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Abstract

We study a majoritarian bargaining model in which the parties

make payoff demands in decreasing order of voting weight. If the game

is constant-sum and homogeneous, the unique subgame perfect equi-

librium is such that the minimal winning coalition of the players who

move first forms and payoffs are proportional to the voting weights.
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1 Introduction

In a parliamentary democracy, many important decisions including govern-

ment formation are the outcome of bargaining between the parties in Parlia-

ment. The most influential model of legislative bargaining is the closed rule

model of Baron and Ferejohn (1989), which is based on Rubinstein (1982)

and Binmore (1987).1 In this model, a party is randomly recognized to pro-

pose a complete distribution of ministerial payoffs and the remaining parties

can accept or reject the proposal. This model has some properties that may

be perceived as drawbacks: the proposer has a large advantage (he receives

more than half of the total payoff under simple majority), and there is a

multiplicity of subgame perfect equilibria. In order to single out a unique

prediction, the stationary equilibrium is selected. Stationary strategies are

simple but by no means uncontroversial: a stationary strategy requires a

party to always make the same proposal regardless of the history of the

negotiations so far. Moreover, Norman (2002) shows that sharp predictions

using stationarity are only possible in the infinite horizon version of the

model: in the finite horizon version there is a continuum of equilibria, all of

them with history-independent strategies.

An alternative model of legislative bargaining by Morelli (1999) is based

not on complete proposals but on demands.2 Parties make individual de-

1The Baron-Ferejoh model has led to many applications and extensions. Recent papers

based on this model include Banks and Duggan (2000), Diermeier et al. (2003) and Jackson

and Moselle (2003).
2There have been other demand bargaining models in the literature. Binmore (1985)

presents a three-player “market model” where demands are carried over to the next round

and infinite plays are possible. Selten (1992) presents a general but relatively complicated

model, including random draws and costs of both formulating a demand and forming a

coalition. Bennett and van Damme (1991) study a simpler version in which each player

selects the next one to move, and show that there may be a multiplicity of subgame perfect

equilibria. Using a refinement, they select the proportional payoff division for apex games.

Winter (1994), Dasgupta and Chiu (1998), and Vidal-Puga (2004) use various demand

commitment procedures to implement the Shapley value in convex games.
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mands for ministerial payoffs and a coalition emerges between parties making

compatible demands. The Head of State chooses the first mover, and the

latter chooses the order in which the parties formulate demands. Because

the first mover chooses the order of moves, it may be able to play the remain-

ing parties off against each other and obtain the whole payoff, even though

the rules of the game allow the other parties to exclude the first mover (see

Montero and Vidal-Puga (2006)). In this paper we study a modified bar-

gaining procedure in which the parties must move in decreasing order of

voting weight, and show that equilibrium payoffs inside the coalition that

forms are proportional to the weights. The first mover has no dispropor-

tionate advantage and no refinements of subgame perfect equilibrium are

needed to obtain the result.

2 The model

2.1 Weighted majority games

Consider a legislature in which n parties are represented. We denote these as

N = {1, 2, ..., n}. There is a budget of size 1 to be divided by majority rule.
Each party i has ωi votes, and a quota of q is needed for a majority. The

pair [q; (wi)i∈N ] is a weighted majority game. Notice that the game is not

affected if weights and quota are multiplied by the same positive constant.

Given a vector x ∈ RN and a coalition S ⊂ N , we denote as xS the sum
of the coordinates of the members of S, xS :=

P
i∈S
xi.

A coalition S ⊂ N is winning if ωS ≥ q; it is minimal winning if it

is winning and no T Ã S is winning. We denote as Ω (ω) the set of all

winning coalitions, and as Ωm (ω) the set of all minimal winning coalitions.

A dummy player is a player who does not belong to any minimal winning

coalition.

A weighted majority game is constant-sum if S ∈ Ω (ω) ⇐⇒ N\S /∈
Ω (ω) for all S. It admits an equivalent homogeneous representation if there
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exists a vector of votes
¡
ωh1 , ...,ω

h
n

¢
and a quota qh such that Ωm (ω) =

Ωm
¡
ωh
¢
=
©
S ⊂ N : ωhS = q

h
ª
. A weighted majority game that admits an

equivalent homogeneous representation is called a homogeneous game.

Homogeneous representations do not always exist and when they exist

they may not be unique. For example, [5; 3, 2, 2, 1] and [7; 4, 3, 3, 1] are two

homogeneous representations of the same game. Peleg (1968) shows that

constant-sum homogeneous games have a unique homogeneous representa-

tion (up to multiplication by a positive constant and to the weight that is

assigned to dummies, which may be 0 or a sufficiently small number).

2.2 The bargaining procedure

Let [q; (wi)i∈N ] be a constant-sum homogeneous weighted majority game.

There is a budget of size 1 to divide. Party i’s utility function is ui = xi,

where xi is i’s share of the budget. Bargaining proceeds as follows. Parties

move in decreasing order of weight. We label the parties in this order, so

that party 1 moves first, followed by party 2, etc.

Each party i makes a demand di, following the order of play, where

di ∈ [0, 1] is the share of the budget party i claims. If, after party i makes
its demand, there exists a winning coalition S ⊂ {j : j ≤ i} such that dS ≤ 1,
party i has the additional choice of forming coalition S, in which case payoffs

are distributed according to the demands made. If there is more than one

possible S, party i decides which one is formed. If party n forms no coalition,

the game ends with each party getting zero.3

Given i ∈ N , we denote as Pi the set of predecessors of i. Namely:

Pi := {j ∈ N : j < i} .

As it will become clear from the analysis, dummy players must get 0 in

equilibrium, so for simplicity we assume there are no dummy players. We will

3Alternatively, we may assume a finite number of bargaining rounds T without affecting

the results.
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use the homogeneous representation with ωn = 1; i.e. the weakest party has

exactly 1 vote. Under these circumstances, every party in a constant-sum

homogeneous game has a positive integer number of votes. Furthermore:

Lemma 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Then,

ωN = 2q − 1.

Proof. Because n is not a dummy player, there exists S ∈ Ωm (ω) such that
n ∈ S. Homogeneity implies ωS = q. Because S ∈ Ωm(ω), S\{n} must be
losing. Since the game is constant-sum, (N\S)∪ {n} ∈ Ω (ω). Moreover, by
deleting the weakest party (i.e. party n) we obtain a losing coalition N\S.
Thus, (N\S)∪ {n} ∈ Ωm (ω). So, ω(N\S)∪{n} = q and ωN\S = q− 1. Hence

ωN = ωS + ωN\S = q + q − 1 = 2q − 1.

Corollary 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Then,

S is maximal losing (i.e. N\S ∈ Ωm (ω)) iff ωS = q − 1.

Proof. Since (N, v) is constant-sum and homogeneous, S is maximal losing

iff N\S ∈ Ωm (ω), which means ωN\S = q and thus, under Lemma 1,

ωS = ωN − ωN\S = 2q − 1− q = q − 1.

Lemma 2 Let [q; (wi)i∈N ] be a weighted majority game. Then, there is a

party i such that Pi+1 ∈ Ωm (ω).

Proof. Suppose this was not the case. Consider the smallest index i such

that S = {1, ..., i} is a winning coalition. There is a minimal winning coali-
tion S0 ⊂ S, and S0 is obtained from S by deleting at least one party j < i.

However, this is impossible because by assumption {1, ..., i− 1} is a losing
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coalition, and, since wj ≥ wi for all j < i, this coalition has at least as many
votes as S0.

Lemma 2 does not hold for arbitrary orders of the parties. For example,

if we take the game [3; 2, 1, 1, 1] and order the parties in such a way that

the party with 2 votes is in the third place, no set of parties {1, ..., i} is a
minimal winning coalition. If the parties play the game in this order, the

party that moves first cannot get a positive payoff for any demand, and this

leads to a continuum of subgame perfect equilibria.

Theorem 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Suppose

parties play a demand commitment game in decreasing order of weight. Then

in any subgame perfect equilibrium the minimal winning coalition of Lemma

2 forms with each party i demanding ωi
q .

Proof. See Appendix .

The equilibrium strategies are roughly as follows (for a formal descrip-

tion see Appendix). Given the demands of the parties that have moved so

far, party i determines two things: the optimal coalition to be (eventually)

formed and the optimal demand to make.

In general, the optimal coalition S will control exactly q votes. This

coalition will generally include some parties that have moved before i, as

well as some parties moving after i. Since T = S ∩ Pi is a group of parties
that have already formulated a demand, 1 − dT is the benefit from buying

the votes of the parties in T ; this benefit will be shared by the parties in

S\T . Buying less votes leads to a higher benefit, but more votes from parties
moving after i will be needed to complete a winning coalition. The coalition

S is chosen such that the average benefit per vote, 1−dTq−ωT , is maximized.

The optimal demand for party i will normally be di = ωi
1−dT
q−ωT , that is,

party i will claim a share of the benefit proportional to its number of votes.

Only in some subgames outside the equilibrium path can party i demand

more than a proportional share.

Below we present a worked out example.
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Example 1 Suppose there are five parties, with 3, 2, 2, 1 and 1 votes respec-

tively, and the quota is 5. There is a unique subgame perfect equilibrium of

the demand commitment game, in which coalition {1, 2} forms with d1 = 3
5

and d2 =
2
5 .

Proof. We proceed by backward induction.

At stage 5, party 5 faces a vector of demands (d1, d2, d3, d4). It has three

choices:

a) Form coalition {1, 4, 5} and get 1− d1 − d4.
b) Form coalition {2, 3, 5} and get 1− d2 − d3.
c) Form no coalition and get 0.

Suppose forming some coalition is optimal. Then party 5 will form coali-

tion {1, 4, 5} if 1 − d1 − d4 ≥ 1 − d2 − d3, or d4 ≤ d2 + d3 − d1. Ties are
broken in favor of forming the coalition that includes party 4, to guarantee

that party 4 has a best response in the previous stage. Hence the maximum

demand 4 can make and still get into a coalition with 5 is d4 = d2+ d3−d1.
At stage 4, party 4 faces a vector of demands (d1, d2, d3). It can form

coalition {2, 3, 4} or make a demand that will lead to {1, 4, 5}. It forms
{2, 3, 4} if 1− d2 − d3 ≥ d2 + d3 − d1, or

1− d2 − d3 ≥ 1− d1
2

.

Thus, party 4 is effectively comparing the average benefit associated to

buying the votes of 2 and 3 (in which case 1 vote is enough to complete

a winning coalition) or the votes of 1 (in which case 2 votes are needed to

complete a winning coalition and 4 must share the benefit with 5).

From the inequality above, the maximum demand party 3 can make at

the previous stage and still induce {2, 3, 4} is

d3 =
1− 2d2 + d1

2
.

At stage 3, party 3 faces a vector of demands (d1, d2). It can form

coalition {1, 3} or make a demand that will induce {2, 3, 4}. It makes a
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demand if 1−2d2+d12 ≥ 1− d1 or
1− d2
3
≥ 1− d1

2
.

Again, party 3 may buy the votes of party 1 (in which case 2 votes are

required to complete a winning coalition), or the votes of party 2 (in which

case 3 votes are required to complete a winning coalition). It chooses the

alternative with the highest average benefit.

The maximum demand party 2 can make in the previous stage and still

induce coalition {2, 3, 4} is

d2 =
3d1 − 1
2

.

At stage 2, party 2 compares 1−d1 and 3d1−1
2 . It forms {1, 2} if 3d1−12 ≤

1− d1, or d1 ≤ 3
5 . This inequality can be rewritten as

1−d1
2 ≥ 1

5 (where
1
5 is

the average benefit of buying no votes).

Anticipating this, party 1 sets d1 =
3
5 . Party 2 will then set d2 =

2
5 and

coalition {1, 2} is formed.

3 Concluding remarks and discussion

We have presented a demand bargaining model that makes sharp predic-

tions regarding coalition formation and payoff division. The model can be

extended to any finite horizon, and its predictions are independent of the

discount factors and the risk attitudes of the parties.

The proportional payoff prediction of our model is intuitive in the ab-

sence of policy preferences. Proportional payoffs are also predicted by many

solution concepts like von Neumann-Morgenstern’s (1944) main simple solu-

tion, the set of balanced aspirations (Cross, 1967), the competitive solution

(McKelvey et al., 1978) and the demand bargaining set (Morelli and Mon-

tero, 2003). Those cooperative solution concepts also require the game to

be homogeneous and constant-sum in order for payoffs to be proportional.4

4Proportionality results can also be obtained in the context of the Baron-Ferejohn
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The coalition that forms is the minimal winning coalition with the small-

est number of parties. If parties are asymmetric, the smaller parties are never

part of the government. One may ask whether proportional payoffs can be

achieved for an arbitrary minimal winning coalition by choosing the order

of moves appropriately. The answer is negative: for the game [5; 3, 2, 2, 1, 1],

there is no order of moves for which coalition {1, 4, 5} forms with a propor-
tional payoff division. There are three types of possible orders for which the

parties in this coalition move first: [31122], [13122] and [11322]. It can be

shown that the first mover gets the whole budget in order [31122], whereas

in the other two orders the first mover gets half of the budget.

If the game is not constant-sum and homogeneous, proportionality may

break down. In some cases, this is due to the presence of a party that can

be ”held hostage” by others, as pointed by Morelli (1999).

Example 2 There are four parties, with 3, 2, 2 and 1 votes respectively. The

quota is 5. If the parties play a demand commitment game in decreasing

order the unique subgame perfect equilibrium results in coalition {1, 2} with
d1 =

1
2 and d2 =

1
2 .

Party 4 is helpless because there is only one minimal winning coalition it

can form. Knowing this, party 3 will either form a coalition with 1 and get

1−d1, or set d3 = 1−d2. Party 2 can then form a coalition with 1 (obtaining
1−d1) or set d2 = d1 and induce coalition {2, 3, 4}. Anticipating this, party 1
sets d1 =

1
2 . The game [5; 3, 2, 2, 1] has many homogeneous representations,

but in none of them do parties 1 and 2 have the same number of votes.

Proportionality can break down even if no party can be held hostage by

others, as the following example illustrates.

Example 3 Consider the game [7; 4, 3, 2, 2, 1, 1]. If the parties play a de-

mand commitment game in decreasing order, the unique subgame perfect

model (see Montero, 2006). However, this proportionality is ex ante (ex post the proposer

obtains more than half of the total payoff) and in order to hold generally it requires the

recognition probabilities to be themselves proportional.
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equilibrium results in coalition {1, 2} with d1 = d2 = 1
2 .

The game above is constant-sum but not homogeneous. None of the

parties can be held hostage by others: given any two parties, each of them

can form a minimal winning coalition that does not include the other. More-

over, coalition {1, 2} has exactly 7 votes. Nevertheless, proportionality fails
because {1, 3, 4} and {2, 3, 4} are both minimal winning coalitions. From
the point of view of parties 3 and 4, parties 1 and 2 are equally valuable

even though they have a different number of votes. If the turn reaches party

3, which of the two coalitions forms will depend on whether d1 is higher or

lower than d2. Anticipating this, party 2 has two options: it can form a

coalition with 1 and get 1− d1, or set d2 = d1 and induce coalition {2, 3, 4}.
Party 2 will form a coalition if 1− d1 ≥ d1, or d1 ≥ 1

2 .

4 Appendix: Proof of Theorem 1

The result trivially follows if there is a veto player. In constant-sum games,

a veto player must be a dictator, thus ω1 = q, and d1 = 1 would be the

equilibrium outcome. We will assume from now on that ωi < q for all i.

We denote as B (d, i) with i ∈ N and d ∈ RPi the subgame which begins
when it is party i’s turn, facing a vector d of demands. At subgame B (d, i),
party i will determine the optimal winning coalition S 3 i to be formed,
and will formulate a demand di that will lead to S being formed. We will

show how party i determines which coalition is optimal as well as how the

optimal coalition can be induced by the choice of di.

Suppose we are in B (d, i), and party i plans to make a demand in the
belief that a coalition S ∈ Ω (ω) with i ∈ S will be formed. This coalition
should include some parties from N\Pi (party i and possibly parties that
move after it) and may also include some predecessors from Pi. Let α be the

number of votes controlled by parties in S ∩ (N\Pi). Then, the parties in
S∩Pi should control at least q−α votes. We denote as b (i,α) the maximum
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benefit that can be achieved by buying these q−α votes from parties in Pi.

b (i,α) := max {1− dT : T ⊂ Pi,ωT ≥ q − α} .

Party i can calculate b(i,α) for every feasible value of α. Notice that not

all integers between 0 and q are feasible for every player. First, α cannot be

so small that even the votes of all the parties in Pi would not suffice. Let

γi0 := q − ωPi .

In order for b(i,α) to exist we need α ≥ γi0.

Since party i must be in S, it seems reasonable to require α ≥ ωi as well.

The next lemma shows that this is unnecessary: there is no positive benefit

from buying more than q − ωi votes.

Lemma 3 Let γi0 ≤ α < ωi and assume no party j < i has made a strictly

dominated choice of dj. Then, b (i,α) ≤ 0. Moreover, b (i,α) = 0 implies

b (i,ωi) ≥ 0.

Proof. Let T ⊂ Pi such that ωT ≥ q − α. Since α < ωi, we have

ωT∪{i} = ωT + ωi > ωT + α ≥ q.

Hence, since the game is homogeneous, T ∪ {i} cannot be a minimal
winning coalition. Moreover, party i is the party with less votes in T ∪ {i},
thus coalition T should be winning. This means that either dT ≥ 1 (implying
b(i,α) ≤ 0) or dT < 1, in which case the smallest party in T (party j)

would have been strictly better-off by setting a higher demand and forming

a coalition, regardless of the actions of the parties moving after j.

Moreover, when b (i,α) = 0, b (i,ωi) ≥ 0 follows from the fact that b (i, ·)
is nondecreasing in the second variable.

We will eliminate strictly dominated strategies, thus in all the subgames

we study it will be the case that b(i,α) ≤ 0 for γi0 ≤ α < ωi. Otherwise the

turn would never have reached party i.
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Since there is no positive benefit from buying more than q − ωi votes,

and (given that there is no benefit left to be divided) the particular value

of α is irrelevant if b(i,α) = 0, any lower bound between 0 and ωi can be

equivalently used by party i. We take α to be greater or equal to:5

γi := max
©
1, γi0

ª
.

Moreover, party i is constrained by the number of votes owned by parties

in N\Pi. Thus, α must be smaller or equal to

δi := ωN\Pi .

Notice that δi+1 = δi − ωi for all i < n. Also, ωi < q implies γ
i
0 ≤ δi+1.

It follows from lemma 4.9 in Ostmann (1987) that ωi ≤ δi+1 for all i < n,

thus γi ≤ δi+1 for all i < n.

For party 1 only α ≥ q is feasible and b(1,α) = 1 for all α ≥ q. For
party n, only α = 1 is feasible and b(n, 1) is simply n’s payoff from buying

the votes of one of the cheapest coalitions controlling at least q − 1 votes.
The following lemma shows how b (i+ 1,α) is determined from b(i, ·) and

di. It may be the case that, having α votes in its pocket, party i+1 cannot

form a winning coalition without party i. Then b (i+ 1,α) = b (i,α+ ωi)−di
irrespective of di. Otherwise party i+1 will compare the best coalition that

includes i with the best coalition that does not include i. Given that i is

included in the coalition, i+1 needs to buy the remaining votes (q−(α+ ωi))

from Pi, and the best way to do this leads to a benefit of b(i,α + ωi);

after paying di, there would be b (i,α+ ωi) − di left. Without party i,

the maximum benefit from buying q − α votes without buying i’s votes is

precisely b (i,α). Party i will then be included if di is sufficiently low.

Whether di is sufficiently low depends on the demands of the parties in

Pi. Because parties may be complements, in some cases no positive demand

by i would be low enough, as the following example illustrates.

5A lower bound of 1 has the advantage of being independent of i and allowing division

by all values of α, but the proof can be adapted to any other choice.
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Consider the game [10; 7, 3, 3, 3, 1, 1, 1]. Let i = 3, i + 1 = 4. We have

b(3, 7) = max(1 − d1, 1 − d2) and b(3, 4) = 1 − d1. Having 7 votes in its
pocket, party 3 may buy the votes of either party 1 (with a benefit of 1−d1)
or party 2 (with a benefit of 1−d2). On the other hand, having only 4 votes,
party 3 must buy the votes of party 1, with a benefit of 1− d1.

If party 4 wants to compute b(4, 4) it compares 1−d1 and 1−d2−d3. Thus
in this particular case parties 2 and 3 are complements. If d3 is high, then

b(4, 4) = 1−d1, which is precisely b(3, 4). If both d3 and d2 are sufficiently low,
then b(4, 4) = 1−d2−d3 and b(3, 7) = 1−d2, hence b(4, 4) = b(3, 4+ω3)−d3.
If d2 > d1, no positive value of d3 is sufficiently low.

Lemma 4 Assume we are in B (d, i+ 1). Let α such that γi+10 ≤ α ≤ δi+1.

Then γi0 ≤ α+ ωi ≤ δi and furthermore:

a) if α < γi0, then b (i+ 1,α) = b (i,α+ ωi)− di;
b) if α ≥ γi0, then b (i,α) exists and

b (i+ 1,α) = max {b (i,α) , b (i,α+ ωi)− di} .

Proof. We have to prove that γi0 ≤ α+ ωi ≤ δi. It is straightforward:

α ≤ δi+1 =⇒ α+ ωi ≤ δi+1 + ωi = δi.

α ≥ γi+10 = q − ωPi+1 =⇒ α+ ωi ≥ q − ωPi+1 + ωi = q − ωPi = γi0.

a) If α < γi0, every T ⊂ Pi+1 with ωT ≥ q − α satisfies i ∈ T . Then:

b (i+ 1,α) = max
T⊂Pi+1:ωT≥q−α

(1− dT ) = max
T⊂Pi+1:i∈T,ωT≥q−α

(1− dT )
= max

T⊂Pi:ωT≥q−α−ωi
(1− dT )− di = b (i,α+ ωi)− di.
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b) If α ≥ γi0, b (i,α) is well defined and

b (i+ 1,α) = max
T⊂Pi+1:ωT≥q−α

(1− dT )

= max

½
max

T⊂Pi+1:i/∈T,ωT≥q−α
(1− dT ) , max

T⊂Pi+1:i∈T,ωT≥q−α
(1− dT )

¾
= max

½
max

T⊂Pi:ωT≥q−α
(1− dT ) , max

T⊂Pi:ωT≥q−α−ωi
(1− dT )− di

¾
= max {b (i,α) , b (i,α+ ωi)− di} .

We have defined the best way to form a coalition that contains α votes

from N\Pi and at least q−α votes from Pi. It remains to choose the optimal
value of α, and the optimal demand di.

We denote as Σi the set of values between γi and δi that maximize

b (i,α) /α. Thus:

Σi := argmax
γi≤α≤δi

b (i,α)

α

The next lemma shows that the only interesting bargaining occurs when

b
¡
i,σi

¢ ≥ 0 for some/all6 σi ∈ Σi.
Lemma 5 Assume we are in a subgame perfect equilibrium (SPE) of B (d, i).
If b

¡
i,σi

¢
< 0 for some/all σi ∈ Σi, then every party gets zero.

Proof. Since b
¡
i,σi

¢
/σi is maximum, we deduce that b (i,α) < 0 for every

α ≥ γi. The same occurs for α = 0 since b (i,α) is nondecreasing in α. This

means that no winning coalition can be formed.

Thus, if b
¡
i,σi

¢
< 0 for some/all σi ∈ Σi, party i formulates an arbitrary

demand and the game eventually ends with no coalition being formed.

From now on, we will assume that b
¡
i,σi

¢ ≥ 0 for all σi ∈ Σi. We will
show that in equilibrium party i always chooses some α ∈ Σi.

6Of course, b (i,σ) ≥ 0 for some σ ∈ Σi implies b (i,σ) ≥ 0 for all σ ∈ Σi.
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The following lemma shows that all values of α between δi+1 + 1 and

δi+1 + ωi = δi lead to the same b(i,α). The extra votes are not valuable

because they are not enough to replace any party from Pi.

For example, in the game [10; 7, 3, 3, 3, 1, 1, 1], δ4 = 6 and δ5 = 3. Con-

sider the situation of party 4. If it takes α = 4, there are two ways to form a

winning coalition: buying the votes of party 1, or buying the votes of parties

2 and 3. Thus, b(4, 4) = max(1−d1, 1−d2−d3). If instead it takes α = 5 or
α = 6, exactly the same parties are needed: none of party 4’s predecessors

can be dispensed with despite the extra votes.

Lemma 6 Assume we are in the subgame B (d, i). Then©
T ⊂ Pi : ωT ≥ q −

¡
δi+1 + α

¢ª
=
©
T ⊂ Pi : ωT ≥ q − δi

ª
for all α = 1, 2, ...,ωi.

Proof. “⊂” Let T ⊂ Pi such that ωT ≥ q −
¡
ωN\Pi+1 + α

¢
. Then

ωT ≥ q −
¡
ωN\Pi − ωi + α

¢
= q − ωN\Pi + (ωi − α) ≥ q − ωN\Pi .

“⊃” Let T ⊂ Pi such that ωT ≥ q−ωN\Pi . Then, T ∪ (N\Pi) is winning
and contains party i. We study two cases:

• T ∪ (N\Pi) \ {i} = T ∪ (N\Pi+1) is also winning. Then, ωT ≥ q −
ωN\Pi+1 and the result is proved.

• T ∪ (N\Pi+1) is losing. Then, since the game is constant-sum, we
conclude that its complement, (N\T ) ∩ Pi+1, is winning and contains
party i as the weakest member. By taking out party i, we obtain

the coalition (N\T )∩Pi which is losing (since its complementary T ∪
(N\Pi) is winning). Thus, (N\T ) ∩ Pi+1 is minimal winning and T ∪
(N\Pi+1) is maximal losing. Hence, under Corollary 1:

ωT = q − ωN\Pi+1 − 1 ≥ q − ωN\Pi+1 − α.
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Corollary 2 In B (d, i), we have b
¡
i, δi+1 + α

¢
= b

¡
i, δi

¢
for all α = 1, 2, ...,ωi.

Moreover, for all σi ∈ Σi, if b ¡i,σi¢ > 0,
σi > δi+1 =⇒ σi = δi+1 + 1.

Proof. Under Lemma 6, it is clear that b
¡
i, δi+1 + α

¢
= b

¡
i, δi

¢
for all

α = 1, 2, ...,ωi, since they minimize dT on the same coalitions T . Hence, if

b
¡
i, δi

¢
> 0,

b
¡
i, δi+1 + α

¢
δi+1 + α

<
b
¡
i, δi+1 + 1

¢
δi+1 + 1

for all α = 2, ...,ωi and thus the maximum is b
¡
i, δi+1 + 1

¢
/
¡
δi+1 + 1

¢
. Let

σi ∈ Σi such that σi > δi+1. Since σi = δi+1 + α for some α = 1, 2, ...,ωi,

we conclude the result.

Now we define the maximum demand party i can make at B(d, i). This
depends on what party i + 1 can achieve without party i. If party i + 1

decides to exclude party i, it is in a similar situation to party i except that

it has less feasible values for α. It will be choosing an α between γi and

δi+1, and the maximum benefit from buying q − α votes without party i is

precisely b(i,α). We define T i as the set of values between γi and δi+1 that

maximize b (i,α) /α (recall that γi ≤ δi+1, so the interval is nonempty).

T i := argmax
γi≤α≤δi+1

b (i,α)

α
.

Let τ i ∈ T i. Because γi ≤ τ i and τ i ≤ δi+1 < δi,
b(i,τ i)

τ i
≤ b(i,σi)

σi
for all

σi ∈ Σi.
For any values of σi ∈ Σi and τ i ∈ T i, we define

d∗i :=

⎧⎪⎪⎨⎪⎪⎩
ωib(i,σi)

σi
if σi ≤ δi+1

b
¡
i,σi

¢− σi−ωi
τ i

b
¡
i, τ i

¢
if σi > δi+1 and b

¡
i, τ i

¢ ≥ 0
b
¡
i,σi

¢
if σi > δi+1 and b

¡
i, τ i

¢
< 0.

⎫⎪⎪⎬⎪⎪⎭ (1)
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It is easy to prove that d∗i is independent of the particular choice of σ
i and

τ i. By definition,
b(i,τ i)

τ i
and

b(i,σi)
σi

are independent of the τ i and σi chosen.

Also, b
¡
i, τ i

¢ ≥ 0 for some τ i ∈ T i if and only if b ¡i, τ i¢ ≥ 0 for all τ i ∈ T i.
If b

¡
i,σi

¢
= 0 for some σi, then b

¡
i,σi

¢
= 0 for all σi and b

¡
i, τ i

¢ ≤ 0 for all
τ i ∈ T i. Thus, d∗i = 0 regardless of the choice of σi and τ i. If b

¡
i,σi

¢
> 0,

d∗i is the same for all σi ≤ δi+1. If σi > δi+1, σi = δi+1 + 1. If Σi contains

some σi ≤ δi+1 as well as σi = δi+1 + 1, d∗i will still be independent of the

choice of σi because in this case T i = Σi\{δi+1 + 1}, thus b(i,τ
i)

τ i
=

b(i,σi)
σi

.

In order to prove that d∗i is the equilibrium demand of party i, the

following lemmas will be useful. Notice that σi > ωi for some σi ∈ Σi
implies i < n, because ωn = 1 and γn = δn = 1.

Lemma 7 Assume we are in B (d, i). If σi > ωi for some σ
i ∈ Σi and party

i demands di ≤ d∗i , then

γi+1 ≤ σi − ωi ≤ δi+1 (2)

b
¡
i+ 1,σi − ωi

¢
= b

¡
i,σi

¢− di (3)

and, given any τ i ∈ T i,

b
¡
i+ 1,σi − ωi

¢
σi − ωi

≥

⎧⎪⎪⎨⎪⎪⎩
b(i,σi)

σi
if σi ≤ δi+1

b(i,τ i)
τ i

if σi > δi+1 and b
¡
i, τ i

¢ ≥ 0
0 if σi > δi+1 and b

¡
i, τ i

¢
< 0.

⎫⎪⎪⎬⎪⎪⎭ (4)

Furthermore, inequality in (4) is strict iff di < d
∗
i .

Proof. Let σi ∈ Σi such that σi > ωi. We first prove (2):

σi ≤ δi =⇒ σi − ωi ≤ δi − ωi = δi+1.

σi ≥ γi ≥ γi0 = q − ωPi =⇒ σi − ωi ≥ q − ωPi − ωi = q − ωPi+1 = γi+10 .

σi > ωi =⇒ σi − ωi > 0 =⇒ σi − ωi ≥ 1.

We have just proven that σi − ωi is a feasible value of α for party i+ 1.

Notice that for b
¡
i,σi

¢
> 0, homogeneity implies σi − ωi ≥ ωi+1.
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We prove now (3) and (4). Under Lemma 4a), (3) is true when σi−ωi <
γi0. Then (4) follows immediately by replacing

b(i+1,σi−ωi)
σi−ωi by

b(i,σi)−di
σi−ωi and

then using di ≤ d∗i .7 Assume then σi − ωi ≥ γi0. We have two cases:

1. If σi ≤ δi+1, then d∗i =
ωib(i,σi)

σi
. Since σi ∈ Σi, re-arranging terms,

b
¡
i,σi − ωi

¢
σi − ωi

≤ b
¡
i,σi

¢
σi

=⇒ b
¡
i,σi − ωi

¢ ≤ b ¡i,σi¢− ωib
¡
i,σi

¢
σi

=⇒ b
¡
i,σi − ωi

¢ ≤ b ¡i,σi¢− di.
Hence, (3) follows under lemma 4b). Moreover

b
¡
i+ 1,σi − ωi

¢
σi − ωi

=
b
¡
i,σi

¢− di
σi − ωi

≥ b
¡
i,σi

¢− ωib(i,σi)
σi

σi − ωi

=

¡
σi − ωi

¢
b
¡
i,σi

¢
σi (σi − ωi)

=
b
¡
i,σi

¢
σi

with strict inequality iff di < d
∗
i .

2. If σi > δi+1, recall that γi ≤ σi − ωi ≤ δi+1. Then for any τ i ∈ T i

b
¡
i, τ i

¢
τ i

≥ b
¡
i,σi − ωi

¢
σi − ωi

.

Re-arranging terms,

σi − ωi
τ i

b
¡
i, τ i

¢ ≥ b
¡
i,σi − ωi

¢
=⇒ b

¡
i,σi − ωi

¢
+ b

¡
i,σi

¢− σi − ωi
τ i

b
¡
i, τ i

¢ ≤ b ¡i,σi¢
=⇒ b

¡
i,σi − ωi

¢
+ di ≤ b

¡
i,σi

¢
.

Hence, (3) follows under lemma 4b).

To show (4), we distinguish two subcases:

7Actually, σi − ωi < γi0 implies σ
i ≤ δi+1, so two of the three cases are void.
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(a) If b
¡
i, τ i

¢ ≥ 0, then d∗i = b ¡i,σi¢− σi−ωi
τ i

b
¡
i, τ i

¢
b
¡
i+ 1,σi − ωi

¢
σi − ωi

=
b
¡
i,σi

¢− di
σi − ωi

≥ b
¡
i,σi

¢− b ¡i,σi¢+ σi−ωi
τ i

b
¡
i, τ i

¢
σi − ωi

=
b
¡
i, τ i

¢
τ i

with strict inequality iff di < d
∗
i .

(b) If b
¡
i, τ i

¢
< 0, then d∗i = b

¡
i,σi

¢
and thus

b
¡
i+ 1,σi − ωi

¢
σi − ωi

=
b
¡
i,σi

¢− di
σi − ωi

≥ 0

with strict inequality iff di < d
∗
i .

Lemma 8 Assume we are in B (d, i+ 1) and σi > ωi for some σ
i ∈ Σi.

a) If di < d∗i , then i ∈ S for all S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) and all
σi+1 ∈ Σi+1.

b) If di = d
∗
i , then σi − ωi ∈ Σi+1. Moreover, S ∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT )

implies S ∪ {i} ∈ argmax
T⊂Pi+1:ωT≥q−(σi−ωi)

(1− dT ).
c) If di = d∗i , given σi+1 ∈ Σi+1 and S ∈ argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ),

i ∈ S implies S ∩ Pi ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT ) for some σi ∈ Σi.

Proof. a) Let σi+1 ∈ Σi+1. Suppose there exists S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )
such that i /∈ S. Then, b ¡i+ 1,σi+1¢ = b ¡i,σi+1¢. We see three cases:
1. If σi ≤ δi+1,

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1

¢
σi+1

≤ b
¡
i,σi

¢
σi

(Lemma 7)
<

b
¡
i+ 1,σi − ωi

¢
σi − ωi

which contradicts that σi+1 ∈ Σi+1.
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2. If σi > δi+1,

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1

¢
σi+1

≤ b
¡
i, τ i

¢
τ i

(Lemma 7)
<

b
¡
i+ 1,σi − ωi

¢
σi − ωi

which contradicts that σi+1 ∈ Σi+1.

b) Let α such that γi+1 ≤ α ≤ δi+1. Under Lemma 4, either b (i+ 1,α) =

b (i,α+ ωi)− di or b (i+ 1,α) = b (i,α). We have to prove that

b (i+ 1,α)

α
≤ b

¡
i+ 1,σi − ωi

¢
σi − ωi

.

If b (i+ 1,α) = b (i,α), we proceed like in case a).

If b (i+ 1,α) = b (i,α+ ωi)− di, we have three cases:

1. If σi ≤ δi+1, then

b (i+ 1,α)

α
=

b (i,α+ ωi)− di
α

=
b (i,α+ ωi)− ωib(i,σi)

σi

α

≤
b(i,σi)

σi
(α+ ωi)− ωib(i,σi)

σi

α

=
b
¡
i,σi

¢
σi

(Lemma 7)

≤ b
¡
i+ 1,σi − ωi

¢
σi − ωi

.

2. If σi > δi+1 and b
¡
i, τ i

¢ ≥ 0 for some/all τ i ∈ T i, then either
b(i,α+ωi)
α+ωi

≤ b(i,τ i)
τ i

(if α + ωi ≤ δi+1) or b (i,α+ ωi) = b
¡
i,σi

¢
(if

α+ ωi > δi+1, by Corollary 2).

If α+ ωi ≤ δi+1,

b (i+ 1,α)

α
=

b (i,α+ ωi)− di
α

=
b (i,α+ ωi)− b

¡
i,σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

≤
α+ωi
τ i
b
¡
i, τ i

¢− σi

τ i
b
¡
i, τ i

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

=
b
¡
i, τ i

¢
τ i

(Lemma 7)

≤ b
¡
i+ 1,σi − ωi

¢
σi − ωi

.
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If α+ ωi > δi+1,

b (i+ 1,α)

α
=

b (i,α+ ωi)− di
α

=
b (i,α+ ωi)− b

¡
i,σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

=
σi − ωi

α

b
¡
i, τ i

¢
τ i

.

If b
¡
i,σi

¢
> 0, corollary 2 implies σi = δi+1 + 1. Then α− ωi > δi+1

implies α + ωi ≥ δi+1 + 1 = σi, or
¡
σi − ωi

¢
/α ≤ 1. If b(i,σi) = 0,

b(i, τ i) = 0, implying σi−ωi
α

b(i,τ i)
τ i

= b(i,τ i)
τ i

. In either case,

b (i+ 1,α)

α
≤ b

¡
i, τ i

¢
τ i

(Lemma 7)

≤ b
¡
i+ 1,σi − ωi

¢
σi − ωi

.

3. If σi > δi+1 and b
¡
i, τ i

¢
< 0 for some/all τ i ∈ T i, then either

b (i,α+ ωi) < 0 (if α + ωi ≤ δi+1) or b (i,α+ ωi) = b
¡
i,σi

¢
(if

α+ ωi > δi+1, by Corollary 2).

If b (i,α+ ωi) < 0,

b (i+ 1,α)

α
=
b (i,α+ ωi)− di

α
< −di

α
≤ 0 ≤ b

¡
i+ 1,σi − ωi

¢
σi − ωi

.

If b (i,α+ ωi) = b
¡
i,σi

¢
,

b (i+ 1,α)

α
=
b (i,α+ ωi)− di

α
= 0 ≤ b

¡
i+ 1,σi − ωi

¢
σi − ωi

.

We now prove the second statement. Let S ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT ). We
have to prove b

¡
i+ 1,σi − ωi

¢
= 1− dS∪{i}. Using (3),

b
¡
i+ 1,σi − ωi

¢
= b

¡
i,σi

¢− di = 1− dS − di = 1− dS∪{i}.
c) Since i ∈ S, b(i+ 1,σi+1) = b(i,σi+1 + ωi)− di, or

b(i,σi+1 + ωi) = b(i+ 1,σ
i+1) + di. (5)

Let σi > ωi. We have shown that σ
i − ωi ∈ Σi+1, thus

b(i+ 1,σi+1)

σi+1
=
b(i+ 1,σi − ωi)

σi − ωi
. (6)
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1. If σi ≤ δi+1 for some σi ∈ Σi, it follows from (6) and (3) that

b(i+ 1,σi+1)

σi+1
=
b(i,σi)

σi
. (7)

Then

b(i,σi+1 + ωi)

σi+1 + ωi

(5)
=
b(i+ 1,σi+1) + di

σi+1 + ωi
=

b(i+ 1,σi+1) + ωi
σi
b
¡
i,σi

¢
σi+1 + ωi

(7)
=

σi+1

σi
b
¡
i,σi

¢
+ ωi

σi
b
¡
i,σi

¢
σi+1 + ωi

=
b(i,σi)

σi
.

Hence σi+1 + ωi ∈ Σi and b
¡
i,σi+1 + ωi

¢
= b

¡
i+ 1,σi+1

¢
+ di =

1− dS∩Pi .

2. If σi > δi+1 for all σi ∈ Σi, δi+1 + 1 always belongs to Σi.
Suppose S ∩ Pi /∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for all σi ∈ Σi. Then it must

be the case that for any σi either ωS∩Pi < q − σi, or ωS∩Pi ≥ q − σi

but 1− dS∩Pi is not maximal.
Suppose ωS∩Pi < q − σi for all σi ∈ Σi. Since δi+1 + 1 ∈ Σi, it
follows from Lemma 6 that ωS∩Pi < q− δi. But then ωS∩Pi +ωN\Pi =

ωS∩Pi+1 + ωN\Pi+1 < q, contradicting the assumption that ωS∩Pi+1 ≥
q − σi+1.

Suppose ωS∩Pi ≥ q − σi but 1− dS∩Pi < 1− dT for some σi ∈ Σi and
T ⊂ Pi with ωT ≥ q − σi.

If σi+1 + ωi > δi+1,

b(i,σi+1 + ωi)
(6)
= b(i,σi) > 1− dS∩Pi = b(i+ 1,σi+1) + di

contradicting (5).

If σi+1 + ωi ≤ δi+1, b(i,σ
i+1+ωi)

σi+1+ωi
≤ b(i,τ i)

τ i
. There are two possibilities:
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• If b(i, τ i) ≥ 0, it follows from (6) and (3) that b(i+1,σ
i+1)

σi+1
= b(i,τ i)

τ i
.

Then

b(i, τ i)

τ i
(σi+1 + ωi) ≥ b(i,σi+1 + ωi)

(5)
= b(i+ 1,σi+1) + di =

=
b(i, τ i)

τ i
σi+1 + b

¡
i,σi

¢− (σi − ωi)
b
¡
i, τ i

¢
τ i

implying b(i,τ i)
τ i
≥ b(i,σi)

σi
, thus b(i,τ

i)
τ i

= b(i,σi)
σi

. Then b(i,σi+1+ωi)
σi+1+ωi

=
b(i,σi)
σi

. Hence σi+1 + ωi ∈ Σi and the result follows.
• If b(i, τ i) < 0, it follows from (6) and (3) that b(i+1,σi+1)

σi+1
= 0.

Then

b(i,σi+1 + ωi) = b(i+ 1,σ
i+1) + di = b(i,σ

i).

Hence b(i,σi) = 1− dS∩Pi and the result follows.

Lemma 9 Assume we are in B (d, i+ 1) and di > d∗i .
a) If b

¡
i, τ i

¢ ≥ 0 for some/all τ i ∈ T i, then
i /∈ S for all S ∈ argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) and all σi+1 ∈ Σi+1.

b) If b
¡
i, τ i

¢
< 0 for some/all τ i ∈ T i, then every party obtains zero.

Proof. a) Let σi+1 ∈ Σi+1 and τ i ∈ T i. We need to prove that b ¡i,σi+1¢
exists and b

¡
i,σi+1

¢
> b

¡
i,σi+1 + ωi

¢− di. This will be due to party i+ 1
having the option of setting α = σi (if σi ≤ δi+1) or α = τ i (if σi > δi+1).

We examine each case in turn:

1. If σi ≤ δi+1, then di >
ωib(i,σi)

σi
.

Since σi ≤ δi+1, b(i+ 1,σi) exists. Moreover, lemma 4b) implies

b(i+ 1,σi) ≥ b(i,σi). (8)

In principle, there are three possibilities for σi+1: either σi+1 < γi0,

or σi+1 ≥ γi0 and b
¡
i,σi+1

¢ ≤ b ¡i,σi+1 + ωi
¢ − di, or σi+1 ≥ γi0 and
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b
¡
i,σi+1

¢
> b

¡
i,σi+1 + ωi

¢ − di. We will show that the first two

possibilities lead to a contradiction. In both cases, Lemma 4 implies

b
¡
i+ 1,σi+1

¢
= b

¡
i,σi+1 + ωi

¢− di. (9)

From (9) we can deduce:

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1 + ωi

¢− di
σi+1

<
b
¡
i,σi+1 + ωi

¢− ωib(i,σi)
σi

σi+1

≤
(σi+1+ωi)b(i,σi)

σi
− ωib(i,σi)

σi

σi+1

=
b
¡
i,σi

¢
σi

(8)

≤ b
¡
i+ 1,σi

¢
σi

.

which contradicts that σi+1 ∈ Σi+1. Thus, σi+1 ≥ γi0 (i.e. b
¡
i,σi+1

¢
does exist) and b

¡
i,σi+1

¢
> b

¡
i,σi+1 + ωi

¢ − di. We conclude then
that i /∈ S for all S ∈ argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) .

2. If σi > δi+1, then di > b
¡
i,σi

¢− σi−ωi
τ i

b
¡
i, τ i

¢
.

Under Lemma 4b):

b
¡
i+ 1, τ i

¢
= max

©
b
¡
i, τ i

¢
, b
¡
i, τ i + ωi

¢− diª ≥ b ¡i, τ i¢ . (10a)

Suppose b
¡
i,σi+1

¢
does not exist (i.e. σi+1 < γi0), or b

¡
i,σi+1

¢
exists

and b
¡
i,σi+1

¢ ≤ b ¡i,σi+1 + ωi
¢− di. In both cases, under Lemma 4,

b
¡
i+ 1,σi+1

¢
= b

¡
i,σi+1 + ωi

¢− di. (11)

We will prove that (11) leads to a contradiction, so that b
¡
i,σi+1

¢
exits and b

¡
i,σi+1

¢
> b

¡
i,σi+1 + ωi

¢− di, which implies i /∈ S for all
S ∈ argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) as desired.

We have two cases:
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• If σi+1 + ωi ≤ δi+1. Then b(i,σi+1+ωi)
σi+1+ωi

≤ b(i,τ i)
τ i

and

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1 + ωi

¢− di
σi+1

<
b
¡
i,σi+1 + ωi

¢− b ¡i,σi¢+ σi−ωi
τ i

b
¡
i, τ i

¢
σi+1

≤
σi+1+ωi

τ i
b
¡
i, τ i

¢− σi

τ i
b
¡
i, τ i

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
σi+1

=
b
¡
i, τ i

¢
τ i

(10a)

≤ b
¡
i+ 1, τ i

¢
τ i

which is a contradiction.

• If σi+1 + ωi > δi+1, then under Corollary 2, b
¡
i,σi+1 + ωi

¢
=

b
¡
i,σi

¢
. If b

¡
i,σi

¢
> 0, σi = δi+1 + 1 and σi+1 + ωi ≥ σi, which

implies
¡
σi − ωi

¢
/σi+1 ≤ 1. If b ¡i,σi¢ = 0, b ¡i, τ i¢ = 0. Hence:

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1 + ωi

¢− di
σi+1

<
b
¡
i,σi+1 + ωi

¢− b ¡i,σi¢+ σi−ωi
τ i

b
¡
i, τ i

¢
σi+1

=
σi − ωi
σi+1

b
¡
i, τ i

¢
τ i

≤ b
¡
i, τ i

¢
τ i

(10a)

≤ b
¡
i+ 1, τ i

¢
τ i

which is a contradiction.

b) Recall that we assumed b(i,σi) ≥ 0 for all σi ∈ Σi. Thus, b ¡i, τ i¢ < 0
for some τ i ∈ T i implies σi > δi+1. Under Corollary 2, this means b

¡
i,σi

¢
=

b
¡
i, δi

¢
. Let α be such that γi+1 ≤ α ≤ δi+1. Under Lemma 4, we have two

cases:

1. b (i+ 1,α) = b (i,α+ ωi)− di. Then

b (i+ 1,α) < b (i,α+ ωi)− b
¡
i, δi

¢
.

Since α+ ωi ≤ δi, b (i,α+ ωi) ≤ b
¡
i, δi

¢
and thus b (i+ 1,α) < 0.
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2. b (i+ 1,α) = b (i,α). Then γi0 ≤ α ≤ δi+1 and

b (i+ 1,α)

α
≤ b

¡
i, τ i

¢
τ i

< 0

and thus b (i+ 1,α) < 0.

Since b (i+ 1,α) < 0 for all α, we conclude b
¡
i+ 1,σi+1

¢
< 0 for all

σi+1 ∈ Σi+1 and thus by Lemma 5 all the parties get zero.

Let us consider the following strategy profile for the parties. In B (d, n),
party n forms a coalition S ∪ {n} with S ∈ argmax

T⊂Pn:ωT≥q−ωn
(1− dT ) after

demanding dn = 1−dS. If there is more than one possible choice of S, party
n uses the following tie-breaking rule: First, select only the coalitions that

contain the party with the highest index (party n − 1, or, if party n− 1 is
in none of the coalitions, party n − 2 etc.). If there are several coalitions
containing this party, select the ones that contain the party with the second

highest index, etc., until only one coalition is left.

Let i < n and assume we have defined the strategies for parties in

B (d, i+ 1). In B (d, i), party i proceeds as follows:

1. If σi > ωi for all σ
i ∈ Σi, party i demands di = d∗i given as in (1).

2. If Σi = {ωi}, party i forms coalition S ∪ {i} with S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT .

If there is more than one possible choice of S, party i uses the tie-

breaking rule: Among all the optimal coalitions S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT ,

party i selects the ones that contain the party with the highest index

(i− 1, or, if party i− 1 is in none of the coalitions, party i− 2, etc). If
there are several coalitions containing this party, select the ones that

contain the party with the second highest index, etc., until only one

coalition is left.

3. If {ωi} Ã Σi, party i can anticipate the coalition S∗ that will be
formed should it demand d∗i and its followers play the strategies we

have defined.
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(a) If i /∈ S∗, party i forms coalition S∪{i} with S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT .

If there is more than one possible S, party i uses the tie-breaking

rule.

(b) If i ∈ S∗, party i compares the coalitions S ∈ argmax
T⊂Pi:ωT≥q−ωi

(1− dT )
and S∗ ∩ Pi. Among them, party i selects a coalition following
the tie-breaking rule. If S∗ is chosen, party i demands di = d∗i
given as in (1). If S 6= S∗ is chosen, then party i demands

1− dS = b (i,ωi) = d∗i .and forms coalition S ∪ {i}.

The role of the tie-breaking rule is to ensure that parties have a best

response at all stages (cf. Example ??).

Proposition 1 The above strategies constitute a SPE for any B (d, i).

Proof. We proceed by backwards induction on i. For i = n, its strategy is

clearly optimal.

Assume now the result is true for B (d, i+ 1) and moreover assume the
following two conditions hold:

Condition 1 The formed coalition satisfies

S ∩ Pi+1 ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )

for some σi+1 ∈ Σi+1. (This condition holds trivially for i + 1 = n

because Σn = {ωn}).

Condition 2 The above S and σi+1 are such that S ∩ Pi+1 is one of the
most favorable sets for party i (i.e. i /∈ S implies i /∈ T for all T ∈

argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) and all σi+1 ∈ Σi+1). Among them, it is
one of the most favorable to party i− 1, etc. (This condition holds for
i+ 1 = n because Σn = {ωn} and n applies the tie-breaking rule).

We check that this remains true for B (d, i). Let τ i ∈ T i. We have two
cases:
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1. If σi > ωi for all σ
i ∈ Σi, then it is straightforward to check that

party i obtains stricly less than d∗i by forming coalition. If i demands

d∗i , S ∪ {i} ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) for σi+1 = σi − ωi ∈ Σi+1.
The induction hypothesis (Conditions 1 and 2) implies that d∗i will

be accepted. Assume party i deviates by demanding di > d∗i . If

b
¡
i, τ i

¢ ≥ 0, under Lemma 9a) party i does not belong to any coalition
in argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) for any σi+1 ∈ Σi+1 and its final payoff

is zero under the induction hypothesis (Condition 1). If b
¡
i, τ i

¢
< 0,

under Lemma 9b), its final payoff is zero.

Moreover, Conditions 1 and 2 hold for i. Condition 1 follows from

Lemma 8b) and the induction hypothesis applied to Conditions 1 and

2. Condition 2 follows from the tie-breaking rule applied by the party

j > i that eventually forms coalition.

2. If ωi ∈ Σi, then 1−dS = b (i,ωi) = d∗i for all S ∈ argmax
T⊂Pi:ωT≥q−ωi

(1− dT ).
This means that if party i forms a winning coalition it obtains a final

payoff of b (i,ωi). Suppose party i deviates and demands di > b (i,ωi).

It is enough to check that i /∈ S for all S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )
and all σi+1 ∈ Σi+1. Under the induction hypothesis applied to Con-
dition 1, this means that party i will not be included in any eventual

winning coalition, and its final payoff will be zero, while the original

strategy yields a nonnegative payoff.

For constant-sum homogeneous games it is always the case that ωi ≤
δi+1, thus b(i+ 1,ωi) is well defined. Under Lemma 4b),

b (i+ 1,ωi) = max {b (i,ωi) , b (i, 2ωi)− di} ≥ b (i,ωi) (12)

Suppose that i ∈ S for some S ∈ argmin
T⊂Pi+1:ωT≥q−σi+1

dT and some σ
i+1 ∈

Σi+1. This means

b
¡
i+ 1,σi+1

¢
= b

¡
i,σi+1 + ωi

¢− di
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and hence

b
¡
i+ 1,σi+1

¢
σi+1

=
b
¡
i,σi+1 + ωi

¢− di
σi+1

<
b
¡
i,σi+1 + ωi

¢− b (i,ωi)
σi+1

≤
σi+1+ωi

ωi
b (i,ωi)− b (i,ωi)

σi+1

=

¡
σi+1 + ωi

¢
b (i,ωi)− ωib (i,ωi)

ωiσi+1

=
b (i,ωi)

ωi

(12)

≤ b (i+ 1,ωi)

ωi

which is a contradiction. This contradiction proves that i /∈ S for all
S ∈ argmin

T⊂Pi+1:ωT≥q−σi+1
dT , as desired.

We now check that Conditions 1 and 2 hold for i. If party i forms

coalition, Condition 1 holds with σi = ωi, and Condition 2 holds

because of the tie-breaking rule. If party i demands d∗i so that S
∗

is induced, it must be the case that {ωi} Ã Σi. Hence, there exists
σi ∈ Σi with σi > ωi. Then, Condition 1 follows from Lemma 8b) and

the induction hypothesis applied to Conditions 1 and 2. Condition 2

follows from the tie-breaking rule applied by the party that eventually

forms coalition.

The next proposition shows uniqueness of equilibrium payoffs. Equi-

librium strategies are not unique for some subgames. In subgames B (d, i)
where no coalition can be formed (i.e., b(i,σi) < 0), any demand vector is

part of a SPE and equilibrium payoffs are always 0 for all parties. Multiplic-

ity may also arise in subgames where a coalition can be formed but d∗i = 0,

as the following example illustrates.

Example 4 Consider the game [5; 3, 2, 2, 1, 1] and suppose d1 = d2 = 1.

Equilibrium strategies at B (d, 3) are not unique, but equilibrium payoffs are.
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At B (d, 3) we have d∗3 = 0 and Σ3 = {2, 3}. If we look at this subgame
in isolation, several equilibrium outcomes are possible: coalition {1, 3} (as-
sociated to σ3 = 2), coalition {2, 3, 4} or {2, 3, 5} (associated to σ3 = 3),

coalition {2, 3, 4, 5} (which is not a minimal winning coalition), coalition
{1, 4, 5} (which does not include party 3), or even no winning coalition at
all. Intuitively, since the parties in {3, 4, 5} cannot get a positive payoff,
they are indifferent between all these situations. However, parties that have

moved before are not indifferent. If we take into account that the strate-

gies must be part of an equilibrium for all the subgames, and in particular

for subgame B (d, 2), some of the equilibrium strategies at B (d, 3) are not
equilibrium strategies for B (d, 2) and are discarded (cf. example ??). In
particular, a coalition containing party 2 must be formed in order for party

2 to have a best response at B (d, 2). Nevertheless, multiplicity remains:
after party 2 sets d2 = 1, there are three possible equilibrium coalitions:

{2, 3, 4}, {2, 3, 5} and {2, 3, 4, 5}. Nevertheless, all equilibrium strategies

lead to the same payoffs.

Proposition 2 Assume we are in a SPE in B (d, i). If b(i,σi) ≥ 0 for

some/all σi ∈ Σi, party i’s payoff is d∗i as defined in (1); otherwise party i’s
payoff is zero.

Proof. We proceed by backwards induction on i. We prove the following

three hypotheses:

1. If b(i,σi) < 0, all parties get zero in every SPE of B (d, i).

2. If b(i,σi) > 0, party i receives d∗i > 0 in every SPE of B (d, i) and the
coalition that forms satisfies S ∩ Pi ∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for some

σi ∈ Σi.

3. If b(i,σi) = 0,

a) party i gets d∗i = 0 in every SPE of B (d, i);
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b) there is a SPE of B (d, i) in which a winning coalition forms;

c) if a winning coalition S forms, then S ∩ Pi ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT )
for some σi ∈ Σi.

The induction hypothesis holds for party n. Now suppose it holds for

party i+ 1. Does it hold for party i?

1. If b(i,σi) < 0, all parties get zero (Lemma 5).

2. If b(i,σi) > 0, party i cannot get more than d∗i by forming coalition.

If party i demands more than d∗i and b(i, τ
i) ≥ 0, we know from

Lemma 9a) that i /∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) for all σi+1 ∈ Σi+1.
The induction hypothesis implies that party i gets zero. If party i

demands more than d∗i and b(i, τ
i) < 0, we know from Lemma 9b)

that party i gets zero.

Now we show that party i can get at least d∗i . This is immediate if

ωi ∈ Σi. Suppose ωi /∈ Σi. Since b(i,σi) > 0, we know d∗i > 0. The

value of d∗i+1 induced by d
∗
i may be strictly positive or 0. Suppose

party i demands di < d∗i . Then the corresponding value of d
∗
i+1 is

strictly positive. Under Lemma 8a), party i belongs to all coalitions

associated with some element of Σi+1, and the induction hypothesis

for d∗i+1 > 0 implies that party i gets di. Thus, the perfectness of the

equilibrium implies that d∗i is accepted (otherwise, party i would not

have a best response).

Moreover, Lemma 8c), the induction hypothesis and the fact that

d∗i is accepted imply that the coalition that forms satisfies S ∩ Pi ∈
argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for some σi ∈ Σi.

3. If b(i,σi) = 0, then d∗i = 0 and, moreover, α ∈ Σi if and only if
b (i,α) = 0.
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a) It is trivial that party i gets d∗i = 0. If di > d∗i , the induction

hypothesis implies that no coalition to which party i belongs will form.

b) There is an equilibrium of the subgame in which a coalition associ-

ated with σi ∈ Σi forms. This is clearly the case for ωi ∈ Σi. Other-
wise, it is optimal for party i to demand d∗i = 0. Then b

¡
i+ 1,σi+1

¢
=

0 for all σi+1 ∈ Σi+1 and the induction hypothesis implies that there
is a SPE of B (i, d) in which a winning coalition is formed.

c) Assume a winning coalition S is formed with S∩Pi /∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT )
for all σi ∈ Σi. This means that, for a given σi ∈ Σi, either ωS∩Pi ≥
q − σi but 1− dS∩Pi is not maximal, or ωS∩Pi < q − σi.

Assume first there exists σi ∈ Σi such that ωS∩Pi ≥ q−σi but 1−dS∩Pi
is not maximal. Since b

¡
i,σi

¢
= 0, this means dS∩Pi > 1 and it cannot

be optimal at any subgame to form S.

Assume now ωS∩Pi < q − σi for all σi ∈ Σi. Since b ¡i,σi¢ = 0 and

b (i,α) is nondecreasing in α, δi ∈ Σi; thus ωS∩Pi < q−δi. This means
ωS∩Pi + ωS∩(N\Pi) < q. Thus, S is not a winning coalition.

Corollary 3 In any SPE, the coalition of Lemma 2 forms with each party

demanding di =
ωi
q .

Proof. Denote this coalition by S∗. Because of lemma 2, S∗ = Pl+1 for

some value of l. We can show di =
ωi
q for i = 1, ..., l by induction on i.

Party 1 finds Σ1 = {q} and, since q ≤ δ2 (due to the absence of veto

players and the game being constant-sum) sets a demand d∗1 =
w1
q . Given

this demand, q − ω1 ∈ Σ2.
Assume now dj =

ωj
q for all j ∈ Pi, and q − ωPi ∈ Σi. Then,

d∗i =
ωib (i, q − ωPi)

q − ωPi
=

ωi

³
1− ωPi

q

´
q − ωPi

=
ωi
q
.
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