertia or mass forces can be nsglected.

Using these assumptions and considering the increase in the averags
dissipation of energy per unit volume, he found that v = 2.5, and was
independent of particle size. This result has been confirmed experimentally
for polystyrene latex spheres by Cheng & Schachman (1955).

Jeffrey (1922) attempted to extend this theory to find v as a
function of axial ratio for sllipsoids of revelution, using ellipsoidal
harmonics to solve the equations for the fluid flow. Owing to the non-
isotropic nature of ellipsoids, the hydrodynamic torques on the ellipsoids

were shown to have two effects:
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(a) the first effect tends to make the particle rotate on average with

the local undisturbed angular velocity of the fluid,

(b) the second effect tends to orient the minor axis parallel to the flouw
for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids.
As a result, the fluid is no longer isotropic and an ensrgy dissipation
analysis fails to give a unique value for the axial ratio for a given value
of v (Brenner, 1972a). However, if the particles are sufficiently

small the randomizing effect of the Brownian motion of the surrounding
solvent molecules counteracts the orientational tendancy of the
hydrodynamic torque (b) so that the particles are randomly oriented (Simha,
1940) and rotate on average with the local angular velocity of the fluid.
The solution is then statistically isotropic, allowing an energy
dissipation anélysis to be used to obtain an unambiguous salution for V

in terms of the axial ratio for prolate and oblate ellipsoids of revolution.
Simha (1940) was thus able to obtain a formula which has been shouwn to give

good agreement with experiment (Mehl, Oncley & Simha, 1940):

. 20.0" ; ) 30'(32 + b2) + 230"
v = + + =
5

ab® | 15p%4 13 ' 15b%
o] 0 [o]

8, '[2a°b%8" + (a® + b)B "]

(9)
where a,b,b are the three semi-axss of the ellipsoid (b>a for oblate and
b<a for prolate), and the aé gtc. which depend on a and b are elliptic
integrals given by Jeffrey (1922) (Appendix I). This relation could be
solved numerically for both cases and a table of values.for v as a

function of axial ratio was given by Mehl, Oncley & Simha (1940).
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~ The function is plotted in Figure 4. 1In the limit of large axial ratio

P (=b/a)

1/p2 1/p2 14
Y BOne/p-372)  Stm/p)-1/n) * 15 (Prolate) (10a)
v o~ %g-tan'l(p] (oblate)
(10b)

These formulae agree with the independent derivations of Kuhn & Kuhn
(1945) and Kirkwood (1967).

Simha apparently did not assume that the particles were on averagse
rotating with the local angular velocity of the fluid but with zero
angular velocity. This objection was raised by Saito (1951) who however
obtained exactly the same result (equation 9) despite assuming particles
on average rotating with the same local angular velocity of the fluid.
He suggested that Simha "probably made some error in his calculation”
without actually finding it. We will show in the next Chapter that Simha
had apparently arrived at the correct result by making the wrong assumption

and then missing out a whole series of terms in his calculation.

1.4. The Translational Frictional Property of Macromolscular Solutes

The ease with which a macromolecule moves through its solution under
the influence of an applied extesrnal force fisld will depend on its shape
and size. The coefficient generally used to describe this ease is the
frictional coefficient, f, defined as the ratio of the frictional force
to the terminal velocity of the particle. Stokes (1851) using spherical
“harmonics again and assumptions similar to Einstsein's (section 1.3)

derived the well-known relation between the frictional coefficient f and
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the radius R of a spherical particle:

where ﬂo is the viscosity of the solvent. Perrin (1936) and independently
Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case

of general sllipsoidal particles:

£, i
fo (abcfﬁ da ; ,
[@% ) (%+A) (c*+N)]® (12)
)
where fo is the corresponding coefficient for a sphere of the same volume:
3V "

Y3 _ e

fO = 61rno(abc) = 61\"'[]0 [.Z—‘ﬂ']

(13)
\le is>the molecular swollen volume, defined in section 1.1.2. The integral
in squation (12) is elliptic and could only be solved for the speciél case

of ellipsoids of revolution. For prolate ellipsoids ( p = (b/a)<1):

2
£ _ 1-p7) 1
fo p%tan'1 (@2 -1)2 (14a)
and for oblate sllipsoids ( p = (b/a) >1)
2

£ _ p -1 1

£ pzhtan"1 @2-1)2
(14b)

and can easily bs plotted as a function of axial ratio (Figure 5). The
translational frictional ratio ﬂ/fo can be measured experimentally either
from a translational diffusion experiment, where the driving force is a
concentration gradient, or from ultracentrifugation, where the driving

force is a centrifugal field.
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1.4.1. Translational Diffusion

The translational diffusion coefficient, D, is related to the
frictional coefficient, f, at a particular particle concentration, c,

by the relation:

_ kT azny}
Dc'f{1+° 3¢ (5)

(van Holde, 1971), where Y is the 'activity coefficient', a measurs of the
concentration gradiesnt. Extrapolating Dc to infinite dilution gives ths

Einstein relation (Einstein 1905, Tanford, 1961):

Ne)

‘By assuming the concentration gradient to be in one direction only, and
applying Fick's laws (Tanford, 1961) for a two-component system, a simple
relation for finding D experimentally can be derived, in terms of the area
under, A, and the maximum height of, H, a concentration gradient (dc/dx)

versus distance (x) curve:

Thus a plot of (A/H)2 versus time, t, in a 'free diffusion of a sharp
boundary experiment' will give DC from the gradient (Tanford, 1961, van
Holde, 1971). Dc can be extrapolatsed to infinite dilution after repeating
the procedure for several solute concentratiocns. Unfortunately, few labor-
atories have the apparatus'required for an accurate determination of D using
this msthod. A fast and accurate method for determining diffusion coeffic-
ients has been developed using quasi-slastic laser light scattering (Chu,
1974, Cummins & Pike, 1973, Berne & Pecora, 1974b the fluctuations of solutse

particles from the equilibrium state are a function of the diffusion
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coefficients and with adequate instrumentation for signal analysis can be
time-resolved.
From equation (16), the frictional ratio can be found from the

translational diffusion coefficient using the relation

i-l_)g
f ° D
(o]

(17)
where D0 is the translational diffusion coefficient for a sphere of the

same volume and molecular weight:

B

D = kT _ kT 4
3Ve

(18)

1.4.2. Sedimentation Velocity

In a sedimentation velocity experiment, using an analytical
ultracentrifuge (van Holde, 1971), the macromoleculss quickly attain the

terminal velocity, whencse

M

L (1-73 2 - g 4
NA (1 v po)m T f it

where N is the solution density, r the distance from the centrs of
rotation of the solution/éolvent boundary, w the speed of rotation and

Nr(1 - G‘%)/NA the'buoyant mass' defined in section 1.1.1. Rearranging:

M. - Vo) o dr/de _
N, £ w’r ¢

(19)
where S, is the sedimentation coefficisnt at a particular soluts
concentration. In a sedimentation velocity expsriment the movement of
the boundary betwesn solution and solvent is monitored as a function of

time using the property of change of refractive index with changse in
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concentration, hence optical techniques such as scanning Schlisren optics
or ultra-violst absorption can be used (Lloyd, 1974). If we rearrange

and integrate squation (19) we find that

s = 1 Afnr
(o wZ At

thus by plotting logar versus t and knowing the angular velocityuw, s, can
be found from the gradient. The sedimentation coefficient S is a function
of solute concentration, thus is normally extrapolated to infinite dilution
to give the sedimentation coefficient, s, which is characteristic of any
macromolecular solute. From esquation (19) it can be seen that the

frictional ratio f/?o will be given by

S
o
S

£
F =
o

whsre sy is the sedimentation coefficient for a compact 'sphere of the same

molecular weight and volume. From equations (19) and (13):
- - 14
_ M1 -v po) _ M - Vpo) [4n}

o N, fo - N, 61rno 3VeJ (20a)

S

and thus the frictional ratio can be found, provided s, Nr, Vy p

o’ Mo
and the swollen molecular volume, \Ie are known:
o 1A
£ _ M a-v po){ [4n}
fO NA 61!’n S ‘ 3Ve
(20b)

1.5. The Rotational Frictional Property of Macromolscular Solutes

The ability of a macromolecule to rotate under the influence of the
local Brownian motion of the neighbouring solvent molecules will depend on

its size and shaps. By analogy with the translational frictional
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coefficient, we can define, for rotation about a specific particle axis,

a rotational frictional coefficient, Ci, as the torque which must be
applied to causs the particle to rotate with unit angular vslocity. For

a general ellipsoidal particle there will be thrse rotational frictional
coefficients corresponding to rotation about sach of the three axes; for
an sllipsoid of revolution there will be two, and for a spherical particle,
one. Each rotational frictional cosfficsint can be related to a

rotational diffusion constant by analogy with the Einstein relation (1905)

(equation 16):
B, = = (21)

whers ei is defined as the ratio of the mean squared angular displacement
of the axis to the time elapsed (Tanford, 1961). In a typical rotational
frictional experiment an initial orientation of the macromolecule is
produced by some external field. If, for example, the macromolecules in

a solution are oriented with their "a" axis parallel to an orienting field
and the field is suddenly removed, the macromolecules will then relax due
to the Brownian motion and tend to assume a random configuration by
rotating about the b and c axes. We therefore conveniently define a

rotational relaxation time in terms of the rotational diffusifon constants.

(eb, ec about the b,c axes respectively) by

(22a)

There will be similar relations describing relaxation of the b and c axes:

(22b,c)
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By analogy with the translational frictional case, Stokes (1880)
using spherical harmonic solutions of the equations of motion with

the boundary condition that the fluid in contact with the particle rotates
with the same angular velocity (i.e. the 'no-slip' condition) derived an
equation linking the rotational frictional coefficient with its |

radius, R:
- 3
4 8nno R

(23)
Edwardes (1893) extended this equation to the case of general ellipsoidai
particles. After a correction for a numerical error (Perrin, 1934),

these ars:

. 16mn, b2 + c?
= Z Z
a 3 b Bo + ey,
L= 16mn c2 + a?
= 7 7
b 3 c Yo + a @,
_ 16mn aZ + b?
e 3 c?y_ + a‘a

0 o (24)
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where again the @ etc. are elliptic integrals defined by Jeffrey (1922) -
see Appendix I. The expressions on the right hand side of equations (24)
are functions not only of shape but of volume as well; the corresponding

rotational frictional ratios however, are not.

2 % 2 b? + c2
> - 3 - Z Z
co ea 3abc b Bo+cyo
C_b_eo_ 2 c2 + a2
-3 - Z Z
%o eb 3abc cy°+aa°
Fe_fo 2 _a?.
T~ ©6_ 3abc a‘a_ + b4B
o c o o}

(25)
where & (=8 mn oabc) & 8 (=kT/C0) are the corresponding coefficients
for spheres of the same volume, an;:l can be found experimentally only

if the swollen molecular volume, \Ie is known:

Z =6n V 8 = kT/6r'a0 Ve

[o] o € ) (o] (zsa,b)
The corresponding rotational relaxation time ratios are:
la___2
% [, %]
8 8
) o
g—.b - 2
% [P, ’a
8 ]
Q_C 3 2
% [Pa,
5 © (27a)
- 0 o -

where 90 =1/2 eo. ' (27b)
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Unfortunatsely, as for the translational frictional coefficients, the
elliptic integrals could only be solved analytically for the special case
of ellipsoids of revolution of semi-axses a, b=c (Gans, 1928, Perrin, 1934).
Although numerically equivalent, Gans uses the less manageabls
'eccentricity' (e = 1 - b/a) rather than the axial ratio (p = b/a), hence
the equations of Perrin are generally used:

C 9 2
a__o0_2Q-p)
T, 8, 3 W5)

1-p

= en = e

(28a)

whers

Ss=(Q1 - p2)'5zn{[1 + (l-pZI%]/P}

for a prolate ellipsoid (p<1), and
-1 -1 1
S=(p? - 1)7% tan™ [(p2 - 1)?]

for an oblate ellipseoid (p>1).

The rotational diffusion ratio ei/e0 (i=a,b) can be related to expsrimental

parameters using equations (26b):

0. !
6n0 Veie.

1—
a5 " 1
eo kT

(28b)
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The corresponding rotational relaxation time ratios were also given by
Perrin (1934) but contained an error of sign involving S. The correct

result was given by Koenig (1975):

&2 % 20 -pM
7]

e, O 3p7[S(2-p%) - 1]

o [ea eb] T 3[p%S(1-2p?%) + 1]

°p 2 4(1 - p*)
)

—_— —

) 0
o] o

(29a)

Thess may be related to experimental parameters by combining equations

(26b, 27b):

o, 3nV, ‘i (29b)

All these functions (Ci/CO =0./8,, 91/90) are plotted as functions of
axial ratio in Figure 6. It should also be pointed out that, liks the
translational functions the rotational diffusion coefficients and
relaxation times ars functions of concentration (Riddiford & Jennings,
1967) and should be extrapolated to infinite dilution. The same is also
true for the harﬁonic mean relaxation time, the birefringence decay
constants and the fluoreseencs depolarisation relaxation times mentioned
below. The various experimental methods for determining all these shape

parameters will now be discussed.

1.5.1. Dielectric Dispersiaon

The capacity of a condenser filled with a solution of the macromolecule

is measured as a function of the applied sinusoidal voltage across it
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(Edsall, 1953). The 'dielectric increment' or increase in the dielsctric

constant, €, due to the presence of the solute is given by

(@]

Ae = € - € =ji-- =2

oC T, (30)
whers € is the dielectric constant of the solvent and C, C-D and CV
are the capacities of respectively, the solution, solvent and vacuo.
At sufficiently small frequencises, the dipolar macromolscules can keep
pace with the alternating field, and the dielsctric constant will remain
at its 'static' value. At sufficiently high fields, the rotation of the
macromoleculs about a particular axis will no longer follow the fisld and
its contribution, Ae_ to the dielectric constant is that of a non-polar
substancd (Oncley, 1940); thus over a certain critical range
characteristic of the size and shapes of the macromolecule, the dislectric
constant decreases as the frequency increases. The frequency corresponding
to the mid-point of the dispersion curve is known as the 'critical
frequency'. For a general particle with three rotational relaxation times

0,0 pb, 0o’ there will be three critical frequencies:

v, = 2nga 5oV = ZWQb 3oV, T ZWQC

(31)

For an ellipsoid of revolution there will be two (since = QC) ar ons,

®h
either if the dipolar axis is parallel to the rotation axis of symmstry
or for a spherical particle. Typical dielectric dispersion curves for

8llipsoids of revolution of various axial ratios are shown in Figure 7

(from Oncley, 1940)

Even in the most favourabls case, 8 = 450, resolution is poor for

axial ratios less than 9 (Squirs, 1978). Application of this method is
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also limited by the fact that, due to electrods polarization, only
solutions of low ionic strength can be used, thus restricting the use

to proteins of high solubility.

1.5.2. Electric Birefringence

Polarized light incident on a solution of macromolecules oriented by
an elctric field will be split into perpendicular components because the
refractive index will be different for directions parallel and
perpendicular to the electric dipole moment (Benoit, 1951). The solution
is then said to be birsfringsnt and the amount of birefringence will
depend on the nature and concentration of the macromolecules.

The decay due to Brownian motion of the birefringencs when the fisld
is suddenly switched off is most interesting since this will be
independent of the electric propertiss of the macromolecules (apart from
the initial amplitude of the decay) but dependent on their size and
asymmetry, assuming the solution to be homogeneous. The solution must
be rendered homogeneocus by, say, ultracentrifugation for removing larger
impurities, followed by gel filtration for fine purification. The number
of terms in the exponential decay will be dependent on the particle
asymmetry, assuming that the particles are small enough so that the
Rayleigh - Gans - Debye scattering theory applies (i.e. particle dimensions
less than »/20). Ridgeway (1966, 1968) has shown that a general particle

will have two relaxation times, T, T_or two decay constants, 6 (=1/6T+),

6 (=1/6 1'_):

(32)

where &n is the birefringence, N is the number density of particles in
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suspension, n, the refractive index of the solvent and A, complicated

2
expressions depending on the initial particle orientations and their
dielectric and diffusion properties. Unfortunately, although Ridgeway
provided relationships linking 6, with the size and shape of general
tri-axial ellipsoids (see Chapters 3 and 4), only one relaxation time

has been resclved from the experimental exponential decays for homogensous
solutions. Thus the method has been restricted to sllipsoids of revolution

(A_ = 0) for which Benoit (1951) had shown previously that, for an initial

birefringence ngs

(33)
assuming the electric dipole axis coincides with the rotational axis of

symmetry. For spherical particles therse would be no birsfringence.

1.5.3. Flow Birefringence

The aligning field can also be produced, if the macromolecules ars
highly asymmetric, by large flow velocity gradients in the annular space
between two concentric cylinders, one rotary and one stationary (van Holde,
1971, Squirs, 1978). The orientation of the macromolecules will again be
opposed by rotational Brownian motion, and for a constant shear rate, there
will be an equilibrium distribution of orientation states. Results for
sarly studies are discussed by Cerf and Scheraga (1952) and by Tanford
(1961). . This method has the advantage that the steady state birefringence
can now be used to derive shape parameters, since this will be independent
of the electric properties of the macromolecule. However, the method has the

serious disadvantage in that relaxation experiments are virtually impossible,
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and also the use is restricted to highly asymmetric molecules (Squire, 1978).

1.5.4. Fluorescence Depolarization

This method applies to those macromolecules that possess a fluorescent
group or a chromephore (Cantor & Tao, 1971). If an electron in a chromophore
is excited to a higher energy state by the absorption of radiation, then
instead of the snergy being dissipated non-radiatively in the form of heat
as it returns to the ground state, it loses only part of its energy as heat
as it returns to the lowest vibrational 1lsvel of the excited state, but then
re-radiates the rest. This will necessarily be of lower energy (hence longer
wavelength) than the incident radiation. This phenomenon is called
fluorescence.

If the macromolecule is irradiated with polarized light, and if, in the
10-8 to 10-7 seconds it takes for the energy to be re-radiated the
macromolecule has changed its orientation due to Brownian motion, there will
be a nast depolarization of the incident light. If the solution is
continuously irradiated then a steady state dspolarization will be reached
depending on the ratio of the fluorescence decay time, t* to the harmonic
mean of the three rotational relaxation times (equations 27), Th (Perrin,

1934):

SRR~

P is the polarization (i.e. the ratioc of the differsnce in intensitiss of

(34)

light polarized parallel and perpindicular to the incident beam to their sum),
Po is the intrinsic polarization of the fluorescence (the polarization that

would be observed if no rotation had occurred) and T, is defined by

h
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(35)

Tha harmonic mean relaxation time ratio Th/ T, can thus be plotted as a
function of axial ratio (Figure 8), whers T, is the corresponding

coefficient for a sphere of the same molecular weight and volume:

(36a)
Thus Th/ T, can be related to exparimental parameters by:
, zh.= kTTh
T, 3noVe
(36b)

Equation (34) is not particularly useful as it stands, since neither PD

nor Th are known. If T, is approximated by Th~Tg (i.e. = SnDVe/kT) then:

b9 b

(37)

If measurements are then made in solutions of varying viscosity (for
example by adding glycerol) and/or temperature, (1/P -1/3) can be

plotted against T/no, 1/P0 can be found from the intercept and hence T
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from the gradient, assuming T* can be found independently. A major
disadvantage of this method is that by adding glycerol or changing the
temperature the swelling due to solvation may be altered: alsc an
independent estimate for t* is required.

A more accurate method in principle is nanosecond fluorsscence
depolarization decay (Cantor & Tao, 1971). Here the solution is
irradiated with polarized light pulses of very short duration (~1ns).
The anisotropy, A is measured by determining the intensity of emission

polarized parallel to (I,) and perpindicular to (I;) the incident pulse:

Sy o+ 2L ’

(38)
For a rigid spherical macromolecule, the anisotropy decay is described

by a single exponential term (Jablonski, 1961)

-t/'ro
A(t) = Aoe
(39)
with © = n Ue/kT. For a rigid ellipsoid of revolution, Memming (1961)
and Wahl (1966) have shown that the anisotropy is a sum of three

exponential terms:

—t/'r1 -t/'r2 -t/t,
A(t) = ae *ae + age
(40)
where
_ _j;_ _ 1 _ 1
1%, * T27%5 +% > T3 T 25+ 40

b b a b a (41)
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The fluorsscence decay time ratios are plotted in Figure 9 whsere To is
the corresponding coefficient for a sphere of the same molecular weight

and volums:

nv 4mn_ab?
;=0 _ 0
0 kT 3kT

Thus the fluorescence anisotropy decay time ratios can be related to

experimental parameters by

T: kTt.
=) j .
To = v, (3=1,2,3)

(42)

The values of the component amplitudes a1, Uy O and hsence the

dominant relaxation time will depend on the angle betwseen the transition
moment of the chromophore to the rotation axis of symmetry of the sllipsoid
of revolution. Unfortunately, resolution of a multi-term exponential decay
into its components is notoriously difficult (Jost, 1978), even for
relaxation times differing in orders of magnitude; this is coupled to the
problem that the observed decay will be a convolution of the finite cut-off
time of the incident pulse, the fluorescence decay and the anisotropy decay.
There are also more serious problems:

(i) since the fluorescence itsself decays within about 10ns, only molecules
with very short relaxation times can be investigated,

(ii) most macromolecules do not contain a chromophoric group such as

tryptophan; thus one must be introducsd. This may significantly alter the

true conformation of the molecule,
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(iii) even if the macromolecule contains tryptophan, the decay is not
perfectly exponential, due to interferencs between the side chain and
the indole ring,

(iv) rotation of the chromophore, or of a fragment of the macromolecule
to which the chromophore is attached, with respect to the rest of the
macromolecule may occur: Munro et al (1979) have given evidence for

internal rotation of the tryptophan residue in Staphylococcus aursus

nucleasses B (Nr = 14,100) and Pseudomonas aeruginosa azurin (l"lr = 14,000).

1.6. Scattering

Absorption and hence fluorescence phenomena can only occur when the
frequency of the exciting radiation is the same as or near to that of an
allowed transition frequency of the molecule. However, at other wave-
lengths electro-optic interaction can still occur; the selectric vector
of the incident radiation polarizes the moleculs by attracting the
nuclear mass and repslling the elsctron clouds. The frequency of
oscillation of the incident radiation is the same as that of the induced
oscillating dipole; however, the waves emitted are by Huyghens principle
spherical and hence the radiation is scattered in all directions.

The scattering by a solution of macromoleculaes is most rigorously
analysed by considering the local concentration fluctuations of the
solution; howsver, if we consider the particle as small compared with the
wavelength of the incident light and the solution to be so dilute so that
each particle can be considered independently, relations can be derived
between particle shape in terms of the 'radius of gyration' (Tanford,
1961) and the scattering (van de Hulst, 1957). For small particles (<)\/20)

interference effects between radiation scattered by different parts of the
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macromolecule can be neglected, and the following relation between

molecular weight, Mr and the scattering can be derived:

He

- = @ + 2B.c

where c is the particle concentration, H is the scattering constant

( alfa, and the square of the refractive index increment, dn/dc),

B the second virial coefficient and T is a measurs of the relative
scattering perpindicular to the incident beam (i.e. the fraction of light
scattered (van Holde, 1971)). Hence if Hc/T is plotted versus
concentration, the molecular weight can in principle be determined from

the intercept. For large particles (d-)/20) destructive interference
occurs between light scattered from different parts of the macromoleculs.
Light scattered in the forward direction cannot however be subject to
destructive interferencs. Unfortunately this cannot be viewed directly,
but if the scattering is stu&ied over a rangs of angles it can be
extrapolated to the forward direction. This involves extrapolating to
zero-angle and to zero-concentration using the so-called Zimm plot

(Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the c=0 line
gives the radius of gyration of the particle, RG’ i.e. the mean extansion
of mass from the centre of gravity. Far a sphere of radius R, RG = /?;@?R,
and for a large rod of length L, RG = L/VTE , thus light scattering can be
used to obtain information about conformation in solution, where particular
models for which R can be specified are applicable. Holtzer and Lowey
(1956) showed by this method that L = 1500 R if myosin could be reasonably
modelled by a long rod. Martin (1964) has shown that the radius of gyration
can be ielated to the axial ratio of the equivalent ellipsoid of

revolution provided that the swollen volume is known:
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(43a)
for a prolate ellipsoid and
o [3V (b -2
R e p + 2p
G 4n 5
(43b)

for an oblate ellipsoid.

An explicit relation relating R. to axial ratio alone can be found by

G

'reducing' it

% 4 2
V3 -3
(RG) - :ELK R. = 5p "+ 4p
red 3Ve. G 15
(44a)
for a prolate ellipsoid and
Y3 4 3
A -8
Ry . [4_] R = {P_.__ZL]
red SVe G 5
(44b)

for an oblats ellipsoid.
This is plotted in Figure 10.. Experimental determination of (RG)red
requires of course a knowledge of Ve'

The same analysis can be used for lasser light scattering as this
gives good time resolution for rapidly changing solutions (for example

aggregation of macromolecules, randomly coiled macromolecules). However

a major difficulty with all light scattering experiments is that all
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solutions, glassware stc., must be dust free; removal, without damage to
the biological solute, poses great difficulties. Due to diffraction
effects it is also difficult to measure scattering angles less than

about five degrees, thus a clear extrapolation to zero angle may not be
possible. Another major difficulty is that, since the resolving power
depends on (RG/A)Z, the method fails for macromolecules below about 100 g
(although mr may still be found). Reducing the wavelength of the
incident radiation doss not help (until down to the x-ray region) since
below 200nm most bioclogical materials absorb very strongly. A msthod of
low angle x-ray scattering (LAXR) has also been developed (Beeman et al,
1957). However, due to very strong diffraction and interference effects,
the scattering is almost entirely confined to a very narrow wavelength
range. 0On the other hand, it is possible to collimate the x-ray bsam much
better than a light beam, thus measurements can be made to a low enough
angle to a mors reasonable extrapolation to zero angle.

Deductions about the size and shape of macromolecules from scattering
information is generally restricted howsver, since any simple interpretation
of the radius of gyration must assume that the macromoleculs is homogeneous
(uniform electron density). If, therefore, the particle contains fluid
filled cavities or indentations or a monolayer of bound solvent, the
dimensions of aﬁy assumed model calculated from the RG will be incorrect.
This problem does not apply to the determination of the hydrodynamic shape
parameters considered previously since these phenomena do not depend on

intsractions with or properties of the interior of the macromolecules.

1.7. The Problem of Swelling due to Solvation

In order to determine from experimental data the ellipsoid
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of revolution shape functions mentioned so far, a knowledge of the

swelling due to solvation (i.e. Ve) is required:

v m [n]Mr
v No Ve (8)

fo NA61rno s 3VeJ (20b)
8; Ly 60V,
ST a1
o % kT (28b)
03 KT
—_= . i = a,b).
0, 3ngv, e; ) (29b)
Th kT
T - n Vv Th
) o'e (36b)
T, KT
Tery Ty G=L2,3)
) oe (42b)
13
(R.) _ | 4
6" red = 3Ve RG (44)

The first significant attempt at dealing with this problem was duse
to Oncley (1941) using a graphical analysis: If Ve is fixad then a singls
valus of the shape parameter being considsred will correspond to a single
value of the axial ratio. If, howevsr, \I8 is assumed to have a range of

possible values, then a single value of the shape parameter will have a
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'line solution' of possible values of the axial ratio. This is shown in
Figures 11a and 11b for the viscosity increment and translational
frictional coefficient. However, if line solutions for two or mors

of the different shape parameters are compared, then in principle a
unique value for the axial ratio and effective volume can be found from
the intersection. On the other hand, in practice these curves could only
be made to intersect by imposing large experimental errors on the data,
and in one case - pepsin - the curves do not cross at all (Figure 12).
Here Oncley uses as his abscissa the 'hydration factor' w, related to

the effective volume, "e by:

- - NA ve -
w = po(vS -v) = % W -V

A different approach would be to eliminate \le simultaneously by
combining any two of the shape parameters together. The effective volums
can then also be found by back substitution into the equations. This
naturally assumes, as does the Oncley approach, that the axial ratio and
the swelling ars the same for both types of experiment. Scheraga and
Mandelkern (1953) combined equations (8) and (20b) to produce a swelling-

independent function B (Figure 13):

“13
NA \)V3

f/fo

B:
(162007273

(45a)

or in terms of experimental paramsters, from

1
;- N, sln] /3“0

) Mr%%(l - \‘rpo)lool"3

(45b)
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where [n] is in ml/gm. Scheraga and Mandelkern also combined equation (8)

with equations (28b) to produce swelling independent §, and §  functions

(Figure 14), although in their original paper, only 5b is given:

§. = Eg-v = Ei—v z EESEEEEEfE
i Ci Bo NA kT

(46)

(i=a’b)

Scheraga (1961) later combined (20b) with (28b) to produce swelling

independent u_, 1, functions (Figure 15) although again only u, was given:

] 3 23 23
e T
. =T . = —
LB 6B "y 1) e WT
1 r [o] 1

(47)

(i=a’b)

Squire et al (1968) combined equation (20b) with (29b) to produce swelling

independent Yy and Yy functions:

(48)

(i=ayb)

Squire later (1970) combined (20b) with (36b) to give « swelling

independent ¥ function (Figure 16)

’ To Y3 £} 41r1'10]/3 Mr(l - Gpo) 1 1A
B H = B

(49)
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Plots of the Squire Yé and Yb parameters as functions of axial ratio are
given in Figure 16. A similar swelling indspendent function can be
obtained by combining the viscosity increment, equation (8) instead of

equation (20b) with (36b) (see Appendix II and Harding, 1980a):

[To] . 3n [nIM,

A= |2 ve 2T
" NA kT T
(s0)
(Figure 17). Also, by combining equation (8) instead of (20b) with
equation (29b), swelling independent €2 €, functions are produced
(Figurs 18):
€ =V 9_0 = Sno[n]Mr
i e NA kT o5
¢51)

(i=a, b)
By combining (8) with the fluorescence anisotropy relaxation times (42b)

are produced (Figure 19):

three new functions, Kys Kps Ko
) Ig._ no[n]Mr .
Kj =V 7. N, kT t. (J=1,293) (52)
j A j

Alternatively, combining equation (20b) with squation (42b)(Figure 20):
3 - 82 v
. (f] T, mr3(|~vpo) (J‘:lj;l/])
N - 2 .
j £ T 62N, RTa™)’s* T (53)
As far as the author is aware, the A, €9 Kj and Ej functions are new

and have not been published before. These functions are tabulated for
axial ratios between 1 and 10 (Table 1).
Martin (1964) eliminated the requirement of knowledge of the swollen

volume for scattering experiments by combining (44) simultaneously with
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either the translational frictional function (Figurs 21):

;
s 2382
Y = Rs o D = Rg Mo Np S 1 5 [Sp + 4p-
- kT ~ - T 6emr f 15
M.(1 - vp )

(prolate ellipsoid)

P__*+<p

£ (Y5, , %
]

1l o
= 6n f
(oblate ellipsoid)

or the viscosity increment (Figure 22):

1

3
___Rg 75 (5p”® 4 4p~B 1
S R 7R 15 L
[n] ™M A v

(prolate ellipsoid)

]

(oblate ellipsoid)

where p is the axial ratio defined in section 1.4.
The melecular covolume has also been given as a function of shape
and swollen volume by Nichol et al (1977) for prolate and

oblate ellipsoids

(54)
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where the ellipticity ¢ is related to the axial ratio by

for prolate ellipsoids (b<a), and

2
e = 1-a'_

H

for oblate ellipsoids (b>a). By 'reducing' U we obtain a function Ured

in terms of shaps alone:

U 3 1+ sin”’
Vred "N v = 2°*3% [1 *"‘”““‘EJ
A e e(l - €2)?
1 - g2 1l +¢ |
[1 YT Mr—e J (55)

The covolume U can he found from a sedimentation equilibrium experiment
in terms of the activity coefficient, as outlined by Nichol st al (1977)
although in order tﬁ determine Ured’ a knowledge of VB is still required.
Nichol et al (1977) however eliminated V, by solving equation (55)
simultaneocusly with the translational frictional ratio (equation 20b) to
produce the swelling independent ¢ function (not to be confused with the

Squire Y function)

3y 2 3

U £ 3 Un NA S
red Ll% 3 3

) N
162n2 (£ Mo (- ve )

w:

(56)
As seen from Figurs 23, ¥ has the advantage that no prior decision has
to be made as to whether the macromolecule is bstter modelled either by
a prolate or oblate ellipsoid. Unfortunately, for typical globular

macromolecules (small axial ratios), the papameter is still very
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sensitive to experimental error: this is clear from Nichol gt al's
results for ovalbumin, whose axial ratio they found to be 2.5:1 with
a standard error of 3. This is largely due to the large number of
terms on the right hand side of equation (56), several of them cubed.

U ,q can of course be combined with any of the equations (8), (20b),
(28b), (29b), (36b), (42b) to eliminate V,. For example, if (55) is

combined with the viscosity increment (8), a new swelling independent

function is produced (Figure 24) (Harding, 1980b):

red _ U
v [n]Mr

(57)
Values of the II function for various axial ratios are given in Table 1.
The results for hemoglobin are in excellent agreement with those found.

from x-ray crystallography (see Appendix III).

1.7.1. Hydrodynamic non-ideality: the R function

The viscosity, translational frictional and rotational parameters
considered so far are normally those extrapolated to zero concentration
in order to negate the effect of the net volume excluded by the particles
and solute-solute interaction. However, the nature of the concentration
dependencs of these parameters, particularly the sedimentation coefficient-
"s" and the reduced specific viscosity, ns c, has now been shown by Rows
(1977) to give valuable information as to the conformation and swelling
in solution and also an estimate of the "goodness of fit" of an ellipsoid
for the macromolecule in solution.

The variation of s and nsp/c with concentration can be represented
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by regression paramsters ks’ and kn:

S¢ = s(1 - ksc)

(58)
Nsp _ 59
—L=[n] @+ ko). (59)

whers kS and kn are, respectively, the sedimentation and viscosity
concentration regression coefficients. These approximate linear
equations are valid only for dilute solutions. A universal squation has
been derived by Rowe (see Appendix IW.) for all solute concentrations up

to ¢p, the critical packing fraction:

s £, n
S Fon_/ecloee
sp
(60a)
whers
ke - (20 - 1)(cv_/9.)°
gc = P s 'p
k9-2VSC+1
(60b)

where k=k_ (sedimentation) or k=kn (viscosity). This provides a more
accurate method for extrapolating to infinite dilution to obtain Eq:]
and "s", and also for finding ks and kn , from a given set of data, by

minimisings
_ - 12
{wi[si f(ks,vsgs:ci:¢p) ]}

(wi = weight) (61)
This procsdure is unstable if ks, VS and s (or the corresponding viscosity
parameters) ars all taken to bs indspendent variables. However, if we

assume VS = ks/4 for globular proteins, or assumse Us from the ratio US/ v
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= k;l/ké, where k;] and k; are the parameters found from the approximate
fit (equations 58 & 59), a stable fit may be found.

Rowe (1977) has shown that the swelling, Us/ vV , can be found from:

v k
S -_1
Y k
S
(62)
Therefore
M \75 M krl _
vV = T =, =,V
e Ny Ny kg
(63)

The value of Us/ v and hence V_ thus found is independent of any assumed
model for the protein. Sinee the determination of \l9 by back substitution
into the equations given at the beginning of 1.7. after the axial ratio has
been determined is dependent on the model chosen (i.e. an ellipsoid of
revolution), an estimate for the "goodness of fit" of an ellipsoid of
revolution is now available by comparing the model dsependent Ve with model
independent V_ (or, squivalently, Us or Us/ v).

This theory also provides a new shape function "R", which is

independent of particle swelling:

3

™

=
n
<N

3\
1 + [fi
o]

—
3
—

(64)
Wales & Van Holde (1954) had previously reported that the ratio kS/[n]
was some unknown function of shape and equal to 1.6 for spherical
particles; this agrees with that predicted by equation (44) (Figure 13).
R varies rather rapidly with axial ratio for ellipsoids, sven for low
axial ratio, and this function provides a precise method for

characterizing the axial ratio of relatively symmstrical particlss.
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Easides its greater sensitivity than the B function.(or the ¥ function),
R has several other advantages:

(1) unlike g computation of R does not require knowledge of the absolute
solute concentration (Rowe, 1977)

(2) less data is required to compute R and hencs the error in the final
function is minimized. As rotational parameters are generally very
difficult to determine, as will be svident from the earlisr parts of this
chapter, the R function is also to be preferred over swelling independent
functions involving thess. The R function is also to be preferred over
the scattering Y and o functions mainly because of the particle
homogeneity problem mentioned in section 1.6. The B function can still
however be useful, precisely because of its lack of variation for oblate
8llipsoids, in deciding whether the macromolscule is better modelled by
either a prolate or an oblate ellipsoid. Experimental values for 8 and
ks/[n] (2R) have been tabulated for a wide range of proteins by Creeth

& Knight (1965). Values of 8 below the theorstical minimum of 2.112 x 106
and above 1.6 for R may indicate that some proteins cannot be modelled by an
equivalent ellipsoid of revolution. This has been suggested for Bovine
serum albumin (BSA). A table of values of axial ratio calculatsed from
the R function for recent data, together with a comparison of their
'model dependent! estimates for GS/V with their 'model independent!
estimates to determine the 'goodness of fit' of an sllipsoid of

revolution, is given in Table 2.

1.8. Comment
Although a hydrodynamically squivalent ellipsoid of revolution
model can now be fitted with much greater precision to many rigid

macromolecules with the aid of the R function (and possibly the I function)
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the distinction still has to be made as to whether the macromoleculs
is better modelled either by a prolate or an oblate model. It is clear
from a psrusal of the crystallographic models of many globular proteins
such as carboxypeptidase, myoglobin and ribonuclease (Tabls 3) that in
many cases this is quite arbitrary and indeed in some cases is
impossible

It would be a significant step forward therefore if the restriction
of two equal axes on the ellipsoid were removed to allow use of the more
gensral tri-axial ellipsoid. However, either dus to the lack of the
theoretical relationships linking the éxial dimensions of the ellipsoid
with experimental parameters, or, sven if they are available, due to the
-lack of the necessary experimental precision, numerical inversion
procedurss or data analysis techniques, this model has not, to date, been
available., The aim of the rest of this thesis is to show that the gensral
tri-axial ellipsofd can now be successfully employed to model biological
macromolecules in solution. We will start by deriving the tri-axial

viscosity increment equation.



Table 1. Values of A, €0 1 Kq9 Koy Kgy Bgy Eo9 E4 and T for

prolate and oblate sllipsoids of rsvolution
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sl 2 3 4 5 6 7 8 9 10
Ap 2.500 2.490 2.692 3.071 3.575 4.177 4.862 5.624 6.457 7.359
Ao 2.500 2.356 2,187 2.070 1.989 1.931 1.887 1.854 1,827 1.805
ea,p 2,500 1,932 1.574 1.373 1.251 1.1717 1.115 1.075 1.044 1.020
Ea,a 2,500 2.522 2,343 2.202 2,102 2.029 1.974 1.931 1.896 1.868
Eb;p 2.500 2,768 3.250 3.920 4.737 5.679 6.736 7.899 9.164 10.528
eb,o 2,500 2.273 2.110 2.003 1.932 1.882 1.844 1,815 1.792 1.774
K1,p 2,500 1,932 1,574 1.373 1.251 1.171 1.115 1.075 1.044 1.020
K1,o 2,500 2.522 2.343 2.202 2.102 2.029 1.974. 1.931 1.896 1.868
kz’p 2.500 2.211 2,133 2,222 2,413 2,674 2.989 3.349 3,751 4.189
K2,0 2.500 2.439 2.265 2.136 2,045 1.980 1.930 1.892 1.862 1.837
Ks’g 2.500 3.047 3.809 4.769 5.899 7.182 8.609 10.174 11.871 13.698
KS’O 2.500 2,190 2.032 1.937 1,875 1.832 1,801 1.777 1.758 1,742
51’p 1.000 0.756 0.588 0.487 0.421 0,374 0.340 0,313 0,292 0.275
g1,0 1.000 1.000 0.920 0.860 0.818 0.787 0.763 0.745 0.731 0,719
Ez’p 1.000 0.865 0.797 0.788 0.811 0.854 0.911 0.976 1.051 1.129
Ez,o 1,000 0.967 0.890 0.834 0.796 0,768 0.747 0.731 0.718 0.707
Es;p 1.000 1.192 1,423 1,691 1.983 2.295 2,623 2.966 3.322 3.690
53’0 1.000 0.868 0.798 0,757 0.729 0.711 0,697 0.686 0.678 0.671
Hp 3.200 3,122 2,960 2.778 2,601 2,438 2,291 2,159 2,041 1.935
Ty 3,200 3.180 3.179 3.192 3,208 3.225 3.241 3.255 3.268 3.280
subscript p: prolats ellipsoid

o: oblate ellipsoid
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Table 3. Crystallographic dimensions of some globular proteins

Protein Dimensions (R) Reference
Carboxypeptidase 50 x 42 x 38 Lipscomb (1971)

. Myoglobin 43 x 35 x 23 Kendrew gt al (1958)
Cytochrome c 25 x 25 x 35 Dickerson & Geiss (1969)
Lysosyme 45 x 30 x 30 Blake st al (1965)
Ribonuclease 38 x 28 x 22 Kartha et _al (1967)

Pre = albumin 70 x 55 x 50 Blake gt al (1978)
Hemoglobin 64 x 55 x 50 Perutz et al (1960)
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Figure 1. A macromolecule in solution is generally

swollen due to solvent association

Rod
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b Prolate ellipsoid
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Figure 2. Mathematical models for macromolecules in solution
Oblate ellipsoid
_ b of revolution
Disc
(b>a)
b

stress 0 — velocity V —
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'”ll" 1

stationary

length of arrows are proportional to
the fluid velocity at that value of y

Figure 3. Shearing of a Newtonian

fluid between parallel

plates (from Van Holde,
1971)
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Axial Ratio

Figurs 4. Plot of the viscosity increment as a function of axial ratio

for ellipsoids of revolution
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Fig' ure S, Plot of the translational frictional ratio (the "Perrin

function") as: a function of axial ratio for sllipsoids

of revolution
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Fiqure 6., Plot of the rotational diffusion coefficient ratios and

rotational relaxation time ratiocs as a function of axial

ratio for ellipsoids of revolution




Figure 7. Dielectric dispersion curves for prolate ellipsoids of

revolution. Constant dipole angle ( 6= 450) and varying

axial ratio (a/b from 1 to 50). From Oncley (1940)
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Figure 8. Plot of the harmonic mean rotational relaxation time ratio

as a function of axial ratio for ellipsoids of revolution
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Figure 9, Plot of the fluorescence anisotropy relaxation time ratios as

a function of axial ratio for ellipsoids of revolution
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Figure 10. Plot of the 'reduced' radius of qyration as a function of

axial ratio for ellipscids of revolution



Figure 11, (a) Values of axial ratio and hydration as a function of

‘)(US/V) . Contour lines denote values of v(Vg/ V)

. (b) As above, but as a function of (f‘/f’D).(VS/'G)"/S.

Contour lines denote values of (f‘/t"‘D).(VS/TI')1/3

(from Oncley, 1941)
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Figure 12, Asymmetry and hydration (i,e, solvent association) of

certain protein molecules. (from Oncley, 1941)
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CHAPTER 2

The Viscosity Increment for a Dilute, Newtonian

Suspension of Tri—axial Ellipsoids
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2+1. Hydrodynamic Forces and Brownian Motion

Although the forces and torques exerted upon a suspended particle
by a fluid ars all ultimately of molecular origin, it is convenient to
distinguish those that can be explained by continuum hydrodynamics from
thoss, due to molecular fluctuations, that give rise to Brownian motian.
If we first completely neglect the Brownian motion, it is clear that,
once a steady state has been attained, suspended particles free of any
external imposed impressed forces or torques must move in such a way that
the net hydrodynamic force and torque, TH acting upon them are zero,
i.s. TH = 0. |

Let us consider a steady simple shearing flow (section 1.3.), as in,
for sxample, a simple capillary or Ubbelohde viscometer experiment
(Yang, 1961). The motion of the fluid in the neighbourhood of any point
can be decomposed into three components; a translational velocity which
varies from point to point, an angular velocity which for this type of
flow is the same for all points, and a pure straining motion which again
is the same for all points. If now a single, neutrally bouyant, rigid
ellipsoidal particle is introduced the flow will be disturbed, although
at large distances from the ellipsoid the disturbance will tend to zero.
We shall assume that the motion of the ellipsoid and of the fluid is such
that the Reynold's number (Batchelor, 1967) is very small. Then it is
possible on the basis of work by Oberbeck (1876) and Jeffrey (1922) to
say what the hydrodynamic forces and torques acting upon the particle ars.
In particular it is known that the force will be zero when the translational
velocity of the particls is the same as the translational velocity of the
point in the undisturbed flow at which the point is suspended. The

situation for angular velocity is more complicatsd since two factors come
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into play; one gives a torque if the angular velocity of the particle

differs from the angular velocity defined by the undisturbed flow (or,

equivalently, by the actual flow at infinity), whilst the other gives

a torque if the principal axes of the sllipsoid have a different

orientation from the principal axss of the straining motion defined by

the undisturbed flow. Taken together, these mean that the angular

motion of the particle under zero hydrodynamic torque conditions is very

complicated (Chwang, 1975) and a complete solution for it is not known.
Turning to the Brownian motion which is in the nature of

fluctuations the simplest question ws can ask is what is the average

velocity and the average angular velocity of the partic;e? By the

average we mean in the first instance the time averags, although in practice

this will be assumed equal to the volume average taken over an ensemble over

a very large number of particles suspended in unit volume (see Batchelor,

1970 éor a detailed discussion of various methods of averaging). Ignoringv

for the moment the hydrodynamic forces, we can answer the question by

saying that on average the particle is at rest in ths local frame of

refarence defined by the undisturbed flow. In other words it is on averags

moving with the translational velocity of the point in the undisturbed flow

at which it is suspended and with the angular velocity defined by thse

undisturbed flow (Kuhn & Kuhn, 1945, Brinkman et al, 1949, Scheraga, 1955).,
When we come to consider the combined effect of the hydrodynamic forces

and the Brownian motion no problem arises with the translational motion

since both effects tend in the same direction - motion with the

translational velocity of the flow. But for the anéular motion the

situation is less simple, the two effects do not have the samé tendancy

and we must consider a range of possibilities depending on the relative

strengths of the two. This range is represented by the Peclet number
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o= Q/& (Brenner, 1972a) where G is the shear rate and 6 the mean
rotational diffusion coefficient. We shall only be considering the case
of overwhelming Brownian motion (a+0) in which the hydrodynamic effects
are completely negligible compared with the Brownian motion effects. Thus
we shall taks it that on average the particles are rotating with the local
angular velocity of the ambient flow; and we may additionally assume that
the orientation of the particles will be random. Tais last fact would not
be so if hydrodynamic forces and torques wers not negligible for they

introduce systematic metions and hence preferred orientations.

2,2, The Simha Model of Overwhelming Brownian Motion

We consider a homogensous dilute suspension of identical rigid

ellipsoids randomly oriented in an incompressible Newtonian fluid in
which they ars neutrally buoyant. The ambient flow is taken to be a
slow simpls shearing flow, whilst the suspended particles are taken to
be moving with the velocity and the angular velocity of the ambient flow
appropriate to the point at which each is suspended. Near sach particle
this ambient flow is digturbed but is still taken to be a slow (low
Reynold's number) flow so that we may apply the classical results of
Jeffrey (1922).

This model, which is taken to be appropriats for the case of over=-
whelming Brownian motion derives from Simha (1940) although in his original
work doubt is left about whether or not the particles are rotating with the
local angular velocity of the fluid. An attempt to clear this difficulty
is made below (section 2.6.). The key simplifying feature of the modsl
introduced by Simha is that it slimipates the compliqatad stgtistical

problem presented by the Brownian motion by substituting an assembly of
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particles all moving with the average motion. This, together with the
assumptions of diluteness and random orientation, allows us to compute
the effect of the suspended particles by simply summing their individual
effects. The isotropy of the particle distribution in the modsl means
that non-Newtonian behaviour will not appear, and also allows us to use
the energy dissipation method of computing the viscosity (Batchelor, 1970,
Brenner, 1972b, p93).

The simplifications of the model are achisved, however, at a prics.
Non-Newtonian and concentration depsndent sffects, which to the theorstical
rheologist are of the greatest interest, have been deliberately discarded;
and the model can say nothing about lesser degrees of Brownian motion.

In effect we shall be calculating the first term of a seriss; nevertheless
this is of great value to the molecular biologist who can deliberately
arrange the conditions of a viscosity experiment so that the model is
applicable:

(i) Giesekus (1962) has shown that non-Newtonian normal stress effects are
of 2nd order, and can thus be neglected for very low shear rates as in, for
example, a capillary viscometer (Yang, 1961);

(ii) Viscosity coefficients are normally extrapolated to 'infinite dilution'!
i.e. zero concentration-dependent sffects, to give the 'intrinsic viscosity'

(van Holde, 1971), relatsd to the viscosity increment by equation (8).

2.3. The Viscosity Increment

We let n be the viscosity measured in an experiment on a diluts
suspension of particles in a fluid of viscosity no' If ¢ is the volume
concentration - the total volume of the particles in unit volume of the

suspension - then the viscosity increment v is dsfined, from
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equation (7), by

:1'3

=1+ vé
(65)

whers, when V is independent of ¢, the linear despendsnce of q/ n0

upon ¢ gives the empirical charactseristic of a di;ute suspension.

From the theoretical point of view however, a dilute suspension is

one in which thers are no hydrodynamic interactions bstwsen the
particles and thus one in which each particle independently contributes
to the viscosity the same amount it would were it alone pressnt. This
contribution for a general ellipsoidal particle was first calculated by
Jeffrey (1922) using the simple energy dissipation analysis for averaging
over the particle ensemble (Batchelor, 1970) and it is a straightforward
matter to extend his results to cover the case of ellipsocids rotating
with the local angular velocity of the ambient flow as required by our -

model.

2.4, The Flow Velocity and Pressure

In order to calculate the additional dissipation of energy caused

by introducing thes particles into a given flow, we compars that given flow
with the consequent disturbed flow within a suitables sphere, S, of radius
R, centred on the particle position. UWe impose two requirsments upon S:

first, that it is small compared with the scale of spatial variations in

the given flow, and thus within it that flow is effectively given as

a linear variation of velocity with positionj secondly, that it is large

compared with the size of the particle, and thus that the disturbed flow

will not appreciably differ from the given flow by the time the surface
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of S is reached. Naturally, theses requirements can only be met when
the particls is, as we have assumed, very much smaller than the scale
of spatial variations in the velocity field of the given flow.

For our purposes then, the disturbed flow may be taken to be the
flow of an incompressible fluid in the region between the rotating
sllipsoidal surface of the particle and the concentric spherical surface
S. On the inner surface we impose the usual no-slip boundary condition,
whilst on S we require the velocity fisld to be esqual to its value in
the original flow. We give the velocity components of the two flows with
respect to rectangular Cartesian axes fixed in the rotating particle so

that its ellipsoidal surface will always be given by

m’\{ ><N
+
e
+
(e] 4 NN
1
—

(66)

The undisturbed flow is given, within S, by

u; = gij xj

whers gij are the components of the velocity gradient tensor which are
by our assumptions, independent of position within S. In this equation
and in subsequent equations, the indices range over the values 1,2,3 and
the summation convention is used whereby when an index is repsated within
a term a summation is indicated over the three values of that indsx.

Using ellipsoidal harmonics, Jeffrey was able to give the flow
velocity and pressure in the region of S for R large, but finite. He gives
the result undsr the assumption that the angular velocity is such that no

net hydrodynamic torque acts on it, i.s. hydrodynamic effects alone affect

the motion of the particle. In order to consider the Brownian motion we

follow Simha in dropping this restriction whence the flow near S5 is found,
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to leading order, to be

2
= 0 - 4ex. [J__L]+ﬂ [_I__z_]
1 1 9X. 3 5

i R

~

(67)

In this equation, ¢ = Aijxixj’ whilst the Aij themselves are coefficients
independent of position but dependsnt on the gij and the components,mi
of the angular velocity of the particle; their explicit values are given
by Jeffrey (see Table 4 for the relationship betwesen his notation and ours).
We consider the values of the Aij below.

On the assumption that terms of sscond order in the velocity may be
neglected and that the particle spins are of the same order as the fluid

velocitiss, the dynamical squation for the fluid reduces to

nv2u = vp

(68)
from which the pressure, p, can be found. For the disturbed flow we find

the pressure on S to bse

_S50n¢

P=D
RS> (69)

(o]

where Po is a constant.

2.,5. The Dissipation of Energy

Assuming a steady state, we can compare the rates of dissipation
of energy within S in the two flows by comparing the corrssponding rates
for working of the viscous stresses on the surface S. This rate of

working, dW/dt, is given by

- o
It J uy 95 T3 ds (70)
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whers

du ou.

0., =-p 3. +n |—=Ls+—1

1] 1] 9X. 3X.
1 J (71)

fi
nj =X
(72)
are the components of the unit normal to S.
For the disturbed flow we find
aw_ 8 3, 32
t -3 "™23;35R T A e
(73)

where the a5 = é(gij + g%i) are the components of the local distortion
in the undisturbed flow. On the other hand, the wsll-known formula of

Stokes gives, for the undisturbed flow

&

= % m™a..a,.R
1] ¥
(74)
We thus obtain an expression for A , the extra dissipation of energy when

the particle is present, namely

32
A = — .
3 TrnAiJgij 5)

If we split gij into its symmetric and skew-symmetric parts, we have

(76)
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whers gij = %(gij - gji)’ Jeffrey, as a consequence of the dynamical
assumption mentioned above, was working with symmetrical Aij’ and so
naturally obtained only the first term in our expression for A; and

it appears that Simha, although he removed the restriction on A,
failed to find the second term. Ths consequsnce of this for his

calculation will now be discussed.

2.6. The Particle Rotation

Simha takes the average angular velocity to be zero and on this
basis calculatss his well known formula for v (equation 9), a formula
which has been shown to give good agresment with observations (Mehl, Oncley
& Simha, 1940, Tanford, 1961). A few ysars later, Saito (1951) using the
assumption that the particles should rotate on average with the local
undisturbed rotation of the fluid obtained precisely the same result; he
suggested that Simha "has committed some errors in calculation" but does

not investigate the matter further. Using Jeffrey's notation (Table 4)

we have:
Aijaij = (Ag + Bb + Cc) + (F + F)f + (G + G)g + (H + H')h
| (77)
Aijgij= (F' - F)¢ + (G' - G)n + (H' -~ H)Z
(78)

whilst the valuess of, for examples, F and F' are

2 9

' 2 2
20} (b%8_ + c?v)

(79)



78,

(80)

In Jeffrey's paper the ab' etc. in the numerators of the above sxpressions
ars misprinted as oy etc.

We can thus deduce that

zaﬂ
— £2+ (0% + 2)E2 + (b2 - c2)(E -w)f
(F+ F)f = =2
2(b%8 ) + c2v,)
(81)
. (b2 - c2)fE + (b2 + ) (€ - w,)E
(F-F)gs= -
2(b%8 + c2y)
(82)

where we have utilised the various relations between agr Bg etc. that
are given by Jeffrey.

Now Simha apparently did not find the Aij Eij term and thus would
not have had terms like (F' - F ) in his calculation. Ue can ses,

however, that taking w, = 0 as he apparently did, in the (F + F’)ﬁ_term

1
gives the same fipal result as taking Wy = £ in the sum of the (F + F’)ﬁ
and the (F’- F )y terms. Since the same argument applies to the other
terms we conclude that Simha's formula (equation 9) although incorresct for
wy = 0 on account of the omission of the term Aij Eij’ is, by a lucky
coincidencs, actually correct if wy = €y Wy =Ny g =L

It is worth noting that if one does taks w, = 0 and includes the

1

Aij gij term, one obtains for spherical particles v = 4, in contrast to

Einsteins (1906, 1911) valus of 2.5. The resultv = 4 fcrtni = 0 agress
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with that previously found by Brenner (1970). 1In all that follows we

take the assumption that w, = £ stc. i.e. that the particles are on

1

average rotating with the local angular velocity of the fluid.

2.7. The Calculation of v

To complete our calculation we take, as befors, the given flow to be
locally a simple shearing flow with shear rate G. The principal axes of
any particular particle will not in gensral coincide with the shear axes
but, using the Euler angles to describe relative orisentation of the
two sets of axes, we can calculate the components gij relative to the
particle axes in terms of G and the Euler angles 6, ¢ and V. Hence we
can obtain A for that particle as a function of these variablesj ths
details can be found at least for a special case in Jeffrey's paper (1922).
Since Jeffrey's calculations show that the Aij are linear in the gij's,
it follows that A will involve G2 as a factor and hence that the total
dissipation will be of ths form nG2 as originally asserted.

To find the total dissipation in unit volume we average the effects

of the N particles on the assumption that they are randomly oriented,

obtaining
2m 2T T
=X L A(B in6d
= > P (6,6,¥) sin6de d¢ ¢ dy
Q 00

(83)

The integrations yield

Z=% mn NG Z

(84)



80.

where

"
. o1 o+ Bo + Yo
30 B" Yll . Yl all a" 1"
o o o o o
+ X Bo ¥ Yo + Yo * 0‘o + 0to * Bo
40 0.' 23 2 o2 2 o2 2
Y B o _
o(b o te o) o(C Yo ta o) Yo(a 0‘o + b Bo)
(85)
Thus v is determined from
nwa? = n\)N% Tabdd? = %— mnNG2 Z
(86)
as
v = SZ_
abc
(87)
Hence on substituting for Z we obtain
4 " 8" "
o
- 1 { ( 0 * 0 * Yo) + 1 [ Bo * Yo .
abc " " " on " on 5 ' 2 2
15(80Y0-+Y0a0 * aoBo) Lao(b Bo te Yo)
Yo t % . 8o * Bo } }
1ra2 2 ) 2
Bo(c2y, *+ a%a)) vl (a%a  + b28 ) (8)

wherse a,b,c are the semi-axes, and the elliptic integrals e stc. now

depend on a,b and c (Appendix I).
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The formula reduces to the Simha-Saito formula (equation 9) when
b=c, and gives Einstein's value of 2.5 when a=b=c. It may be of
interest to note that had we followed Simha in taking w; = 0 then Z

would have contained the following term in addition to those given above,

1 b2 + ¢2 c2 + a2 a2 + b2

24 ¥ *
2g 4 c2 2y 4+ a2 2 2
b<8 Yo Y, a‘o a @ + b Bo

o}

(¢}

(89)
It is the presence of this added term that gives the value of v = 4
for spherss rather than the Einstein value v = 2.5 which is obtained
when it is absent. The value of 2.5 has besn confirmed sxperimentally

for polystyrene latex spheres by Cheng & Schachman (1955).

2.8, Discussion
An equation similar to (88) was given by Batchelor (1970) on the
assumption that the suspended particles, although randomly oriented,

moved so that zero hydrodynamic torque acted upon them. His result was

1" 17 13}
1 4(mo * Bo * Yo)

2 1
v = + —_————————
abc "o 1" n " n 5 [ Y 2 2
15(80\(0 yge, t aOBo) a (b% + c)

1 . 1
B (c2 + a?) y'(a? + b2
o (o} ) (90)

when written in the same notation as we have used before. It does naot
seem likely that (90) would be applicable to the case of overwhelming
Brownian motion since one would need to include the Brownian torquse

TB as well as the purely hydrodynamic torque, TH in satisfying the
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condition of zero net torqus, i.s.

(91)
Random orientation alone is not a sufficient characterisation of
overwhelming Brownian motion since one also needs to describe correctly
the distribution of the angular velocity. Both (88) and (90) ars

obtained by methods that avoid the full statistical treatment of the
angular motion but as explained earlier we consider the simplifisd model
underlying (88) to be the appropriate one for overwhelming Brownian motion.
In effect, formula (88) generalises the Simha-Saito equation for
ellipsoids of revolution, whilst (90) gensralises formulis of Jeffrey for
ellipsoids of revolution. In general the two formulae give quite different
results as can be ssen from Figure 25 and Table 5, both of which are for
convenience restricted to the case of ellipsoids of revolution. Since (90)
does not reduce to the classical Simha-Saito formula the classic
experimental svidence on macromolecules which favours the latter (Mehl, et
al, 1940, Lauffer, 1942) strengthens the view that (90) is incorrect. More
recent experimental svidence is given by Tanford (1961) who allows for
particle swelling due to solvation and Table 6 extends his tables to
include a comparison with the Jeffrey-Batchelor equation. The tabls
compares the axial ratio inferred from translational diffusion experiments
with that inferred from viscometric experiments on the basis first of the
Simha-Saito equation and secondly of the Jeffrsy-Batchelor equation.
Tanford (1961) says "within the accuracy of the measurements, the
description of globular proteins in aqueous solution provided by the

(Simha-Saito) equation is identical with that provided by (translational)
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diffusion", On the other hané we see that the Jeffrey-Batchelor equation
gives values of the axial ratic that are consistently too high and
outside the expected experimental error bounds. We conclude that (90)

is not applicable to the cases of interest to the molecular biologist.

As previously stated, we have avoided the full statistical treatment
of the angular motion but have made the assumption of particles being on
average at rest in the local referential frame in which they are
suspended to be appropriate for the case of overwhelming Brownian motion.
Although this has been rigorously praoved only for axisymmetric particles
(Brenner, 1972), we have made the assumption that it will be a good
approximation for general tri-axial ellipsoids, at least for low axial
ratios.

Since the derivation of equation (88) a general analysis using the
full statistical treatment of the angular motion has been given by
Rallison (1978). His results for the case of overwhelming Brownian motion
show that to first—order in the shear rate the non-Newtonian stress effects
vanish, which is consistent with our assumption of Newtonian behaviour for
very low shear rates. He also gives an expression for v correct to first-
order in the shear rate, although not in the form of a simple formula like
equation (88), but by using numerical methods Rallison is able to give a
plot of v for various axial ratios; the results are clearly very close to
those obtained from equation (88) = compare my Figure 26 with Rallison's
Figure 7. However, an exact comparison (personal communication by
J.M. Rallison) shows a very slight discrepancy between values from
equation (88) and Rallison's procedure, although no difference at lsvels
likely to be experimentally significant for globular particles (i.e.

a/b: 1.0 - 3.0, b/c: 1.0 - 3.,0) is observed, and the discrepancy is not
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apparent within four significant figures for a/bs 1.0 — 2.0, b/c:
1.0 =+ 2,0, The values given in Table 7 are therefore definitivse.

It has been indicated to us (J.M. Rallison, H. Brenner, private
communications of unpublished work) that our formula requires the
addition of a very small term related to the deviation from our assﬁmed
condition of non-axisymmetric particles rotating on average with the

local angular velocity of the fluid:

2
[ 3.2 _ bz . b - C2_ . C2 - a2 ]
7 Vi HZ Z YA <
! aZa ~+ b78  bZB+ cZy iy + a‘al _
Sabc a2 + b2 b2 + ¢2 c2 + a2 (88b)
aZq + b28 Y cly * c2y + a‘a -
0 o 0 o ° 0

The numerical results show our approximation to be extremely accurats
for 'globular' particles, as noted above, but for certain particles of
higher asymmetry calculations suggest that deviations of up to 1% in v
can arise, It is clear though that our formula provides a good
approximation over the entire molecular range. Of particular interest
is the fact that the discrepancy tends asymptotically to zero for
ellipsoids whose axes are all substantially different in length (i.e.

a>»b>c - "tapes").



Table 4.

The relation between the notation used in this study

and that used by Jeffrey (1922)

(Aij) = A H G'
H' B F
G F! C s
a..) = a h
( lJ) n n '%
h b f
o a ~
g f c )
~ n A
(glj) = 0 -c n
4 0 -C

-n € 0

85.



Table 5

v for an ellipsoid of revolution calculated from the Simha = Saito

equation and the Batchelor - Jeffrey equation

Axial Ratio

1.0
2.0

3.0

5.0
6.0
7.0
8.0
9.0

10.0

Prolate Model

2,500
2,908
J3.685
4,663
5,806
7.099
8,533
10.103
11,804

13.634

2,500
2,583
2,786
3,077
3,434
3.844
4,302
4,804
5,346

5.928

Oblate Model

2,500
2.854
3,431
4,089
4,708
5,367
6,032
6.700
7.371

8,043

2.500
2.610
2,868
3,198
3563
3.947
4,342
4,744
5.151

5.562
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Table 6

87.

Extension of Tanford's Tables ("Physical Chemistry of Macromolecules",

1961, Wiley & Sons, p 359 and 395) to compare the axial ratios

predicted by the Simha=Saito equation and the Batchelor=Jeffrey

equation, using a 0.2 grams/gram solvation for four globular proteins.

Prolate

P s ]

Diffusion S=5

a a

v A
Ribonuclease 3.6 2.1 2.9
B=lactoglobulin 3.6 3.7 2.9
Serum albumin 4,0 4,9 Je3

Hemoglobin 3.8 2,1 3.1

B-J

5.5
5.5
6.5

6.0

Oblate

Diffusion S=S

a/b

2.2
4,0
5.0

2,2

a/b

J.4
3.4
4.0

3.6

B=J

5.3

5.3

6.3

5.8
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Fiqure 25, A comparison of the values of v as a function of axial ratio

predicted by the Simha - Saito and Batchelor - Jeffrey equations

for ellipsoids of revolution
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Figure 26. Plot of v as a function of a/b when b/c = 10.0 (a>b>c) determined

from equation (88). This plot agrees very closely with that from

the numerical procedure of Rallison (Figure 7, 1978)

N.B., Rallison has c>a>b



CHAPTER 3

Numerical Inversion Procedures:

The Problem of the Line Solution
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3.1 Solution of the Elliptic Integrals

In order to determine the viscosity increment v that corresponds
to a particular value of the axial ratios a/b, b/c, the slliptic
integrals o etc. (Appendix I) must be solved. Analytic solutions
are not possible but the integrals can be solved numerically with the
aid of a high speed computer. The subroutine used for this was the
United Kingdom NAG Mk. 6 routine DO1AGF which evaluates a definite

integral of the form

B
I-= f f(t)dt

A
where A=0, using an interval subdivision strategy developed by 0Oliver
(1972) and based on Clenshaw-Curtis quadrature (1960). Since infinity
cannot be used as the upper limit, a finite value of B must be spsecified.
However, a satisfactory value for B can be determined by using
successively higher values until the value of the integral converges to
a limiting valuej in this case a value for B of 106 was sufficient. Higher
values are also suitable although evaluation of the intsgral takes longer.
The number of interval subdivisions is also specifiable by the user; the
maximum number of S0 was used. The routine also estimates the error on
the integrals (0'Hara & Smith, 1958). If this error is greater than the
maximum allowable error specifiable by the user the routine will stop and
print an error message. The maximum allowed absclute error specified was
1.0 x 1078 (=.001%). The subroutine for evaluating the elliptic
integrals can easily be incorporated into a program for evaluating v for

a given value of (a/b, b/c). This is given in Appendix V as Program 1.
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302, Application to the Crystallographic Dimensions of Myoglobinj;

Numerical Inversion

The result can be applied to crystallographic data available for
myoglobin. Kendrew gt al (1958) gave the dimensions of sperm whals
myoglobin to be 43 x 35 x 23 R (Table 3)., This corresponds to a general
tri-axial ellipsoid of semi-axes a = 21,5, b = 1¥.5 and ¢ = 11,5 g, and
axial ratios a/b = 1.23, b/c = 1.52, Using Program 1 (Appendix V) this
corresponds to a viscosity increment of 2,729. The predicted intrinsic

viscosity can then be found from equation (8):

[n] = vv_ =

(92)
where (VS/V) is the swelling ratio (section 1.7.1)., By fitting data
of reduced specific viscosity against concentration (Table 8, Figure 27)
I have determined the intrinsic viscosity of myoglobin to be (3.25 x .05)
ml/gm, using a weighted least squares analysis (straight line fit).
The concentrations were determined using a high precision auto density
meter (Kratky st al, 1969, 1973) together with a v for myoglobin of .741

ml/gm (Theorell, 1934):

c. = -————pi _ po
1. (93)
[0}

where ° is the solvent density and pi the solute densities., Use of the
auto density meter, which is based on the time taken to perform a

preset number of oscillations of a U~tube filled with the sample has

the added advantage that, besides being very accurate, only small amounts
of fluid ars required ( ~1 ml), The experimental arrangement used for

the viscosity and densimetric work is illustrated in Figure 28, The
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platinum resistance thermometer shown was used to monitor the sample
temperatures to accuracies of ,005 degress and was calibrated by myself.
In order that the crystallographic dimensions gives this same value for
[n], from equation (92), a swelling ratio (US/T}) of 1.6 is required;
alternatively myoglobin is more asymmetric in solution.

In order to determine the actual dimensions of the equivalent tri-
axial ellipsoid for myoglobin in solution (or any other macromolecule)
from the experimental value for [n], the situation is more complicated
howesver. Although equation (88) defines a unigue value of v for a given
value of (a/b, b/c), an analytic inversion of (88) to produce an explicit
expression for (a/b, b/c) in terms of Vv is not available. The inversion
must therefore be done numerically by tabulating, or better plotting v as
a function of (a/b, b/c). The same subroutine mentioned in section 3.1.
for. evaluating the elliptic integrals may be incorporated., A
perusal of Table 7 (produced from Program 2) reveals however that a given
value of V does not correspond to a unique value of (a/b, b/c) but to a
'line solution' of possible values of (a/b, b/c). This is clearly
illustrated in the contour plot (Figure 29) produced from Program 3 using
GHOST graphical facilities where V is incremented from 2,5 to 7.0 in steps
of 0,5. In order to determine a unique solution for (a/b, b/c) and hence
the axial dimensions of a macromolecule in solution other hydrodynamic
information must be usedj; we must therefore consider the translational and

rotational frictional properties (section 1.2).
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3.3, Other Tri-axial Line Solutions

3.3.1« The Translational Fricfional Ratio; the B and R Functions

It was previously stated in section 1.4. that although Perrin (1936)
had provided an explicit formula for the translational frictional ratio
of a general tri-axial ellipsoid in terms of the axial ratios (a/b, b/c),
the elliptic integral in equation (12) could only be solved analytically
for the special case of ellipsoids of revolution (i.s. two equal axes).
However, since the elliptical integral‘is similar to those for the tri-
axial viscosity increment, it too can now be solved numerically using for
sxample the subroutine discussed in section 3.1. A higher value for the
upper limit, B was required: 5 x 107. A tabls of values of the Perrin
function ﬁ/fo (=P) for values of a/b and b/c was thus obtained (Table 9).
Again, a perusal of the table resveals that a given value of P has a line
solution of possible values of (a/b, b/b). However, in principle at
least, by combining the line solution for P of a given macromoleculs with
the line solution for v, a unique solution for (a/b, b/c) can in principle
be found from their intersection. This can be illustrated by assuming a
particle of (a/b, b/c) = (1.5, 1.5), calculating the corresponding values
for v and P using Program 1, and then plotting the line solutions using
Program 4. Unfortunately Figure 30 reveals that the intersection for
accuracies in y and P to four significant figures is very shallow, and
allowing for + 1% experimental error in each thers is no intersection at
all in ths 'globular protsin' range of the Figure. There is also the
additional problem that in order to determine experimentally both Vv and

P, knowledge is required of the swollen volume in solution.
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However,.now that v and P are available for tri-axial ellipsoids,
then so should the g and R functions which do not require a knowiedge
of the swollen volume (equations 45 & 64). I have thus produced tables
of these also (Tables 10 & 11); all four tri-axial functions so far
mentioned viz v, P, 8 and R are plotted in Figure 31 allowing for * 1%
experimental error in sach. There is still no reasonable intersectionj;
the B function is, as expscted, seen to be of little practical use as it
is very sensitive to experimental error (the 8- 1% line is completely
off the map area). Of the 4 functions howsver, the R function is the
most useful since it is relatively insensitive to .experimental error and
the experimental determination does not require a knowlsdge of the
swollen volume (section 1.7.1.). In order to find a unique solution for
(a/b, b/b) therefore, this should ideally be combined with a rotational
frictional or relaxation tri-axial shape function which should satisfy
the following criteria:
(i) provides a suitable intersection with R
(ii) is relatively insensitive to experimental error but sensitive to
axial ratio
(iii) is experimentally measurable to a high precision with currently
available apparatus and data analytic techniqqes and
(iv) does not require a knowledge of the swollen volume for its sxperimental

determination.

3.3.2. The Rotational Frictional, Diffusion and Relaxation Line Solutions

For a tri-axial ellipsoid there will be three rotational frictional
ratios Qr/co (i=a,b,c) corresponding to rotation about sach of the three
axses and hence three rotational diffusion ratios ef/eo’ By analogy with

the translationél case in the previous section, although Perrin (1934) had
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given explicit Pormula for the ci/to in terme of (a/b, b/c), - eqn: (25),
the elliptic integrals could only be solved apalytically for the
case of ellipsoids of revolution. The integrals can now be sclved
numerically, again utilising the routine described in section 3.1 (Programs
142 & 4). Thers is however no experimental technique for determining the
rotational frictional or diffusion coefficients directly; rotational
axperiments determine rather relaxation time ratios. For example, the
dielectric dispersion relaxation time ratios ars related to the rotational
frictional and diffusion ratios by equations (27). A plot of the
rotational relaxation time ratio iina solutions corresponding to (a/b, b/c)
= (1.5, 1.5) is given together with the R function in Figurs 32.
Unfortunataiy, because of the difficulties raised in 1.5.1. resoclution of
the dielectric dispersion curve into the 3 relaxation times for a
homogeneous solution of tri-axial ellipsoid particles is impossible in
practics.

Whereas for ellipsoids of revolution there are three fluorescencs
anisotropy decay times (equation 42), for general tri-axial ellipsocids,
there will be five (Cantor & Tao, 1971, Small & Isenberg, 1977) related

to the threes rotational diffusion cosfficients by:

N S D S - 1
"1 360y °* 273w ey ° TI@E ey

- - 1 (94)
T = 7036 - ) > T5 T 7038 + &)

where §= (e1 + 6, + 63)/3 is the mean rotational diffusion coefficient,
and A is defined by

2 2 2

A= (61 + 62 + 63 - 6162 - 6263 - 6361)

NI
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The fluorescence anisotropy reslaxation time ratios Tj/ Tb can thus be
evaluated (equation 42, where j is now = 1,2,3,4,5); these have been
tabulated by Small & Isenberg (1977) and are plotted in Figure 33, for
(a/by b/c) = (1.5, 1.5). Consideration of these functions however, at
the moment at least, is purely academic; besides the problems cited in
section 1.5.4., the necessary resolution of the decay curve into its

four component exponentials (since T ~T1) is impossible (Small & Isenberg,

5
1977). Furthermore, since neither the fluorescence anisotropy decay time
ratios nor the dielectric dispersion relaxation time ratios for tri-axial
ellipsoids are of apparent use at the moment, the same must be trus of

their corresponding swelling independent functions, the explicit

axpressions in terms of axial ratio being obtainable from:

z, P s
Gi =V ’ My 7 (f } Q;Q
1 (o]
(95, 96)
3
_ (£ Qo - o
‘i (fo) €3 ’ 1Y e
(97, 98)
T 3 T
f
Kj =V (T—o') > ;J = ('f_) ;9"
J ) j (99, 100)

where i=a,b,c and j=1,2,3,4,5. The relations for these functions in terms
of experimental paramseters have already been given in section 1.7.
Evaluation of the harmonic mean rotational relaxation time ratio in

terms of axial ratio for tri-axial ellipsoids we can similarly obtain from
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cT—h= 3
"o [g_o_,,g_oﬁg]
Qa Qb Ec

(101)
(Programs 1, 2 & 4, Figure 34), The corresponding swelling independent
functions ¥ and A determined by combining with the translational frictional

ratio and the viscosity increment respectively we can now also obtain from

T lb
-6 @
(102)
A= E%ﬂ v
(103)

(Programs 1,2 & 4, Figure 34). Unfortunately, these functions are
generally very sensitive to experimental error, as Figure 35 illustrates;
also the problems in determining the harmonic mean relaxation time raised

in 1,5.4. still apply.

3.,3,3 Electric Birefringence Decay: the 6+ and 8§ Functions

In section 1,5.2. we stated that Ridgeway (1966, 1968) has shown that
the decay of electric birefringence for a homogeneous suspension of
asymmetric macromolecules (s.g. tri-axial ellipsoids) would consist of

two exponential termss:

(32)
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where An is the birefringence, N the number density of particles in
suspension and n, the refractive index of the suspending medium. A+
and A_ are complicated functions depending on the initial orientation of
the particles and their dielectric and diffusion properties. We may
rewrite NAf / 2n, as Al, the 'pre-exponential factors'. Equation (32)
then becomss:

1604t

1 -66 t
An = A+ _e -

+ A

(104)

e+ and 9_ ars related to the rotational diffusion constants ei (and hence

the rotational frictional coefficients since ;i = kT/ei) by

1 2 ;
=300 = {(51ey —%fﬁj eiej} (1052)
_ %z EE S S §$
3 iz, ~ i 2~ 2. C.C.
1ey [ T i>j %1% ] (105b)

The dimensions of equation (105) are of{energy/(volume x viscosity) uwe

therefors 'reduce' it to a function of shape alone:
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The elliptic integrals o etc. are those defined by Jeffrey (1922) and

are given in Appendix I.

ered
+

corresponding to the point (a/b, b/c) = (1.5, 1.5) allowing for * 1%

A plot of the and

Gfed functions, together with the R function

experimental error is given in Figure 36. It is seen that the
intersections are very reascnable (the eied - R intersection is nearly
orthogonal) and the functions are relatively sensitive to axial ratio.
Howsver, experimental determination of e;ed requires of course knowlsdge
of the swollen molecular volume in solution (equation 106). This can be
conveniently sliminated however in the standard way by combining (106)
either with the viscosity increment (8) or the translational frictional
ratio (20b). If for example (106) is combined with the viscosity increment

(8), swelling independent &, functions ars produced (Tables 12, 13, Figure

37):

n o
5 =607y = & [ o t][n] M_

(108)

where [n] is expressed in ml/bm. Alternatively, eied can be combined

with the translational frictional ratio (20b) to give swelling independent
v, functions (Programs 1,2,4, Figure 38):

3 —_ 3
v = coTed (f)a _M (1-ve,) 6,
- F = 2 23
+ + fo 27NAkT1r ngs

(109)
The 6, and vy4 functions are new. The §_ functions are preferred over the

Y, functions since they rsquirs fewer experimental measurements and do not

involve squared or cubed tsrms; hence in principles can be measured more
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accurately. It is seen thersfore that combination of the R-function
with the 8+ functions as a method for determining a unique solution for
the axial ;atios (and hence the axial dimensions, if Ve is known from
kn/ks - section 1.7.1) of a macromolecule in solution satisfies the
criteria (i), (ii) and (iv) of section 3.3.1. In order for the method to

satisfy criterion (iii) however, there still remains the problem of

resolving the exponential decay term into its 2 component relaxation times

red
+

or decay constants (the same is true of course for the o and v,
functions). To date this has not been possible. We now show that with
a new 'constrained' least squares algorithm using intersection with ths

R-curve as the constraint, this is now possible with currently available

experimental precision.
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Table 8., Values of reduced specific viscosity for various concentrations

of sperm whale myoglobin (0.1M NaCl buffer, pH = 7.1)

Concentration, c el nsp/c

(mg/m1) (m1/gm)
90.2 1.450 4,99
66.1 1,298 44,51
53,3 1.224 4,20
50.2 16215 4,29
40,7 1.163 4,00
34.4 1.138 4,02
30.5 1.116 3.81
29,6 1.115 3.89
23.2 1.084 J3.61
15.5 1.055 3057
9,7 1.034 3.47
8.1 ' 1.028 3.50
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Figure 27, Plot of reduced specific viscosity versus concentration for

sperm whale myoglobin (0.1M NaCl,buffer. pH = 7.1)

The straight line is that due to a weighted least squares fit

"s
to _éP_ = [n] (1 + knc) where [n] =3.25 ml/gm and kn=5.9 ml/gm

1
concentration (mg/ml)

The weight used was (conc. < 40 mg/ml)

T (conc. .40 mg/ml)
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Figure 28.

Photograph of the apparatus used for determining solution
densities and viscosities. Temperatures were kept constant
to within * 0.01° using a high precision Townson - Mercer
constant temperature tank, with a pump attachment to supply
the water bath in the precision density meter. These
temperatures could be monitored to within * 0.005° using
the platinum resistance thermometer situated directly above

the density meter.
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Figure 29. Contour diagram showing curves of constant V as a function of

the semi-axial ratios a/b, b/c on the basis of equation (88)




Figure 30. Plots of constant vV and P in the (a/b, b/c) plane corresponding

to a/b = 1‘5L b/l: = 1.5
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Figure 31. Plots of constant v, P, 8 and R, allowing for * 1% error in

their measured values, in the a/b, b/c plane corresponding

to a/b = 1,5, b/c = 1.5
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Figure 32. Plots of constant R and the rotational relaxation tims ratios

in the a/b, b/c plane ccrresponding to a/b = 1.5, b/c = 1.5
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