Systemic Risk and Bank Business Models¹

Maarten van Oordt^1 and Chen $\mathsf{Zhou}^{1,2,3}$

¹De Nederlandsche Bank (DNB)

²Erasmus University Rotterdam

³Tinbergen Institute

Conference on Effective Macroprudential Instruments Centre for Finance, Credit and Macroeconomics University of Nottingham, 14 November 2014

¹Views expressed do not necessarily reflect official positions of DNB.

Policy debate

- Interaction between micro- and macro-prudential policies
 - ► Focus micro-prudential objective: Risk of individual institution
 - Focus macro-prudential objective: Systemic risk
- Is micro-prudential policy also useful for limiting systemic risk?
- New indicators for macro-prudential policy
- How are characteristics of bank business models related to systemic risk?
 - Different from existing literature on which characteristics
 - Focus on two dimensions
 - Individual riskiness
 - Link with the system

伺下 イヨト イヨト

- A measure of systemic risk
 - The sensitivity of banks to systemic shocks
 - Theoretical and empirical decomposition into two subcomponents
 - Bank tail risk ("Individual riskiness"; IR)
 - Link with system ("Systemic linkage"; SL)
- Panel regression
 - Estimate systemic risk measure and its subcomponents
 - Regress on
 - Fundamental bank characteristics:
 - Asset decomposition, income sources, funding structure.
- Results
 - Often opposite relations on IR and SL
 - Traditional banking activities relate to high IR low SL

向下 イヨト イヨト

Related literature

- Measuring systemic risk
 - CoVaR of Adrian and Brunnermeier (2011)
 - Volatility Contribution of Lehar (2005)
 - Distress Insurance Premium of Huang et al. (2010, 2012)
 - Marginal Expected Shortfall of Acharya et al. (2009, 2012)
 - Shapley Value of Drehmann and Tarashev (2013)
- Identifying bank characteristics related to systemic risk
 - López-Espinosa et al. (2012): size, short-term wholesale funding:
 - Brunnermeier et al. (2012): size, leverage, non-interest income
 - Vallascas and Keasey (2012): size, capital, non-interest income and growth
 - Anginer et al. (2013): bank competition
 - Girardi and Ergün (2013): size, leverage
 - López-Espinosa et al. (2013): loan growth

伺い イヨト イヨト

- Differentiate definitions on systemic risk
 - shock to "the real economy" v.s. "the financial system"
 - "time dimension" v.s. "cross-sectional dimension"
 - "origin of a crisis" v.s. "suffer in a crisis"
- The systemic risk of a financial institution: the sensitivity to severe shocks in the financial system
- Two dimensions of systemic risk
 - Individual bank (tail) risk
 - systemic: shocks in the financial system
 - other shocks
 - Link between bank tail risk and systemic risk
 - Bank tail risk: overall riskiness
 - Systemic linkage: the "fraction of tail risk" because of large shocks in the financial system

→ 同 → → 目 → → 目 →

Systemic risk measure: β^T

- The sensitivity of banks to severe shocks in the financial system
- Model
 - Mathematically

$$R_i = \beta_i^T R_s + \varepsilon_i$$
 for $R_s < -VaR_s(\bar{p})$.

- Similarities with a single factor model
 - Data: stock market returns (publicly available)
 - Measure: coefficient in a linear relation
- Differences from a single factor model
 - Replace "market return" by banking sector index
 - Partial linear relation: only in the tail

向下 イヨト イヨト

The β^T as a measure of systemic risk

$$R_i = \beta_i^T R_s + \varepsilon_i$$
 for $R_s < -VaR_s(\bar{p})$.

- Why β^T is a measure of systemic risk
 - Reflects the definition
 - Focuses on tail events only
- Connected to existing systemic risk measure
 - Marginal Expected Shortfall (MES) in Acharya et al. (2009,2012)

 $MES_i(p) := -\mathbb{E}[R_i | R_s \leq -VaR_s(p)] = -\beta_i^T \mathbb{E}[R_s | R_s \leq -VaR_s(p)] = \beta_i^T ES_s(p)$

The dispersion in the MES across institutions is solely attributed to the cross-sectional differences in β^T

A 1 A 3 A 4 3 A

Estimating β^{T} : Extreme Value Theory

- Handling tail events: Extreme Value Theory
- Assumptions
 - ▶ Heavy-tails in R_i and R_s (tail indices ζ_i and ζ_s): Pr $(R_i < -x) \sim A_i x^{-\zeta_i}$ as $x \to \infty$
 - Other mild conditions: $\zeta_s < 2\zeta_i$ and $\beta_i^T \ge 0$
- Derivation (Van Oordt and Zhou, 2011)

$$\beta_i^{\mathsf{T}} = \lim_{p \to 0} \tau_i(p)^{1/\zeta_s} \frac{VaR_i(p)}{VaR_s(p)}$$

VaR_i(p) and VaR_s(p): Value-at-Risks (VaRs) of R_i and R_s
 τ_i(p) is a measure of tail dependence between R_i and R_s

$$\tau_i := \lim_{p \to 0} \tau_i(p) = \lim_{p \to 0} \Pr(R_i < -VaR_i(p)|R_s < -VaR_s(p))$$

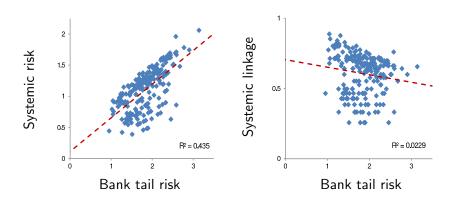
See e.g. Hartmann et al. (2007) and De Jonghe (2010).

Estimating β^T : Extreme Value Analysis

- Estimating β^T
 - Estimate each component

$$\hat{\beta}_i^{\mathsf{T}} := \widehat{\tau_i(k/n)}^{1/\hat{\zeta}_s} \frac{\widehat{VaR}_i(k/n)}{\widehat{VaR}_s(k/n)}$$

- All estimated using the k largest losses
- Ingredients in the β^T
 - Cross-sectionally no differences in $\hat{\zeta}_s$ and $\widehat{VaR}_s(k/n)$
 - Firm specific
 - $\widehat{\tau_i(k/n)}$: a tail dependence measure
 - $VaR_i(k/n)$: a tail risk measure


Decomposition of systemic risk

$$\log \hat{\beta}_i^T = \frac{1}{\hat{\zeta}_s} \log \widehat{\tau_i(k/n)} + \log \frac{\widehat{VaR_i(k/n)}}{\widehat{VaR_s(k/n)}} =: SL_i + IR_i$$

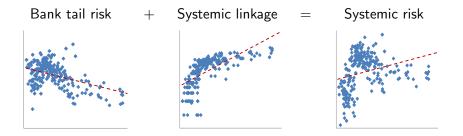

- Two dimensions
 - Systemic linkage SL_i: tail dependence
 - Bank tail risk IR_i: VaR
- Matching the conceptual subcomponents of systemic risk

Image: A image: A

Bank tail risk and systemic risk

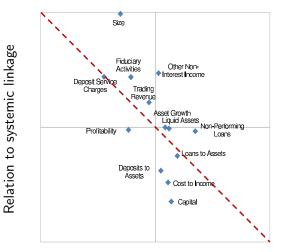
Left: Considerable amount of unexplained variation in systemic risk Right: Relation between the two subcomponents is very weak

- ▶ Size has opposite relations with IR (-) and SL (+)
- The positive relation to SL dominates at the SR level

Regression analysis

Data

- US Bank Holding Companies in 1991-2011
- Dependent variables: $\log \beta^T$, *SL* and *IR*
 - Daily equity returns in four-year moving window
 - Quarterly rolling window
 - Coefficients for SL and IR will add up to those for $\log \beta^T$
- Bank business model indicators (preceding estimation horizon)
 - Fundamental: size, CAMEL ratios and growth
 - Income sources: non-interest income and its subcomponents
 - Loan decomposition
 - Funding structure
- Methodology
 - Panel regressions across 11,597 bank-quarter observations
 - Time fixed effects, clustering at bank and time level


A (B) + A (B) + A (B) +

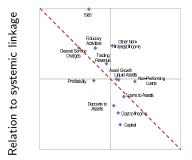
Results: Regression

	(1)	(2)	(3)
VARIABLES	$\log \hat{\beta}_{i,t}^{T}$	$SL_{i,t}$	IR _{i,t}
Bank Size	0.079***	0.114***	-0.035***
Tier 1 Risk-Based Cap. Ratio	-0.018***	-0.023***	0.005**
Non-Performing Loans Ratio	2.690***	-0.304	2.994***
Cost to Income Ratio	-0.342***	-0.446***	0.104**
Return on Equity	-0.372***	-0.035	-0.337***
Liquid Assets	0.136***	-0.016	0.151***
Loans to Total Assets	-0.048	-0.209***	0.161***
Deposits to Total Assets	-0.319***	-0.367***	0.048
Growth in Total Assets	0.163***	-0.005	0.169***
Fiduciary Activities Income Share	0.357***	0.694***	-0.336***
Srvc Charges on Dep Accnts Shr	-0.023	1.280***	-1.303***
Trading Revenue Share	0.856***	1.139***	-0.283
Other Non-Interest Income Share	0.478***	0.450***	0.028
Constant	0.509***	0.198***	0.311***
R-sq	0.375	0.532	0.434
	 < 급> < 클> 		

Van Oordt and Zhou Systemic Risk and Bank Business Models

Results: Scatter plot of standardized coefficients

Relation to bank tail risk


3

- Banks with a stronger capital buffer, engaging less in activities generating non interest income, having smaller size, or, managing a less risky loan book are associated with lower systemic risk.
- Some bank characteristics have a similar relation to bank risk and systemic risk; others differ in their relation to bank risk and systemic risk, or are related to only one risk type.

- Micro- and macroprudential policies focusing respectively on individual and systemic risk may differ in scope.
- A single policy measure may have opposite effects on individual and systemic risk.
- The decomposition of systemic risk explains why such opposite effects are possible.
- In the case of opposite effects on individual risk and systemic risk, policy measures require a careful balancing between the micro- and macroprudential objectives of regulation.

向下 イヨト イヨト

Thank you for your time!

Relation to bank tail risk

Don't hesitate to contact me at m.r.c.van.oordt@dnb.nl.

< ∃⇒