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1 Introduction

Financial Conditions indexes (FCI) aim to measure exogenous systematic shifts in financial

variables that could be related to future economic activity. Policymakers and market an-

alysts use FCIs to anticipate episodes of financial stress with negative effects in economic

activity. Because it is hard to measure U.S. financial conditions using one or two financial

variables, FCIs have been constructed by extracting common components from large panels

of financial time series as surveyed by Hatzius, Hooper, Mishkin, Schoenholtz and Watson

(2010). Unfortunately, there is no consensus measure of financial conditions. Ideally, an FCI

should provide an early warning system for financial distresses that effect macroeconomic

activity. The indexes are normally constructed by finding a measure of financial conditions

and, then, examining the impact on future economic activity. However, Kliensen, Owyang

and Vermann (2012) show that several popular measures of financial conditions are highly—

but not perfectly—correlated with each other, suggesting the definition of financial stress

varies across researchers.

Instead of measuring financial stress as exogenous changes in the financial markets that

could have a potential impact on the macroeconomy, we measure financial stress by explicitly

linking current financial conditions with the macroeconomy. We define financial stress as the

periods in which exogenous negative financial shocks have stronger negative effects on growth

and inflation if compared with the no stress periods. We provide a measure of the likelihood

of being in the financial stress regime in the current period. We identify financial stress

periods using a large unbalanced panel of financial variables with an embedded method for

covariate selection, so irrelevant financial variables are excluded from the financial conditions

factor. As by-product of our modelling approach, we provide a measure of financial conditions

similar to the ones surveyed by Hatzius et al. (2010), but extracted from a nonlinear factor

modelling approach. The advantage of allowing for nonlinearity in the factor dynamics is

that the extracted factor is more strongly related with business cycle phases.

We identify periods of financial stress using a novel factor-augmented vector autoregres-
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sive model with smooth regime changes (FASTVAR). The model has two regimes, allowing

for dynamics changes depending on the financial condition factor. The proposed model aug-

ments the smooth transition vector autoregressive model (surveyed by Van Dijk, Terasvirta

and Franses (2002)) with an unobserved factor as in Bernanke, Boivin and Eliasz (2005).

Thus, the strength of the relation between financial conditions and economic activity depends

explicitly on the unobserved financial conditions factor linked to a set of observed financial

variables. The unobserved factor is jointly estimated with the parameters of a smooth tran-

sition function that describe the weights given to each regime over time. We also include a

step in the estimation that allows for covariate selection to determine the composition of the

data vector included in the financial conditions factor.

Our approach differs from the literature as follows. Hatzius et al. (2010) filters the time

series of financial variables to exclude the effect of macroeconomic conditions before building

their financial condition index (Brave and Butters (2012) also follow similar approach). Our

approach relates financial stress to periods in which the effect of financial shocks are stronger

in future economic activity and inflation. This means that we do not clean our financial

variables of macroeconomic effects before the estimation because the financial shocks within

a VAR approach will be by definition exogenous. Our approach also differs from the FAVAR

approach of Koop and Korobilis (2013) who remove the effect of macroeconomic variables

from financial variables using an adequate measurement equation. The restriction we impose

to disentangle part of the factor dynamics from macroeconomic variables is to assume that

lagged macroeconomic variables do not enter the factor equation within the VAR.

The issue that the transmission of shocks may depend on the level of financial stress

has also being addressed by Davig and Hakkio (2010) and Hubrich and Tetlow (2011) in

a Markov-switching approach, and by Dahlhaus (2012) in a smooth transition approach.

However, they all use an observed financial conditions index, computed outside the modelling

approach, to help to identify regime changes. Our approach jointly estimates the financial

conditions index and the regimes of financial stress. The diffi culty of the joint estimation is
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that a method that deals with nonlinearity in the state-space representation of the model is

required.

Koop and Korobilis (2013) allow for time variation in the parameters of the VAR– that

is, changes are exogenous and are not related with financial conditions. A method to choose

variables to enter factors was also performed by Kaufmann and Schumacher (2012) using

sparse priors in the context of dynamic factor models, and Koop and Korobilis (2013) using

model averaging in FAVAR models.

Following Hatzius et al. (2010) and Brave and Butters (2012), we consider a unbalanced

panel of 23 financial indicators. Estimation of the model is conducted in a Bayesian envi-

ronment using Metropolis-Hastings steps to draw the transition function parameters and a

vector of indicator variables determining the financial series entering the factor. Because

of the nonlinearity in the autoregressive parameters, the factor must be estimated using

a nonlinear filter. We use the extended Kalman filter, implying that we use a first-order

approximation of the state equation.

The balance of the paper proceeds as follows: Section 2 describes the general FASTVAR

model with model indicators used for model selection. Section 3 outlines the Gibbs sampler

used to estimate the model parameters, the factor, and the posterior distributions for the

model inclusion indicators. In this section, we also describe the data used. Section 4 presents

the results for the model estimated with one factor, representing our macro-financial stress

index. Section 5 summarizes and offers some conclusions.

2 The Empirical Model

In this section, we propose a method to identify financial stress periods: periods in which

financial shocks have stronger effects on macroeconomic variables. We begin by describing

a vector autoregressive model that links an exogenously-defined financial condition index

to economic activity. Then, we propose a Factor-Augmented Smooth Transition vector
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autoregressive model (FASTVAR) that allows for the joint estimation of a financial condition

factor and the time-varying weights for the financial stress regime.

2.1 The Smooth Transition VAR Model

Let ft represent the period−t value of a financial conditions index. For now, assume that

ft is scalar, observed, and exogenously determined. Define zt as an (Nz × 1) vector of

macroeconomic variables of interest– e.g., GDP growth, employment, inflation, etc. Suppose

that the effect of a shock to financial conditions on macroeconomic variables is linear, but

that financial conditions are also affected by macroeconomic variables– in particular, current

economic activity. In this case, the dynamic response can be evaluated in a standard VAR

framework. Define the ((Nz + 1)× 1) vector yt = [z′t, ft]
′, where the ordering of ft last is

intentional and provides the identifying restriction used to construct impulse responses. The

VAR in question is then:

yt = A (L) yt−1 + εt, (1)

whereA (L) is a matrix polynomial in the lag operator, εt ∼ N (0,Ω), and we have suppressed

any constants and trends. The matrices A (L) drive the transmission of financial shocks–

shocks to ft– to macroeconomic variables zt. However the transmission in this specification

cannot change over time or with the level of financial stress. Suppose that the transmission

mechanism changes over time and depends on the size and sign of the financial conditions

index; then, we can write:

yt = [1− πt (ft−1; γ, c)]A1 (L) yt−1 + πt (ft−1; γ, c)A2 (L) yt−1 + εt; (2)

where A1 (L) and A2 (L) are matrices of lag polynomials, εt ∼ N (0Nz+1,Ωt), and Ωt the

variance-covariance matrix. If ft is observed, the model described in (2) is a standard smooth

transition vector autoregression (STVAR) as in Van Dijk et al. (2002). In the parlance of the
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STAR models, ft−1 is the transition variable and πt (ft−1) is the transition function, where

0 ≤ πt (ft−1) ≤ 1. The transition function πt (ft−1) determine the time-varying weights of

each set of autoregressive parameters A1 (L) and A2 (L) on the path of yt.

The transition function can take a number of forms. One example is a first-order logistic

transition function of the form:

πt (ft−1; γ, c) = [1 + exp (−γ (ft−1 − c))]−1 , (3)

where γ ≥ 0 is the speed of transition and c is a fixed threshold. In (3), the regime process is

determined by the sign and magnitude of the deviation of lagged financial conditions, ft−1,

from the threshold c. If ft−1 is less than c, the transition function, πt (ft−1) gives more weight

to the autoregressive parameters of the first regime, A1 (L). The coeffi cient γ determines the

speed of adjustment: as |γ| → ∞, the transition becomes sharper and the regime switches

resemble a pure threshold model. At γ = 0, the model collapses to a linear model. Smooth

transition and threshold vector autoregressions have been employed to measure asymmetries

in the dynamic effects of monetary shocks (Weise, 1999; Ravn and Sola, 2004), and in the

effect of credit conditions on economic activity (Balke, 2000).

In the model (2) and (3), a shocks propagates differently depending on the (lagged) state

of financial conditions. Shocks to macro variables have regime-dependent effects that can

be determined conditional on ambient financial conditions. Shocks to financial conditions,

on the other hand, have two effects. Conditional on the regime, the response to a financial

conditions shock can be computed as standard (state-dependent) impulse response. In ad-

dition, shocks to financial conditions can cause a change in future macroeconomic dynamics

by driving the economy away from one regime towards the other.
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2.2 The Factor-Augmented STVAR

The STVAR model in the preceding subsection relies on the fact that ft is observed. This

could be true if one used an observed proxy for financial stress or if one used a constant

weight measure, as the financial condition indexes surveyed by Hatzius et al. (2010). But

how can we be sure we are properly modeling financial conditions such that we correctly

identify financial stress periods? As a consequence, we estimate the financial conditions

index as a factor within a factor-augmented STVAR based on a vector of financial variables,

xt.

Let ft be the factor that summarizes the comovements across Nx demeaned financial

series, xt:

xt = βft + ut, (4)

where β is the matrix of factor loadings and uit are iid N (0, σ2i ). The model (2), (3), and

(4) comprise the FASTVAR model. The factor is jointly determined by the cross-series

movements in the financial variables and the behavior of the macroeconomic variables.

One of the central issues in the literature measuring financial stress is how to determine

which financial series should comprise xt. For example, Kliensen et al. (2012) surveyed 11

different indexes that were constructed with 4 up to 100 indicators. While more series may

provide a more complete view, increasing the cross-sectional dimension of xt may result in es-

timated factors that do not truly represent financial stress. We are interested in determining

the set of financial variables that alters the underlying dynamics of the macroeconomy– that

is, which financial variables switch the macroeconomic dynamics from A1 (L) to A2 (L) and

vice versa.

To accomplish this, we augment (4) with a set of model inclusion dummies, Λ = [λ1, ..., λNx ]
′,

λi ∈ {0, 1}. The inclusion dummies indicate whether a particular financial series should be

included in the set of variables that make up the factor– that is, if λi = 1, xi is included in
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the set of variables that determine the factor. If λi = 0, xi is excluded of the estimation of

the factor; the effect of λi = 0 is to set the factor loading associated with the ith element of

xt to zero. We can then rewrite (4) as

xt = (Λ� β) ft + ut. (5)

The vector of inclusion indicators, Λ, can be estimated along with the other parameters in

the model.

2.2.1 The State-Space representation

The state-space form of the model consisting of (2), (3), and (4) summarizes the assumptions

behind the FASTVAR model that we have made thus far. For exposition, we assume that

p = 1 and Nz = 2. The measurement equation is:

 zt

xt

 =

 I 0

0 (Λ� β)


 zt

ft

+

 0

ut

 ;ut ∼ iidN(0, σ2i ). (6)

This differs from the FAVAR specification of Bernanke et al. (2005) by excluding the macro-

economic variables zt as observable factors in the measurement equation of the financial

variables xt.

The state equation is:


z1,t

z2,t

ft

 =


c1

c1

0

+


a1,11 a1,12 a1,13

a1,21 a1,22 a1,23

0 0 a1,33



z1,t−1

z2,t−1

ft−1

 (7)

+πt(ft−1; γ, c)




d11 d12 d13

d21 d22 d23

0 0 d33



z1,t−1

z2,t−1

ft−1


+


ε1t

ε2t

εft

 ,
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where εt ∼ N(0,Ω), πt(ft−1; γ, c) = [1+exp(−γ(ft−1− c))]−1, and dij = a2,ij−a1,ij measures

the change in the autoregressive coeffi cients across regimes. In equation (7), we include

additional restrictions in the factor dynamics, excluding the possibility of direct dynamic

effects of macroeconomic variables on the financial factor. This is justified by the fact that

the factor is estimated/filtered using both the measurement (6) and the state (7) equations,

and we would like to relate the factor more strongly to financial variables in xt than economic

variables in zt.

2.2.2 Impulse Response Functions and Financial Conditions

The FASTVAR allows for asymmetric transmission of financial shocks, which affect directly

the ft equation, on macroeconomic variables. However, asymmetries will only prevail if es-

timates of dij do not collapse to zero or, alternatively, if the transmission of shocks differs

even though the shocks’size and sign are invariant. We split the data on macroeconomic

variables and the estimated factor into two subsets to verify whether the dynamic transmis-

sion changes with regimes. The first subset refers to the histories during the lower regime,

πt(ft−1; γ, c) ≤ 0.5, and the other subset refers to the upper regime, πt(ft−1; γ, c) > 0.5.

Based on these two sets of histories, we compute generalized impulse responses conditional

on the regime as suggested by Koop, Pesaran and Potter (1996), and applied by Galvao

and Marcellino (2013). The responses measure the effect of a one-unit shock to financial

conditions on the endogenous variables, assuming (i) a specific set of histories at the impact

(either lower or upper regime), and (ii) that the regimes may change over horizon. We sim-

ulate data to compute the conditional expectations of yt+h with and without the shock to

compute responses:

IRFh,v,s =
1

Ts

Ts∑
t=1

{
E[yt+h|z(s)t , vt = v]− E[yt+h|z(s)t ]

}
,
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where Ts is number of histories in regime s, z(s)t is a history from regime s (typically includes

zt, ..., zt−p+1 and ft, ..., ft−p+1), and vt = v is the shock vector. In the empirical application,

we use 200 draws from the disturbances distribution to compute each conditional expectation

using a given set of FASTVAR parameters. The IRFh,v,s measures the reponses of both

macroeconomic variables and the factor at horizon h from shock v that hit the model in

regime s (either the lower or the upper regime defined using the transition function as

above). This approach for computing impulse responses takes the nonlinear dynamics of the

FASTVAR fully in consideration

We use the estimated impulse responses to identify a given regime as the “financial stress”

regime. For example, if negative shocks to the financial conditions factor ft have significantly

more persistent effects (larger cumulative effects) in the lower regime in contrast with the

upper regime, then this implies that the lower regime is the financial stress regime, based

on the definition of financial stress firstly described in the Introduction. The estimated

transition function over time πt(ft−1; γ, c) measures the weights given to the low (no) stress

regime over time. If the current transition function is such that πt(ft−1; γ, c) ≤ 0.5, then we

should expect that unexpected changes in the financial factor ft would have stronger effects

on future macroeconomic variables.

3 Estimation

We estimate the model using the Gibbs sampler with a Metropolis-in-Gibbs step. Let Θ

collect all of the model parameters. We can partition the set of model parameters into

blocks: (1) Ψ = [A1 (L) , A2 (L)], the VAR coeffi cients; (2) Ω, the VAR variance-covariance

matrix; (3) γ and c, the transition speed and the threshold; (4) β, Λ, and fT = {ft}Tt=1, the

factor loadings, the inclusion indicators, and the factor; and (5) {σ2it}
Nx
i=1, the variances of

financial variables. The algorithm samples from each block, conditional on the other blocks.

After a suitable number of draws are discarded to achieve convergence, the set of conditional
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draws form the joint distribution of the whole model.

3.1 Priors

Table A: Priors for Estimation

Parameter Prior Distribution Hyperparameters

vec (Ψ) N (m0,M0) m0 = 0N ; M0=10IN N = 2Nz (Nz + 1)P + 2Nz + 2P

Ω−1 W
(
ν0
2
, D0
2

)
ν0 = 1000 ; D0 = IN

γ Γ (g0,G0) g0 = 6 ; G0 = 3 ∆γ = 0.2

c Unif (cL, cH) cL = f0.05 ; cH = f0.95

σ−2n Γ (ω0,W0) ω0 = 1 ; W0 = 1 ∀n

βn N (b0,B0) b0= −100 ; B0=0.01 ∀n

λn ρ0 ρ0 = 0.1 ∀n

We assume a proper normal—inverse-Wishart prior for the VAR(P ): Each regime-dependent

coeffi cient matrix has a multivariate normal prior; the covariance matrix is inverse Wishart.

The threshold in the transition function has a uniform prior bounded by the 5th and 95th

quantiles of the distribution of the factors; the transition speed has a gamma prior. We also

adopt a normal—inverse-gamma prior for the factor equation: Each of the factor loadings has

a normal prior and each variance is inverse gamma. The prior for the inclusion indicator is

set such that more weight is assigned to excluding variables. This makes the factor estimated

over, ex ante, as parsimonious a vector of financial indicators as possible. Table A presents

the prior hyperparameters.

3.2 Drawing Ψ conditional on Θ−Ψ, fT , zd,T and xT

Conditional on πt (ft−1), a draw from the posterior distributions for the VAR parameters is

a straightforward application of Chib (1993) and Chib and Greenberg (1996). Rewrite the

VAR of yt = [z′t, ft]
′ as:
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yt = θtΨ̃ + εt, (8)

where Ψ̃ is the (2 (Nz + 1)NzP + 2Nz + 2P × 1) stacked vector of parameters,

θt =

 INz ⊗ ŷt−1 02P

0 f̂t−1

 ,
ŷt−1 =

[
πt (ft−1) ypt−1, (1− πt (ft−1)) ypt−1

]
,

ypt−1 =
[
1,y′t−1, ...,y

′
t−p
]
,

f̂t−1 =
[
πt (ft−1) fpt−1, (1− πt (ft−1)) fpt−1

]
,

and fpt−1 =
[
f ′t−1, ..., f

′
t−p
]′
. Then, given the prior N (m0,M0), the (stacked) joint parameter

vector can be drawn from

Ψ ∼ N (m,M) ,

where

M =

(
M−1

0 +

T∑
t=1

θ′tΩ
−1
t θt

)−1
and

m = M

(
M−1

0 m0 +
T∑
t=1

θ′tΩ
−1
t yt

)
.

3.3 Drawing c̃, γ̃ conditional on Θ−[c̃,γ̃], fT , zd,T and xT

The prior on the hyperparameters of the transition equation is jointly normal-gamma. Given

the prior, the posterior is not a standard form; γ, however, can be drawn using a Metropolis-
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in-Gibbs step (Lopes and Salazar, 2005). To do this, we first draw the candidates, γ∗ and

c∗, separately from random walk gamma and normal proposal densities, respectively:

γ∗ ∼ G

((
γ[i−1]

)2
∆γ

,
γ[i−1]

∆γ

)
and

c∗ ∼ Unif (cL, cH) ,

where the superscript [i− 1] represents the values retained from the past Gibbs iteration and

∆γ is a tuning parameter, and the bounds of the uniform distribution are chosen such that

there proposed threshold always lies on the interior of the distribution of the factors for the

current factor draw. The joint candidate vector is accepted with probability a = min {A, 1},

where

A =

∏
t φ (zt|πt (ft−1|γ∗,c∗) ,Ψ, ft)∏

t φ (zt|πt (ft−1|γ[i−1],c[i−1]) ,Ψ, ft)

× dUnif (c∗|cL, cH)

dUnif (c[i−1]|cL, cH)

dG
(
γ∗|
(
γ[i−1]

)2
/∆γ, γ

[i−1]/∆γ

)
dG
(
γ[i−1]| (γ[i−1])2 /∆γ, γ[i−1]/∆γ

) ,
γ[i] represents the last accepted value of γ, dUnif (.) is the uniform pdf, and dG (.) is the

gamma pdf.

3.4 Drawing Ω conditional on Θ−Ω, fT , zd,T and xT

Here, we describe the draw of the homoskedastic VAR variance-covariance matrix; extension

to the regime-dependent structure described above is straightforward. Rewrite (2) in terms

of the residual:
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εt = yt − A1(L)yt−1 − πt (ft−1)D(L)yt−1.

Then, given the prior W (ν0, D0) for Ω−1, the posterior is

Ω−1 ∼ W (ν,D) ,

where

ν =
ν0 + T

2
,

D =
D0

2
+

1

2

T∑
t=1

εtε
′
t,

and W (., .) is the Wishart distribution.

3.5 Drawing β, and Λ conditional on Θ−β,Λ, zd,T , ft and xT

In a standard factor-augmented VAR, the factors can be drawn by a number of methods

including the Kalman filter and the factor loadings are conjugate normal. In our case, we

have two issues that can complicate estimation. First, because the composition of the vector

of data determining the factor is unknown, we must sample the inclusion indicators, loadings,

and factors jointly. This joint draw requires a Metropolis step. Second, because the factors

also affect the regimes through the transition equation, the state-space representation is

nonlinear and a standard Kalman filter cannot be used.

The joint draw proceeds as follows. Our plan is to draw Λ via a reversible-jumpMetropolis

step; however, a new candidate Λ∗ invalidates the β from the previous draw. Thus, it is more

effi cient to draw β and Λ jointly. Define the joint proposal density, q (β∗,Λ∗), as

q (β∗,Λ∗) = q (β∗|Λ∗) q (Λ∗) .

First, we draw a set of inclusion candidates, Λ∗, from q (Λ∗). Then, conditional on these
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candidates, we draw a candidate factor loading, β∗, from q (β∗|Λ∗). This allows us to simplify

the acceptance probability of the joint candidate.

3.5.1 Drawing the Inclusion Indicator Candidate

The financial stress index may be sensitive to small shocks in the financial variables because

of the nonlinearities in the transition function, making variable selection important. Let

Λ[i−1] =
[
λ
[i−1]
1 , ..., λ

[i−1]
Nx

]
represent the last iteration’s draw of the matrix of inclusion indi-

cator with λ[i−1] ∈ {0, 1}. We draw an index candidate, n∗, from a discrete uniform with

support 1 to Nx. The candidate Λ∗ is then

Λ∗ =
[
λ
[i−1]
1 , ..., λ

[i−1]
n−1 , 1− λ[i−1]n , λ

[i−1]
n+1 , ..., λ

[i−1]
Nx

]
,

which essentially turns the n∗ switch on from off or vice versa.

3.5.2 Drawing the Loading Candidate

Conditional on the factors and variances, the factor loadings can be drawn from a normal

posterior given the normal prior, N (b0, B0). Moreover, because the x′s are assumed to

orthogonal conditional on the factors, we can draw the candidate loadings one at a time:

β∗n ∼ N (bn,Bn), where

bn = B−1n
(
B−10 b0 + σ−2n f ′TxnT

)
and

B−1n = B−10 + σ−2n f ′TfT .

3.5.3 Accepting the Draw

Once we have a set of proposals, we accept them with probability
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An,γ = min

{
1,
|B∗|1/2

|B|1/2
exp

(
1
2
b∗B∗−1b∗

)
exp

(
1
2
bB−1b

) π (Λ∗)

π (Λ[i−1])

q (Λ∗)

q (Λ[i−1])

}
, (9)

where b∗ and B∗ are defined and bn and Bn are defined for Λ[i−1].

3.6 Drawing the Factor

To implement the extended Kalman filter, we rewrite the model in its state space represen-

tation. The state variable is ξt = ypt as defined above; let Yt = [z′t,x
′
t]
′. Then,

Yt = Hξt + et,

ξt = G
(
ξt−1

)
+ vt,

where

H =

 INz+1 0Nz×1 0Nz×Nc

0Nx×Nz+1 Λ� β 0Nx×Nc

 ,
et =

[
0′Nz×1,u

′
t

]′
, vt =

[
ε′t,0

′
(Nc+1)×1

]′
, Nc = (Nx + 1) (P − 1), Ete′tet = R, and Etv′tvt = Q.

Note that, in general, both Q and R will be singular. The function G (.) is

G
(
ξt−1

)
= [1− πt (ft−1)]A1 (L) + (πt (ft−1))A2 (L)] yt−1,

which is nonlinear in the state variable.

We can then draw ξT ∼ p
(
ξT |T ,PT |T

)
which is obtained from the extended Kalman fil-

ter (EKF). The EKF utilizes a (first order) approximation of the nonlinear model.The EKF,

then, uses the familiar Kalman prediction and update steps to generate the posterior distri-

butions for the state variable, ξt ∼ p
(
ξt|t,Pt|t

)
. The distribution ξT−1 ∼ p

(
ξT−1|T ,PT−1|T

)
is obtained via smoothing and preceding periods are drawn recursively.
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3.7 Drawing σ2 conditional on Ψ−σ2,ZT and XT

Given the inverse gamma prior, the measurement variances can be drawn from an inverse

gamma posterior, σ−2i ∼ Γ (ωi,Wi), where

ωi =
1

2
(ω0 + T ) ,

Wi =
1

2
(W0 + uitu

′
it) ,

and

uit = xit − Λift.

4 Empirical Results

4.1 Data

To measure financial stress through its effects on the transition dynamics of macroeconomic

variables, we require two sets of data. First, we need financial data with which we can search

for common fluctuations. Second, we need a set of macroeconomic variables. For the former,

we consider a unbalanced panel consisting of a vector of 23 financial series also used in

Hatzius et al. (2010). These financial indicators include term spreads, risk spreads, Treasury

rates, commercial paper rates, and survey data. The data ends in September, 2012. All

variables are monthly, and described in Table 1. The selection of variables encompass all

subgroups described in Hatzius et al. (2010), Brave and Butters (2012) and Kliensen et al.

(2012).

Because the financial data are monthly, we use the monthly growth rate in industrial

production as our main economic indicator. We also include a monthly inflation measure,

the rate of change of headline CPI. Both series are seasonally adjusted.
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4.2 Financial Conditions Factor and Transition Function.

The factor estimated within a FASTVAR model differs from the one obtained with a typical

dynamic factor model or with a FAVAR by allowing for smooth transition nonlinearity and

financial variables (covariate) selection. We start by exploiting the relative importance of

each one of these features in the estimation of the factor. Table 2 presents the posterior

mean of each element in Λ using the FASTVAR and also an equivalent linear FAVAR. Both

models use a VAR of order one. The covariate selection is more clear-cut in the case of the

linear specification with many values equal to either zero or one. The selection within the

FASTVAR model differs from the one with FAVAR. This is an initial evidence that nonlin-

earity matters for estimating the financial conditions factor. An interesting result is that

slope of the yield curve (10y3msp) is not chosen with both models while the predictability

of the slope for U.S. recessions is frequently reported (Rudebusch and Williams, 2009). A

possible explanation is that we are selecting variables for short horizon predictability (one

month), while the slope is more important at longer horizons (one year).

Figure 1 includes the estimates of three financial condition factors from different mod-

elling approaches. Negative values are generally associated with recession phases. The

FASTVAR estimates are the posterior means presented with 68 percent intervals. We also

present posterior mean estimates using the linear specification with covariate selection (as

in Table 2), and the FASTVAR with no covariate selection (factor computed with all 23

financial variables). The FASTVAR estimates with no covariate selection are normally not

far from the estimates with covariate selection, but they are outside the FASTVAR 68 per-

cent interval. The estimates obtaining with the linear specification tell a very different story,

and the link with business cycle phases is not as clear. For example, financial conditions

deteriorate during the 2001 and the 2008 recessions, but not in earlier recessions. The fact

that the factor dynamics may change over time has a clear impact on measuring financial

conditions.

Figure 2 plots the mean of the posterior distribution of the transition function, and 68
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percent intervals. The transition function for each period is computed at each Gibbs iteration

using the current draws of the transition parameters and the (lag of the) factor. As opposed

to the Markov-switching VAR model, in the FASTVAR model, the economy can reside in

the transition state between the two extreme regimes. These values represent the weights

given to the upper regime. Values near zero imply that the economy is in the lower regime.

Figure 2 also presents the transition function estimates when there is no covariate selection.

The time-variation is not very different from the full FASTVAR model, but the transition

function values are generally higher, implying that impulse response functions of these two

models may differ.

At this stage, one may be tempted to define the lower regime as a financial stress regime;

however, we still need to evaluate whether the transmission of financial shocks changes across

regimes.

4.3 Impulse Responses

Figure 3 presents the responses of one-unit decrease in the financial condition index if the

shock hits either in the lower or in the upper regime. These are generalized responses, that

is, they allow for regime switching over horizons and are computed conditional on lower

and upper regime histories as described in section 2.2.2. Looking at the factor estimates

in Figure 1, we can say sizeable decreases in the financial condition indexes are normally

associated with recession periods. The plots present the mean response over 700 draws from

the posterior distributions of all FASTVAR parameters, and include 68% intervals.

The responses of IP growth and inflation are clearly asymmetric across regimes. Financial

shocks have significantly more persistent effects on growth and inflation in the lower regime

in contrast with the upper regime. As a consequence, we can classify the lower regime as the

financial stress regime. The negative cumulative effects after two years in the financial stress

regime are 40% larger for IP growth and 400% larger for inflation. The effect of financial

shocks on the factor are also more persistent in the financial stress regime, but the difference
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is only significant at short horizons. We also find similar results if the shock is negative, but

small (0.1).

The FASTVAR model is also able to generate asymmetric responses depending on the

sign of the shock. Figure 4 presents the response of inflation and IP growth computed

at the posterior mean values of the parameters for positive and negative one-unit shocks.

It is clearly, in particular for inflation responses during the financial stress regime, that

negative shocks have more persistent effects than positive shocks. This implies that shocks

that improve financial conditions will have slower beneficial effects on growth and on raising

inflation than shocks that deteriorate financial conditions if the economy is in the financial

stress regime.

4.4 The Measure of Financial Stress

Based on the results so far, we can associate financial stress periods with periods in which

negative financial shocks have stronger negative effects on growth and inflation and that

positive shocks have a reduced effect. In this part, we investigate how financial stress peri-

ods identified using our novel methodology are related to NBER recession periods. Figure

5 presents NBER and financial stress periods, and also includes our estimated financial

conditions factor.

The proportion of recession months between 1981M11 and 2012M9 is 13 percent, while

the proportion of financial stress months is 27 percent. This implies that we have periods

of financial stress during expansion months. This is expected since even if negative financial

shocks hit during financial stress months, they may be small such that the economy would

be still in an expansion. More interesting is the fact that we identify financial stress periods

during all the four recessions in the period. This suggests that our measure of financial

stress may work as a real-time identification of periods in which the economy is more subject

to negative financial shocks that could, with a higher likelihood than normal times, lead

to a recession. Although the financial stress measure is good to pick up the beginning
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of recessions, it is less useful to signal the end of recessions since financial stress periods

normally finish four to six months after the end of each NBER dated recession.

5 Conclusions

The financial crisis emphasized the importance of identifying periods of high financial stress

as these periods can have important and detrimental effects on the macroeconomy. In this

paper, we construct an index of macro-financial conditions which– by design– includes only

variables which alter the economic dynamics between financial conditions and macroeconomic

variables such as industrial production and inflation.

We find that financial conditions, in general, do affect macroeconomic dynamics by al-

tering the underlying state of the economy. In periods of high financial stress, the financial

shocks have more persistent effects on macroeconomic variables.

We also find that the financial variables that do affect macroeconomic conditions tend to

be risk spreads and survey measures of financial conditions. Many yield spreads are excluded.

20



References

Balke, N. S. (2000). Credict and economic activity: credit regimes and nonlinear propagation

of shocks, The Review of Economics and Statistics 82: 344—349.

Bernanke, B. S., Boivin, J. and Eliasz, P. (2005). Measuring the effects of monetary policy:

A factor-augmented vector autoregressive (favar) approach, The Quarterly Journal of

Economics 120(1): 387—422.

Brave, S. and Butters, R. A. (2012). Diagnosing the financial system: financial conditions

and financial stress., International Journal of Central Banking June 2012: 191—239.

Chib, S. (1993). Bayes estimation of regressions with autoregressive errors: A gibbs sampling

approach, Journal of Econometrics 58: 275—294.

Chib, S. and Greenberg, E. (1996). Markov chain monte carlo simulation methods in econo-

metrics, Econometric Theory 12: 409—431.

Dahlhaus, T. (2012). Monetaring policy transmission during financial crisis: an empirical

analysis, Universitat Autonoma de Barcelona (mimeo) .

Davig, T. and Hakkio, C. (2010). What is the effect of financial stress on economic activity?,

Federal Reserve Bank of Kansas City Economic Review second quarter: 35—62.

Galvao, A. B. and Marcellino, M. (2013). The effects of the monetary policy stance on the

transmission mechanism., Studies on Nonlinear Dynamics and Econometrics, forthcom-

ing .

Hatzius, J., Hooper, P., Mishkin, F. S., Schoenholtz, K. L. and Watson, M. W. (2010).

Financial conditions indexes: A fresh look after the financial crisis, NBER Working

Paper n. 16150 .

Hubrich, K. and Tetlow, R. J. (2011). Financial stress and economic dynamics: the trans-

mission of crisis, Working Paper .

21



Kaufmann, S. and Schumacher, C. (2012). Finding relevant variables in sparse bayesian

factor models: economic applications and simulations results, Deutsche Bundesbank

Discussion Paper 29/2012.

Kliensen, K. K., Owyang, M. T. and Vermann, E. K. (2012). Disentagling diverse measures:

a survey of financial stress indices, Federal Reserve Bank of St. Louis Review 94: 369—97.

Koop, G. and Korobilis, D. (2013). A new index of financial conditions, Munich Personal

RePEc Archive .

Koop, G., Pesaran, M. H. and Potter, S. M. (1996). Impulse reponse analysis in nonlinear

multivariate models., Journal of Econometrics 74: 119—147.

Lopes, H. F. and Salazar, E. (2005). Bayesian model uncertainty in smooth transition

autoregressions, Journal of Time Series Analysis 27: 99—117.

Ravn, M. O. and Sola, M. (2004). Asymmetric effects of monetary policy in the united

states, Federal Reserve Bank of St. Louis Review 86: 41—60.

Rudebusch, G. and Williams, J. (2009). Forecasting recessions: The puzzle of the enduring

power of the yield curve, Journal of Business and Economic Statistics 27: 492—503.

Van Dijk, D., Terasvirta, T. and Franses, P. H. (2002). Smooth transition autoregressive

models - A survey of recent developments, Econometric Reviews 21: 1—47.

Weise, C. L. (1999). The asymmetric effects of monetary policy: A nonlinear vector autore-

gression approach., Journal of Money, Credit and Banking 31: 95—108.

22



22 
 

Table 1 – Financial Variables 
 Description  Sample  

10y annual growth rate of the 10 year treasury rate 1981M9-2012M9 
FFR3msp fed fund rates - 3month tbill rates 1981M9-2012M9 
2y3msp 2-year treasury rates – 3-month tbill rates 1981M9-2012M9 
10y3msp 10-year treasury rates – 3-month tbill rates 1981M9-2012M9 
baa10ysp Baa corporate rates – 10-year treasury rates 1981M9-2012M9 
30mort10ysp 30-year mortgage rates – 10-year treasury rates 1981M9-2012M9 
tedsp TED spread 1981M9-2012M9 
creditsp citibank corporate credit spread 1981M9-2012M9 
exchrate annual growth rate of the exchange rate 1981M9-2012M9 
wilrate annual growth rate of the Wishire 5000 1981M9-2012M9 
houseinf annual growth rate of the national house index 1981M9-2012M9 
creditrate annual growth rate of bank credit of commercial banks 1981M9-2012M9 
compaperrate annual growth rate of commercial paper outstanding 1981M9-2012M9 
moneyrate annual growth rate of money stock (zero maturity) 1981M9-2012M9 
nfibsurv %credit was harder to get than last time 1981M9-2012M9 
migoodsurv %good-%bad conditions for buying large goods 1981M9-2012M9 
mihousesurv %good-%bad conditions for buying a house 1981M9-2012M9 
miautosurv %good-%bad conditions for buying a car 1981M9-2012M9 
vix  VIX (monthly average) 1990M1-2012M9 
jumbospread Jumbo rates - 30-year conventional rates 1998M6-2012M9 
OIS spread 3-month libor rates - overnight index swap rates 2001M12-2012M9 
highyieldspre High-yield corporate rates – Baa corporate rates 1997M1-2012M9 
oil price price of oil relative to a 2-year moving average 1981M9-2012M9 
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Table 2 – Covariate Selection: Posterior Mean.  

 Nonlinear (FASTVAR) Linear (FAVAR) 
10y 0.46 1.00 
FFR3msp 0.72 1.00 
2y3msp 0.44 1.00 
10y3msp 0.38 0.00 
baa10ysp 0.83 1.00 
30mort10ysp 0.88 0.00 
tedsp 0.84 0.98 
creditsp 0.74 0.84 
exchrate 0.68 0.00 
wilrate 0.85 0.69 
houseinf 0.62 1.00 
creditrate 0.44 0.97 
compaperrate 0.52 1.00 
moneyrate 0.44 0.27 
nfibsurv 0.71 0.06 
migoodsurv 0.97 0.07 
mihousesurv 0.83 1.00 
miautosurv 0.77 1.00 
vix 0.71 1.00 
jumbospread 0.63 1.00 
OIS spread 0.83 0.01 
highyieldspre 0.97 1.00 
oil price 0.50 0.17 

 Note: Based on 7000 draws of the posterior distribution (9000 draws with 2000 
discharged).  
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Figure 1: Comparing Financial Factor Measures: FASTVAR, FAVAR with covariate 
selection and FASTVAR with no covariate selection.  

 
Figure 2: Transition Function values: FASTVAR and FASTVAR with no covariate 
selection.  
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Figure 3: Responses to a -1p.p. shock to Financial Conditions in the lower and upper 
regimes (Computed with 700 equally-spaced draws of the posterior distribution of FASTVAR 
parameters.)    
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Figure 4: Asymmetries from different shock signs computed at the posterior mean of 
the FASTVAR parameters.   
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Figure 5: NBER recessions, Financial Stress Periods and the Financial Conditions Factor.  
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