Capital regulation and macroeconomic activity Implications for macroprudential policy

Roland Meeks

Monetary Assessment & Strategy Division, Bank of England and Department of Economics, University of Essex

CFCM Conference on Effective Macroprudential Instruments November, 2014

Disclaimer

The views expressed in this paper are those of the author alone, and not those of the Bank of England or the Monetary Policy Committee.

Outline

Motivation

- 2 Data and Model
- 3 Macroeconomic effects of bank regulation
- 4 Macroprudential counterfactual

The motivating question

How is the macroeconomy affected by shocks to bank capital ratios?

Why ask?

Reasons we might be interested:

- Learn about the transmission channel of shifts in the *supply of intermediated credit*.
- Quantify a potential *source of aggregate fluctuations*, little studied by macroeconomists.
- Simulate *counter-cyclical macroprudential policy*.

Challenges

Identification Most variation in actual bank capital ratios is not exogenous, but a result of *macroeconomic shocks*...

...and macro shocks shift credit demand, as well as credit supply; need *instruments*.

Feedbacks The *partial equilibrium* effect of changes in capital on lending differs from the 'total' or *general equilibrium* effect, to the extent that shifts in loan supply cause shifts in aggregate expenditure...

...so must employ an aggregate approach allowing for feedbacks.

Challenges

Identification Most variation in actual bank capital ratios is not exogenous, but a result of *macroeconomic shocks*...

...and macro shocks shift credit demand, as well as credit supply; need *instruments*.

Feedbacks The *partial equilibrium* effect of changes in capital on lending differs from the 'total' or *general equilibrium* effect, to the extent that shifts in loan supply cause shifts in aggregate expenditure...

...so must employ an aggregate approach allowing for feedbacks.

This paper

Identification Use variation in microprudential capital requirements to identify exogenous shifts in capital...

...institutional details of microprudential regime key.

Feedbacks Estimate effects using a Bayesian Vector Autoregression (VAR), capturing dynamic interaction between banks and the macroeconomy...

...but also exploit bank-level data to sharpen inference, a *combined* micro-macro approach.^a

^{*a*}See Chang, Gomes and Schorfheide (*AER*, 2002) for an application of the micro-macro approach to a DSGE model.

Identification Use variation in microprudential capital requirements to identify exogenous shifts in capital...

...institutional details of microprudential regime key.

Feedbacks Estimate effects using a Bayesian Vector Autoregression (VAR), capturing dynamic interaction between banks and the macroeconomy...

...but also exploit bank-level data to sharpen inference, a *combined micro-macro approach.*^{*a*}

^{*a*}See Chang, Gomes and Schorfheide (*AER*, 2002) for an application of the micro-macro approach to a DSGE model.

Literature on credit shocks

Big picture–part of the literature which looks at the macroeconomic consequences of *financial* shocks:

Corporate bond market Gilchrist and Zakrajšek (*JME*, 2009; *AER*, 2012); Meeks (*JEDC*, 2012).

Mortgage bond market Walentin (*JME*, 2014).

Generic 'credit shocks' Finlay and Jääskelä (*J.Mac*, 2014); Barnett and Thomas (*Manch. Sch.*, 2014).

These studies don't look specifically at intermediaries.

This paper looks at shocks that alter the *mix of financial liabilities* on bank balance sheets–which may be considered a 'purely financial' shock.

Literature on bank shocks

Aggregate models with banking variables Berrospide and Edge (*IJCB*, 2010), Iacoviello and Minetti (*J.Mac*, 2008), Walentin (*JME*, 2014).

Micro identification of bank credit supply shocks Amiti and Weinstein (*WP*, 2013), Bassett et al. (*JME*, 2014), Mésonnier and Stevanovic (*WP*, 2012).

These studies don't look specifically at shocks to regulation.

Micro models with regulatory capital shocks Aiyar, Calomiris and Wieladek (*WP*, 2012) and Francis and Osborne (*WP*, 2009) for the UK; Labonne and Lamé (*WP*, 2014), for France.

These studies don't take account of feedbacks.

Outline

Motivation

Data and Model

3) Macroeconomic effects of bank regulation

4 Macroprudential counterfactual

- The period of study is 1989:4 through 2008:3–spanning the Basel I and II regimes...
- ...but excluding the switch to an 'enhanced prudential regime' and the transition to a *permanently higher* level under Basel III.
- In the UK, regulators imposed add-on capital requirements that varied *across time* and *across banks*, in contrast to time-invariant Basel minimums.
- The *aggregate* required capital ratio—summing over the major UK banks—also varies.

Because breaching minimum Basel plus add-on requirement 'triggered' regulatory action, it is known as the **trigger ratio**.

Aggregate bank capital variables

On average, 15% of the banks in the sample had a change in their capital requirements each period; of these, 8% were increases and 7% were decreases.

Black line – weighted average. Grey line – simple average.

Macro block (M)

- Output, prices, monetary policy interest rate
- House prices, mortgage arrears
- Mortgage and corporate bond spreads

Bank lending block (B)

- Household secured (mortgage) lending growth
- Corporate lending growth
- Capital block (K)
 - System-wide tier 1 capital ratio

Policy block (P)

Macro block (M)

- Output, prices, monetary policy interest rate
- House prices, mortgage arrears
- Mortgage and corporate bond spreads

Bank lending block (B)

- Household secured (mortgage) lending growth
- Corporate lending growth
- Capital block (K)
 - System-wide tier 1 capital ratio

Policy block (P)

Macro block (M)

- Output, prices, monetary policy interest rate
- House prices, mortgage arrears
- Mortgage and corporate bond spreads

Bank lending block (B)

- Household secured (mortgage) lending growth
- Corporate lending growth

Capital block (K)

• System-wide tier 1 capital ratio

Policy block (P)

Macro block (M)

- Output, prices, monetary policy interest rate
- House prices, mortgage arrears
- Mortgage and corporate bond spreads

Bank lending block (B)

- Household secured (mortgage) lending growth
- Corporate lending growth

Capital block (K)

• System-wide tier 1 capital ratio

Policy block (P)

Macro block (M)

- Output, prices, monetary policy interest rate
- House prices, mortgage arrears
- Mortgage and corporate bond spreads

Bank lending block (B)

- Household secured (mortgage) lending growth
- Corporate lending growth

Capital block (K)

• System-wide tier 1 capital ratio

Policy block (P)

Identification: Institutional features of UK system

Confidentiality of changes to trigger implausible that any macro variable responded directly; e.g. no mention of prudential regulation in official record of monetary policy committee meetings (until Jan., 2008).

Timing and scope of reviews supervisory reviews at set two-year intervals, and no clear mandate to respond to business cycle; unlikely that trigger responded to macroeconomic shocks.

Idiosyncratic bank-level shocks led to changes in aggregate capital requirements (and so capital buffers) that acted to shift aggregate loan supply. Capturing feedbacks: A structural VAR model

$$\mathbf{y}_t^{\mathsf{T}} \mathbf{A} = \mathbf{x}_t^{\mathsf{T}} \mathbf{F} + \mathbf{v}_t^{\mathsf{T}}, \qquad \mathbf{v}_t \sim \mathsf{N}(\mathbf{0}, \mathbf{I})$$

...where \mathbf{y}_t is a vector of 11 aggregate endogenous variables, including macroeconomic aggregates, actual and required capital and bank lending.

The vector $\mathbf{x}_t^{\mathsf{T}} = (\mathbf{y}_{t-1}^{\mathsf{T}}, \dots, \mathbf{y}_{t-p}^{\mathsf{T}}, 1)$ contains lags of \mathbf{y}_t , and \mathbf{A} and $\mathbf{F} = [\mathbf{F}_\ell]$ are coefficient matrices with equations in columns, variables in rows.

The VAR allows for complex dynamic interactions between variables in y_t , both contemporaneously and with time lags.

Capturing feedbacks: A structural VAR model

$$\mathbf{y}_t^{\mathsf{T}} \mathbf{A} = \mathbf{x}_t^{\mathsf{T}} \mathbf{F} + \mathbf{v}_t^{\mathsf{T}}, \qquad \mathbf{v}_t \sim \mathsf{N}(\mathbf{0}, \mathbf{I})$$

...impose identifying (exclusion) restrictions on both ${\bf A}$ and ${\bf F}$ matrices:

- macroeconomic variables do not respond *directly* to actual or regulatory minimum capital ratios (but may respond indirectly);
- lending does not adjust immediately to changes in capital;
- banks may adjust actual capital ratios immediately in response to changes in capital requirements.

Capturing feedbacks: A structural VAR model

$$\mathbf{y}_t^{\mathsf{T}} \mathbf{A} = \mathbf{x}_t^{\mathsf{T}} \mathbf{F} + \mathbf{v}_t^{\mathsf{T}}, \qquad \mathbf{v}_t \sim \mathsf{N}(\mathbf{0}, \mathbf{I})$$

Impact matrix A

Variables	Μ	В	Κ	Р
Μ	×	×	×	
В		×	×	
Κ			×	
Р			×	×

Lag matrix \mathbf{F}_{ℓ}

Variables	Μ	В	Κ	Р
М	×	×	×	
В	×	×	×	×
Κ		×	×	×
Р		×	×	Х

$$\mathbf{y}_t^{\mathsf{T}} \mathbf{A} = \mathbf{x}_t^{\mathsf{T}} \mathbf{F} + \mathbf{v}_t^{\mathsf{T}}, \qquad \mathbf{v}_t \sim \mathsf{N}(\mathbf{0}, \mathbf{I})$$

...the likelihood function is:

$$p(\mathbf{y}_t|\mathbf{x}_t;\mathbf{A},\mathbf{F}) \propto |\mathbf{A}| \exp\left\{-\frac{1}{2}(\mathbf{y}_t'\mathbf{A}-\mathbf{x}_t'\mathbf{F})(\mathbf{y}_t'\mathbf{A}-\mathbf{x}_t'\mathbf{F})'\right\}$$

The prior distributions are specified following Sims and Zha (*IER*, 1998). Parameterize using a two-part structure for each equation *i*:

 $\mathbf{a}_i \sim \mathsf{IN}(\mathbf{0}, \underline{\mathbf{S}}_i)$ $\mathbf{f}_i | \mathbf{a}_i \sim \mathsf{N}(\underline{\mathbf{B}} \mathbf{a}_i, \underline{\mathbf{H}}_i)$

where lowercase letters denote columns of the uppercase matrices. Matrix \underline{B} captures beliefs about reduced form dynamics.

The \underline{S}_i and \underline{H}_i matrices are identical for equations in the M, and {B,K,P} blocks.

Priors estimated from micro data

The prior distribution of coefficients in the {B,K,P} blocks

 $\mathbf{f}_i | \mathbf{a}_i \sim \mathsf{N}(\underline{\mathbf{B}} \mathbf{a}_i, \underline{\mathbf{H}}_i), \quad i = \text{lending/capital variables}$

is centered on *panel estimates* of the lending-capital relationship on banklevel data:

$$\mathbf{y}_{jt}^{(i)} = \mathbf{B}^{(i)}\mathbf{y}_{j,t-1}^{(i)} + \mathbf{C}\mathbf{z}_{j,t-1} + \psi_j + \lambda_t + \varepsilon_{jt}$$

Reduced form matrix **B**

with $\mathbf{B}^{(i)}$ is the sub-matrix corresponding to $\mathbf{y}^{(i)}$ in $\underline{\mathbf{B}}$.

Variables	Μ	В	Κ	Р	
М	×	×	×	X	
В	×	×	×	×	
Κ		×	×	×	
Р		×	×	×	

Priors estimated from pre-sample data

Important to capture the 'medium run' nature of the financial cycle (early 1990s housing bust in particular).

Run an auxiliary VAR on the $\{M,B\}$ blocks using data 1975-1989, center the macro and bank lending priors on resulting estimates.

Reduced form matrix D					
Variables	Μ	В	Κ	Р	
М	×	×	×	×	
В	×	×	×	×	
Κ		×	×	×	
Р		×	×	×	

Key point

Posterior estimates of model quantities combine 'prior' information from micro data with sample information on aggregate quantities.

Intuitively, micro-level variation sharpens macro-level inference by exploiting multiple instances of changes in capital requirements and changes in lending.^a

A long run of data is used to estimate the relationship between bank lending and macroeconomic aggregates.

^{*a*}The posterior distributions of the parameters are obtained via Gibbs sampling (Waggoner and Zha, *JEDC*, 2003).

Outline

Motivation

2 Data and Model

4 Macroprudential counterfactual

Summary

Main messages

Changes in financial structure have real effects

Supervisory actions to alter funding mix of banks reduce lending growth and have spill-overs to asset prices and real expenditure; comparable to bank credit supply shock in Bassett et al. (*JME*, 2014). Consistent with other empirical findings on 'financial shocks'.

Financial accelerator mechanism amplifies shock

Increases in credit spreads on both mortgage and corporate lending amplify regulatory disturbances (Iacoviello, *AER*, 2005). Feedbacks strongest within the banking system.

Regulation had modest effects on asset prices and lending growth over the period of study

Large regulatory shocks were infrequent; thus variation in microprudential capital requirements not, on average, a source of macro fluctuations.

Response to regulation shock

Response to regulation shock

Response to regulation shock, credit spreads fixed

Historical contribution of shocks to trigger ratio

Effects of prior bank-level information

-- baseline prior; -- a 'loose' prior; $- \cdot -$ a 'tight' prior.

Outline

Motivation

- 2 Data and Model
- Macroeconomic effects of bank regulation
- Macroprudential counterfactual

A macroprudential counterfactual

Extrapolate from the 1989-2008 regime to learn something about the Basel III macroprudential regime:

- Replay history, with the same exogenous shocks but a *different* policy equation.
- Restrict attention to linear feedback rules (no threshold effects, no contingency on stress test results etc.).

Lucas critique If private agents form plans based on expectations of future regulatory policy, altering the policy rule while leaving other relations unchanged may result in error. Two rebuttals:

- Risk-based capital regulation a novel tool circa 1990, therefore unlikely agents could form a realistic assessment of its impact.
- Lack a widely agreed-upon fully structural alternative.

Counterfactual policy rules

Credit gap rule

Raise requirements when the ratio of credit to GDP is high relative to trend:

$$\operatorname{trig}_{t} = \theta^{\operatorname{gap}} \frac{1}{3} (\operatorname{credgap}_{t} + \operatorname{credgap}_{t-1} + \operatorname{credgap}_{t-2}) + \hat{\boldsymbol{\beta}}' \mathbf{w}_{t} + \nu_{t}^{\operatorname{trig}}$$

Set $\theta^{\text{gap}} = 1/8$ in simulations.

House price/mortgage spread rule Raise capital requirements when house prices accelerate, or spreads

$$\operatorname{trig}_{t} = \theta^{\operatorname{hp}} \Delta^{2} \ln \operatorname{housep}_{t} - \theta^{\operatorname{spr}} \left(\operatorname{spr}_{t} - \frac{1}{2} \left[\operatorname{spr}_{t-1} + \operatorname{spr}_{t-2} \right] \right) + \hat{\beta}' \mathbf{w}_{t} + \nu_{t}^{\operatorname{trig}}$$

Set $\theta^{hp} = 3/4$, $\theta^{spr} = 1/5$ in simulations.

Note: when $\theta^{gap} = 0$ or $\theta^{hp} = \theta^{spr} = 0$, every simulated path coincides precisely with the data.

Macroprudential policy - credit gap

Counterfactual policy rules

Credit gap rule

Raise requirements when the ratio of credit to GDP is high relative to trend:

 $\operatorname{trig}_{t} = \theta^{\operatorname{gap}} \frac{1}{2} (\operatorname{credgap}_{t} + \operatorname{credgap}_{t-1} + \operatorname{credgap}_{t-2}) + \hat{\boldsymbol{\beta}}' \mathbf{w}_{t} + v_{t}^{\operatorname{trig}}$

Set $\theta^{gap} = 1/8$ in simulations.

House price/mortgage spread rule

Raise capital requirements when house prices accelerate, or spreads fall:

$$\operatorname{trig}_{t} = \theta^{\operatorname{hp}} \Delta^{2} \ln \operatorname{housep}_{t} - \theta^{\operatorname{spr}} \left(\operatorname{spr}_{t} - \frac{1}{2} \left[\operatorname{spr}_{t-1} + \operatorname{spr}_{t-2} \right] \right) + \hat{\boldsymbol{\beta}}' \mathbf{w}_{t} + \nu_{t}^{\operatorname{trig}}$$

Set $\theta^{hp} = 3/4$, $\theta^{spr} = 1/5$ in simulations.

Note: when $\theta^{gap} = 0$ or $\theta^{hp} = \theta^{spr} = 0$, every simulated path coincides precisely with the data.

Macroprudential policy - house prices/mortgage spr.

Outline

Motivation

- 2 Data and Model
- 3 Macroeconomic effects of bank regulation
- 4 Macroprudential counterfactual

Summary: what this paper does

- Identifies exogenous changes in bank loan supply through regulation-induced changes in bank capital ratios.
- Estimates a VAR using both micro and macro data, to produce sharper estimates of IRFs while capturing system-level feedbacks.
- Demonstrates that changes in banks' liability structures can produce macroeconomic effects, that are amplified by a financial accelerator mechanism.
- Presents simulations demonstrating that a counter cyclical macroprudential policy can stabilize credit with little impact on aggregate expenditure.