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1 Introduction

Imagine that the players in a Bayesian game receive less precise private signals and therefore be-

come more uncertain about their environment. In an arms race with incomplete information, for

example, countries may be uncertain about arms’ effectiveness and opponents’ intentions — and

the degree of uncertainty is likely to change over time. How will such changes in exogenous dis-

tributions affect the Bayesian equilibria, including the mean actions and the actions’ variances?

In the arms race, will increased uncertainty lead to disarmament or to escalation? The objective

of this paper is to develop the tools needed to address such questions and illustrate the methods’

use in applications.

Distributional comparative statics (henceforth DCS) studies how changes in exogenous distri-

butions affect endogenous distributions in models with optimizing agents. Apart from the effect

on equilibrium quantities following increased uncertainty in Bayesian games; the methods devel-

oped here are able to address a number of economic problems.

• A monetary policy committee (MPC) sets the interest rate. The public knows that the MPC’s

objective is to minimize a standard loss function, as in Kydland and Prescott (1977). But

how the interest rate affects output and inflation is private information which the MPC may

disclose with any desired degree of accuracy. A monetary economist would then want to

know how the public’s interest rate expectations are affected if the MPC reveals more or less

information.

• The incomplete markets model of Aiyagari (1994) features a population of consumers with

heterogenous incomes who make consumption and savings decisions subject to borrowing

constraints. In this setting, a macroeconomist might wish to know under what conditions

on consumers’ preferences a Lorenz dominated decrease in inequality will reduce the in-

equality of outcomes (the variance of savings across the population), or increase per-capita

savings.

• In the international trade model of Melitz (2003) a continuum of firms have different pro-

ductivities. A trade theorist might then want to know if there is “increasing or decreasing

returns to diversity”, i.e., if increased dispersion of productivities increases or reduces total

output, or if increased dispersion increases the variance of output across the firms.

Note that these are all DCS questions since we change an exogenous distribution and ask how

an endogenous distribution changes in response. This paper’s approach can be used to derive

general and economically meaningful answers to such questions. One might instead attempt to

proceed by “brute force”, i.e., by means of first-order/Euler conditions and repeated use of the

implicit function theorem. A general take-away from this paper is that in important situations

where such brute force does not work, this paper’s methods do; and whether brute force works

or not, the tools developed here offer both a simpler and more enlightening way to attack many

problems.
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Recall from Atkinson (1970) that in standard models of savings, dominating shifts in Lorenz

curves reduce or increase aggregate savings according to whether the savings function is concave

or convex. As explained in Section 2 and illustrated repeatedly throughout the paper, Atkinson’s

observation is useful much more generally: concavity or convexity of the function which maps ex-

ogenous variables into endogenous ones (the policy function) is the key to answering DCS ques-

tions about mean-preserving spreads, second-order stochastic dominance, Lorenz or generalized

Lorenz shifts. To address the previous questions, we may therefore focus attention on concav-

ity/convexity of suitable policy functions provided we know under what conditions on the primi-

tives of the decision problems, these functions will be concave or convex. The main contribution

of this paper is a theorem that offers precisely that, and isolates the critical condition which implies

that a decision problem’s policy function is concave (or convex). Specifically, it is shown that if the

payoff function satisfies a condition called quasi-concave differences, then the policy function —

and more generally, the policy correspondence — will be concave. Quasi-concave differences is

easy to verify in applications, and ensures concavity of the policy function whether or not pay-

off functions are differentiable, concave, or even quasi-concave. This advances the literature in

several ways.

Firstly, it enables us to deal with distributional issues in a number of models which we pre-

viously could not handle. Thus in the model of Aiyagari (1994) mentioned above, any attempt at

using the implicit function theorem fails because the value function is not differentiable (Section

2.2). Models with ambiguity averse agents — an ambiguity averse MPC in the example above, say

— confounds existing methods for similar reasons (Section 3.3). In the trade setting of Melitz

(2003), existing methods fail when production sets are not convex (Section 3.3), and so on.

Secondly, the results in this paper allow us to disentangle the fundamental economic con-

ditions that drive our conclusions from unnecessary technical conditions. As this paper’s appli-

cations illustrate again and again, this can improve our economic understanding substantially.

Readers familiar with monotone methods (e.g. Topkis (1978), Milgrom and Shannon (1994), Quah

(2007)) and with so-called robust comparative statics more generally (e.g. Milgrom and Roberts

(1994), Acemoglu and Jensen (2015)) will immediately spot the parallel: when one obtains a result

under certain sufficient conditions and those conditions are a mixture of critical economic con-

ditions and entirely unnecessary technical conditions, economic intuition is lost because one is

unable separate the two (Milgrom and Roberts (1994), p.442-443).1 In particular, one can usually

not predict whether even minor changes in model specifications — replacing a specific functional

form with a slightly different one, say — will overturn the results. This problem is particularly se-

vere in models that are computationally complicated, and to be sure, DCS questions are difficult

to handle by direct calculations even in the simplest of models.

A setting where the previous advances turn out to be of critical importance is Bayesian games

(Section 4). In simple models and under sufficiently strong conditions, one could in principle de-

rive results by repeated use of the implicit function theorem. But in practice, this would require

1Monotone methods have an important role to play in DCS (see Section 2.1), but they are rarely sufficient on their
own. In particular, one cannot simply parameterize the exogenous distribution and then apply monotone methods
(or the implicit function theorem). This is because DCS questions ask how endogenous distributions change, not how
deterministic decision variables change.
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a monumental effort as well as a host of unnecessary simplifications, and in the end it would be

virtually impossible to identify the economic condition that accounts for the results. Any interpre-

tation would therefore, at best, be a qualified guess. In contrast, this paper’s results allow us to deal

with changing distributions in Bayesian games in full generality; and if we allow functional forms

to be differentiable, the conditions one must check can be characterized explicitly via derivatives

and are very easy to work with.2

The paper begins in Section 2 by further motivating and exemplifying the DCS agenda. Sec-

ond 2 also previews the paper’s main results without going into too much technical detail. The

paper then turns to quasi-concave differences, discusses the intuitive content of the definition,

and shows — first in the simplest possible setting (Section 3.1), then under more general condi-

tions (Section 3.2)— that quasi-concave differences implies concavity of the policy function in an

optimization problem. An appendix treats the issue under yet more general conditions where the

decision vector is allowed to live in an arbitrary topological vector lattice (Appendix III). Section

3.3 contains a practitioner’s guide to the results and several fully worked-through examples. Sec-

tion 4 then tackles DCS in Bayesian games, and Section 5 derives general conditions for concav-

ity of policy functions in stochastic dynamic programming problems. As a concrete application,

Section 5 extends Carroll and Kimball (1996) to the setting with borrowing constraints (Aiyagari

(1994)). That result plays an important role for various distributional comparative statics ques-

tions in macroeconomics (Huggett (2004), Acemoglu and Jensen (2015)) and is also essential for

the analysis of inequality in settings where consumers may be credit constrained (Section 2.2).

2 Preview and Motivation

This section previews the paper’s results and explains the role of convex and concave policy func-

tions for distributional comparative statics (DCS). The section also discusses several set-ups in

which existing methods are unable to address DCS questions.

2.1 Decisions under Uncertainty

A monetary policy committee (MPC) meets to set the rate of interest x ∈ X ⊆R. As in Kydland and

Prescott (1977), the MPC has a loss function L (y − y ∗,π−π∗) where y denotes output, π denotes

inflation, and stars denote natural/target levels. The central bank controls output and inflation

via the interest rate, y = y (x , z ) and π = π(x , z ) where z ∈ Z ⊆ R is a parameter that represents

the MPC’s assessment of the Lucas supply/Philips curve and the interest rate pass through.3 The

MPC’s objective is thus to maximize u (x , z ) =−L (y (x , z )− y ∗,π(x , z )−π∗)with respect to x .

A forecaster must predict the MPC’s decision. She knows its objective u but only holds cer-

tain beliefs about z as represented by a probability measure µ on Z . If everyone is rational, the

2Operationally, the conditions for quasi-concave differences in the differentiable case are on an equal footing with,
say, concavity, or supermodularity/increasing differences which can be established, respectively, via the Hessian crite-
rion and the cross-partial derivatives test of Topkis (1978).

3Note that we could have equally assumed that the central bank directly chooses inflation and output as in Kydland
and Prescott (1977). The reason for the focus on interest rates will become clear when the forecaster is introduced next.
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forecaster will therefore arrive at a forecast with distribution

µx (A) =µ{z ∈ Z : g (z ) ∈ A},(1)

where A is any Borel set in X and g : Z → X is the MPC’s policy function,

g (z ) = arg max
x∈X

u (x , z ).4(2)

So if the forecaster is asked how likely the MPC is to set the interest rate in the interval be-

tween 0.5 and 0.6 %, she will answer “with probability µx ([0.5, 0.6])” where µx ([0.5, 0.6]) ∈ [0, 1].
Her “headline” forecast will be the mean of µx . And so on.

Consider now a shift in the forecaster’s beliefs µ. For example, she might become more un-

certain about the MPC’s private signal (a mean-preserving spread to µ), or her beliefs could be

subjected to first- or second-order stochastic dominance shifts. Relevant economic examples

abound: increased uncertainty could be because the MPC transmits less information to the public,

or because it signals decreased ability to control inflation and output. A second-order stochastic

dominance increase could be due to an external event such as a more favorable public forecast of

output and inflation. For the reader’s convenience, the formal definitions follow (see e.g. Shaked

and Shanthikumar (2007) for an in-depth treatment of stochastic orders).

Definition 1 (Stochastic Orders) Let µ and µ̃ be two distributions on the same measurable space

(Z ,B (Z )).5 Then:

• µ̃first-order stochastically dominatesµ if
∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) for any increasing func-

tion f : Z →R such that the integrals are well-defined.

• µ̃ is a mean-preserving spread of µ if
∫

f (z )µ̃(d z ) ≥
∫

f (z )µ(d z ) for any convex function

f : Z →R such that the integrals are well-defined.

• µ̃ is a mean-preserving contraction of µ if
∫

f (z )µ̃(d z ) ≥
∫

f (z )µ(d z ) for any concave func-

tion f : Z →R such that the integrals are well-defined.6

• µ̃ second-order stochastically dominates µ if
∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) for any concave and

increasing function f : Z →R such that the integrals are well-defined.

• µ̃ dominates µ in the convex-increasing order if
∫

f (z )µ̃(d z ) ≥
∫

f (z )µ(d z ) for any convex

and increasing function f : Z →R such that the integrals are well-defined.

When µ shifts (to µ̃) in accordance with one of these stochastic orders, the natural question is

how the forecast’s distribution µx changes. The following observations provide the answers. Note

that by an “increase inµ”, we mean thatµ is replaced with a distribution µ̃ that dominatesµ in the

given stochastic order. Similarly for a “decrease in µ” and a “mean preserving spread to µ” where

µ̃ is dominated by µ and µ̃ is a mean preserving spread of µ, respectively.7

4We assume here that the MPC is able to agree on a single decision (existence and uniqueness).
5HereB (Z ) denotes the Borel algebra of Z .
6Note that µ̃ is a mean-preserving contraction of µ if and only if µ is a mean-preserving spread of µ̃.
7Note that there is nothing deep or difficult about the following observations — in fact, they are basically just re-

statements of the definitions. For detailed proofs, please see Appendix I.
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1. If g is increasing, any first-order stochastic dominance increase inµwill lead to a first-order

stochastic dominance increase in µx .

2. If g is concave, any mean-preserving spread toµwill lead to a second-order stochastic dom-

inance decrease in µx .

3. If g concave and increasing, any second-order stochastic dominance increase in µwill lead

to a second-order stochastic dominance increase in µx .

4. If g is convex, any mean-preserving spread to µ will lead to a convex-increasing order in-

crease in µx .

5. If g is convex and increasing, any convex-increasing order increase inµwill lead to a convex-

increasing order increase in µx .

So, going back to the question posed a moment ago: if the policy function in (2) is concave and

the forecaster becomes more uncertain about the MPC’s private signal (a mean-preserving spread

to µ), her forecast’s distribution µx decreases in the second-order stochastic dominance order

(Observation 2). In particular, the headline forecast (the mean of µx ) decreases and the forecast’s

variance increases. We return to this case momentarily. But first, consider Observation 1 which

concerns a first-order stochastic dominance shift in µ. In this situation, the implicit function the-

orem (IFT) or monotone methods can be used to establish that g is increasing. Observation 1 then

implies that the forecaster’s distribution µx increases when µ increases (both with respect to the

first-order stochastic dominance order). The IFT tells us that g is increasing if g ′(z )≥ 0 in equation

(5) below. Using monotone methods, we know that g will be increasing if u exhibits increasing dif-

ferences (Topkis (1978)) or satisfies the single-crossing property (Milgrom and Shannon (1994)).

So existing results fully enable us to deal with first-order stochastic dominance shifts in the fore-

caster’s beliefs. There are many instances of such reasoning in the literature. For example, the

property that first-order stochastic dominance of beliefs implies first-order stochastic dominance

of (predicted) actions is the basic criteria for a Bayesian game to exhibit strategic complemen-

tarities, and Van Zandt and Vives (2007) provide multiple examples where they use monotone

methods to verify that policy functions are increasing.

Imagine, however, that µ is not subjected to a first-order stochastic dominance shift but to a

mean-preserving spread as discussed a moment ago, or to a second-order stochastic dominance

increase (Observation 3 above). As is clear, we must then (in addition) know whether g is concave

to derive the effect on µx . Moreover, for the cases covered by Observations 4-5 we must know

whether g is convex. For concreteness and to set the stage for Bayesian games (Section 4), assume

that the MPC’s objective u takes an expected utility form

u (x , z ) =

∫

U (x , z̄ , z )η(z̄ ).(3)

In (3), z̄ is public with distribution η and z as before is private to the MPC. Again, economic

examples abound. For example, z̄ could be the expected price of oil and η its distribution. Or
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if z̄ takes only a finite number of values (in which case η is a counting measure and the integral

actually a summation), η(z̄ ) could be the “weight” of a member z̄ of the MPC and U (·, z̄ , z ) that

member’s individual objective.

This paper’s main result (Theorem 1) will immediately allow us to conclude that if u satisfies a

condition called quasi-concave differences (Definition 2 in Section 3), then the MPC’s policy func-

tion g will be concave whether or not the objective is concave or even quasi-concave. It also does

not matter whether the objective takes the specific form (3), but when it does and U is differen-

tiable, a sufficient condition for quasi-concave differences is that Dx U (x , z̄ , z ) is concave in (x , z )
for almost every z̄ ∈ Z .8 By way of Observation 2 above we thus get a particularly simple condition

on the fundamentals of the MPC’s objective which implies, for example, that if the MPC chooses to

reveal less of its private information to the public, then the forecast’s distribution decreases in the

sense of second-order stochastic dominance. In particular, the condition has a simple economic

interpretation: concavity of Dx U is equivalent to convexity of the MPC’s marginal loss function

Dx L . A convex marginal loss function obtains if the marginal loss is relatively constant or rises

slowly when output and inflation are close to their target levels, and rises more rapidly when out-

put and inflation are farther away from the targets.9 So if the MPC’s adversity to an additional rate

hike increases at an ever stronger rate the farther the MPC is from its targets, we should expect less

information transmission to reduce mean forecasts.10

Without this paper’s results, repeated use of the implicit function theorem (IFT) provides the

only way to address the concavity of g . It is instructive to follow this line of reasoning for a moment.

If U is sufficiently smooth, concavity of u is assumed, differentiation under the integral sign is

allowed, and the solution is interior for all z ∈ Z , the following first-order condition is necessary

and sufficient for an optimum

(Dx u (x , z ) =)

∫

z̄∈Z̄

Dx U (x , z̄ , z )η(z̄ ) = 0.(4)

If the second derivative never equals zero (strict concavity of u (·, z )), the IFT determines x as

a function of z , x = g (z )where

g ′(z ) =−
�∫

z̄∈Z̄

D 2
x x U (g (z ), z̄ , z )η(z̄ )

�−1∫

z̄∈Z̄

D 2
x z U (g (z ), z̄ , z )η(z̄ ).(5)

Note that monotone comparative statics is about the sign of g ′, and as Milgrom and Shannon

(1994) convincingly argue, the IFT approach is not ideal for many applications. When the ques-

tion is concavity of g , the situation is worse since we must determine g ′′ and so need to apply

the IFT one more time. Specifically, we differentiate the right-hand-side of (5) with respect to z

and substitute in for g ′(z ). The resulting expression is rather daunting and of no particular impor-

tance to us. It contains a mixture of integrals of second and third derivatives and in contrast to the

8The details of everything being postulated here can be found in Section 3.1.
9Note that, strictly speaking, this interpretation requires that the Lucas supply curve is linear in x and z (i.e., the

functions y (x , z ) andπ(x , z ) are linear). With non-linear relationships, the interest rate pass-through enters the picture
and complicates matters. The topic of interpretation will occupy a large part of Section 3.1.

10For the related literature on central bank communication see e.g. Myatt and Wallace (2014) and references therein.

6



condition we arrived at using this paper’s results above, it may or may not be possible to establish

any useful and intuitively transparent condition for g ′′ ≤ 0 (concavity) from such an expression.11

More substantially, in order to apply the IFT twice, a host of unnecessary technical assumptions

must be imposed — so even when the IFT provides sufficient conditions for concavity of g , these

will not be the most general conditions. As Milgrom and Roberts (1994) and Acemoglu and Jensen

(2013, 2015) discuss in detail, this lack of “robustness” generally makes it impossible to disen-

tangle the fundamental economic conditions that drive one’s results from superfluous technical

assumptions (again see also Milgrom and Shannon (1994), keeping in mind that the situation is

worse here because we need to apply the IFT twice). In particular, the IFT requires the MPC’s ob-

jective to be strictly concave which imposes spurious cross-restrictions on the loss function and

the Lucas supply curve. If u is not strictly concave, or if it is not at least thrice differentiable the IFT

is never applicable. In the next subsection we shall encounter a particularly egregious instance of

this but even in the current example interesting cases cannot be handled via the IFT. Thus if the

MPC displays ambiguity aversion (see Section 3.3), u will not even be once differentiable. And

if constraint sets vary — say, if the MPC’s maximum acceptable interest rate change depends on

economic fundamentals — the IFT’s usefulness is similarly confounded.

2.2 Income Allocation and Inequality

In the monetary policy committee example of the previous subsection, the implicit function the-

orem (IFT) does at least provide a conclusion under suitable technical assumptions. We now turn

to an application from macroeconomics where the differentiability requirements of the IFT con-

founds any attempt to use it to establish concavity of the policy function. So here this paper’s

results provide the only known way to deal with the economic issues raised.

Consider the stochastic income allocation model with Bellman equation

v (r x +w z ) =maxy ∈Γ (x ,z ) u
�

r x +w z − y
�

+β
∫

v (r y +w z ′)η(d z ′).(6)

v is the value function and Γ (x , z ) = {y ∈ R : −b ≤ y ≤ r x +w z } is admissible savings given

past savings x and labor productivity z which follows an i.i.d. process with distributionη. As usual

r denotes the interest factor (one plus the interest rate), and w the wage rate. When b <+∞, we

have a borrowing constraint and potential market incompleteness which Aiyagari (1994) in an

influential paper shows accounts for a number of empirical regularities (see also Acemoglu and

Jensen (2015)).

Let g (r x +w z ) = arg maxy ∈Γ (x ,z ) u
�

r x +w z − y
�

+β
∫

v (y , z ′)η(d z ′) denote the savings func-

tion, and c (r x+w z ) = r x+w z−g (r x+w z ) the consumption function. These are, without further

elaboration, assumed to be well-defined. Clearly, the savings function is convex if and only if the

consumption function is concave.

11Note that the problem in part is that concavity of u simultaneously imposes conditions on second partial deriva-
tives which leads to “entanglement” as discussed in the Introduction and further discussed momentarily. With multi-
dimensional decision variables as explored in Appendix III, the IFT becomes excessively complicated and is rarely use-
ful.
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Following Carroll and Kimball (1996), say that u belongs to the Hyperbolic Absolute Risk Aver-

sion (HARA) class if u ′′′u ′

(u ′′)2 = k for a constant k ∈ R. Carroll and Kimball (1996) prove that if u

belongs to the HARA class, then the consumption function is concave if there is no borrowing

constraint (b =+∞) and if the period utility function has a positive third derivative (precaution-

ary savings).

Technically, the proof of Carroll and Kimball (1996) relies on Euler equations and repeated

application of the IFT. In particular, this approach requires that the value function v is at least

thrice differentiable. This is unproblematic if the borrowing constraint is inactive, but if b <+∞,

then the value function will not be thrice differentiable at any point where the borrowing con-

straint binds.12 As we shall see in Section 5, this paper’s results allow for a simple and direct proof

of the concavity of the consumption function which does not rely on Euler equations and does

not require differentiability of the value function. In particular, it is shown that the consumption

function will be concave for the general HARA class with or without borrowing constraints. Fur-

thermore, the HARA class “pops out” endogenously from an application of our general results —

there is no guesswork involved, and no ingenuity is required (contrast with the mathematical in-

genuity of Carroll and Kimball (1996)). Note that this added simplicity when it comes to finding

suitable sufficient conditions parallels the discussion of sufficient conditions for g ′′(z )≤ 0 that fol-

lowed equation (5) in the previous example. In fact, the additional ease-of-use makes this paper’s

results so effective in the stochastic dynamic programming setting that little effort is required to

prove a result on the convexity/concavity of policy functions for stochastic dynamic programming

problems at the level of generality of the text book treatment of Stokey and Lucas (1989). Thus we

are able in Section 5 to address not just the previous income allocation problem but nearly any

stochastic dynamic model one can think of applying in macroeconomics and other fields.

Let us finish this section with a brief look at the importance of this paper’s results for the study

of income inequality. Let Wi = r xi +w zi denote income of agent i at a given moment in time and

consider a continuum of agents i ∈ [0, 1]with identical preferences but possibly different incomes.

Each individual thus has consumption c = c (Wi )where c was defined a moment ago. Letting ηW

denote the frequency distribution of income, per-capita/mean consumption is then

∫

c (Wi )ηW (d Wi ).

From Atkinson (1970) we know that mean-preserving spreads toηW are equivalent to increases

in inequality in the sense of Lorenz dominance (Atkinson (1970), p. 246-247). Thus by the result of

Section 5 previewed a moment ago, a Lorenz increase in inequality implies lower mean consump-

tion if u is in the HARA class, whether or not consumers are limited by borrowing constraints.

Notice, however, that Observations 2-4 on page 4 allow us to go considerably further. Since the

12Due to the importance of borrowing/liquidity constraints for much applied work, the same authors (Carroll and
Kimball (2001)) as well as Huggett (2004) address the concavity question in a framework with borrowing constraints
and establish concavity of the consumption function for three special cases of the general HARA class (CRRA, CARA,
and quadratic utility, respectively). See also Suen (2015) for more on this topic (note that Suen (2015) and the current
paper were written independently of each other).
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consumption function c is also increasing under standard conditions, the previous statement ex-

tends to generalized Lorenz dominance by Observation 3 on page 4.13 Of more novelty, we can go

beyond considerations of the mean. For example, by Observation 2, a Lorenz increase in inequal-

ity will lead to a second-order stochastic dominance decrease in the distribution of consumption

when c is concave and increasing. So we can conclude not only that the mean will decrease, but

also that the variance will increase. Since the variance measures inequality of outcomes as opposed

to the inequality of opportunities embodied in the distribution of income, such conclusions are

obviously interesting. More generally, the approach developed in this paper opens up a simple and

effective way to study inequality in a variety of situations — including situations such as income

allocation under borrowing constraints where other approaches fail.

3 Concave Policy Functions

Motivated by the previous section, this section presents the paper’s main results on the concavity

and convexity of policy functions. The first subsection considers the simplest case of an objec-

tive with a one-dimensional decision variable, a fixed constraint set, and a unique optimizer. This

simplicity allows us to focus on the new concepts’ economic interpretation. In the second subsec-

tion, all of these restrictions are relaxed. The last subsection contains a user’s guide to the results

as well as examples.

3.1 A Simple Case

Let u : X ×Z →R be a payoff function where x ∈ X ⊆R is a decision variable and z ∈ Z a vector of

parameters. It is assumed that X is convex and that Z is a convex subset of a vector space. When

the associated decision problem maxx∈X u (x , z ) has a unique solution for all z ∈ Z , define the

policy function g : Z → X by

g (z ) = arg max
x∈X

u (x , z ).(7)

The example from Section 2.1 fits into this framework with g (z ) being the MPC’s interest rate

decision given state of the economy z . In that Section, the significance of g being increasing was

discussed and it was mentioned that g is increasing if u exhibits increasing differences in x and

z . Precisely, this requires that u (x +δ, z )−u (x , z ) is (coordinatewise) increasing in z for all x ∈ X

and δ > 0 with x +δ ∈ X (Topkis (1978)). The purpose of this section is to show that concavity of

g is ensured by a related condition.

Definition 2 (Quasi-Concave Differences) A function u : X ×Z → R exhibits quasi-concave dif-

ferences if for all δ > 0 in a neighborhood of 0, u (x , z )−u (x −δ, z ) is quasi-concave in (x , z ) ∈ {x ∈
X : x −δ ∈ X }×Z .

13The generalized Lorenz curve is constructed by scaling up the Lorenz curve by the distribution’s mean and is equiv-
alent to second-order stochastic dominance shifts, see e.g. Dorfman (1979).
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If in this definition u (x+δ, z )−u (x , z ) is instead required to be quasi-convex, u exhibits quasi-

convex differences. Quasi-convex differences will be shown to imply that g is convex. Conve-

niently, u exhibits quasi-convex differences if and only if −u exhibits quasi-concave differences,

hence there is no reason to distinguish between the two in the following discussion. The first thing

to note is that quasi-concave differences is easy to verify for differentiable objectives.

Lemma 1 (Differentiability Criterion) Assume that u : X ×T →R is differentiable in x ∈ X ⊆R.

Then u exhibits quasi-concave differences if and only if the partial derivative Dx u (x , z ) is quasi-

concave in (x , z ) ∈ X ×Z .

Proof. Appendix II.

As an illustration, consider the MPC’s expected utility objective from Section 2.1 with u con-

tinuously differentiable. We then have,

Dx u (x , z ) =

∫

z̄∈Z̄

Dx U (x , z̄ , z )η(z̄ ).

Since integration preserves concavity, it immediately follows from Lemma 1 that u exhibits

quasi-concave differences if Dx U (x , z̄ , z ) is concave in (x , z ) for a.e. z̄ .14

More generally, quasi-concavity is a fully tractable condition and so is therefore quasi-concave

differences. This makes verification and computation easy as returned to in Section 3.3.

Let us now turn to the economic interpretation of quasi-concave differences. Beginning with

a familiar case, let z be income and g a consumption function.15 When u is differentiable in x ,

we may plot an iso-marginal utility diagram, i.e., a diagram that depicts the iso-marginal utility

curves I M U (c )≡ {(z , x ) ∈ Z ×X : Dx u (x , z ) = c } for c ∈R.

Iso-Marginal Utility diagrams

Figure 1: The zero IMU curve is the Engel
curve.

Figure 2: The upper zero IMU curve is
the Engel curve.

Informally, an IMU-diagram may be interpreted as follows. Think of marginal utility as “the

kick” from consuming one more unit (endorphin release, hunger reduction, etc). Two different

14A rather special case aside, concavity of the integrands Dx U (·, z̄ , ·) is also necessary for u to be quasi-concave. See
Debreu and Koopmans (1982).

15This will result from the reduced form consumption decision where u (x , z ) = ũ (x , z −p x )with p the relative price
and boundary conditions are imposed so constraints can be ignored.
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points on the same iso-marginal utility curve then tell us that a consumer gets the same kick out

of consuming an extra unit whether she is poor and consumes little, or rich and consumes more.

What “little” and “more” mean exactly tells us whether as income rises, the same kick will follow

ever more modest increases in consumption, or conversely, whether to get the same kick the con-

sumer requires ever larger consumption boosts (think chocolate versus cocaine).

Being now more formal, consider the zero IMU curve in Figure 1. Since any IMU curve below

I M U (0) is positive (Dx u (c , z ) > 0) and any IMU curve above I M U (0) is negative (Dx u (c , z ) < 0),

I M U (0) depicts the graph of the consumption function (the Engel curve). As can be seen, concav-

ity of the consumption function obtains because the IMU curves’ slopes flatten out as z increases.

And this is precisely what quasi-concave differences ensures: quasi-concave differences is equiva-

lent to Dx u (x , z ) being quasi-concave (Lemma 1). That Dx u (x , z ) is quasi-concave in turn means

that the “better marginal utility (MU) sets” {(x , z ) ∈ X × Z : Dx u (x , z ) ≥ c } are convex. And as

we know from standard indifference diagrams, flattening indifference curves are driven by convex

better sets (“the diminishing marginal rate of substitution”). Economically, flattening IMU curves

means that to keep the additional enjoyment of an extra unit (the kick in the language above) con-

stant, consumption must increase at an ever slower rate with income. This may be because there

is another good which the consumer increasingly substitutes towards.16 But the picture in Figure

1 should more generally be thought of as reflecting an action that as a function of the exogenous

variable requires less and less of an increase in order to yield the same efficiency gain, loss reduc-

tion, endorphin release, or whatever exact interpretation the application at hand requires. Thus

in the MPC example, an increasing and concave policy function means that although increases in

z lead to higher interest rates, a further one-unit increase in the interest rate becomes less and less

attractive as interest rates increase. For example, we get this when the MPC’s marginal loss func-

tion is convex, and y = y (x , z ) and π = π(x ) are linear functions with y increasing in z and both

y and π decreasing in x (so an interest rate increase moves the economy towards the origin of the

Lucas supply curve while an increase in z is expansive without being inflationary). In response

to an increase in z , the central bank will increase the interest rate to “substitute” some of the ad-

ditional output for lower inflation. But as the economy keeps expanding, interest rate increases

become less and less effective in securing the MPC’s targets: at first, increasing x will both shift

y and π towards targets (assuming that we begin above those targets). But increasingly, the MPC

becomes wary of increasing x to force output back towards target because it will simultaneously

be forcing inflation further and further below target and this is increasingly upsetting due to the

convex marginal loss function.

Now, in each of the previous cases the policy function is increasing (in addition to being con-

cave). But convexity of the better MU sets also captures concavity of g when g is not increasing.

If we instead consider an inferior good (a decreasing zero IMU-curve), the interpretation would

change — now IMUs become steeper as z is increased corresponding to increasing unwillingness

16A necessity good is one whose income elasticity of demand c ′(z ) z
c (z ) is between 0 and 1 (Varian (1992), p.117). When

c (0) = 0, a concave consumption function implies that the good is a necessity good as seen by taking y = 0 in concavity’s
(differentiable) definition c (y )≤ c (z )+ c ′(z )(y −z ). But as this definition of concavity also shows, there is in general no
firm relationship between elasticities and concavity of a policy function. It is thus deliberate that any interpretation in
terms of elasticities is avoided.
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to consume the good as income goes up — but convexity of the better MU sets remains the charac-

terization of a concave consumption function. Similarly for non-monotonic functions where the

two previous interpretations would only apply locally, but convexity of the better MU sets once

again drives concavity.17

All of the above is straight-forward once we see it in an IMU diagram. What is perhaps not

as obvious is that quasi-concavity (or concavity) of u has nothing to do with the story. In Figure

1 the zero IMU’s better set (denoted I M U (+)) is the entire set below the zero IMU. To be sure,

this means that the utility function is quasi-concave in x since for fixed z it tells us that u (x , z ) is

first increasing and then decreasing in x . But consider now Figure 2 where for fixed z , u (x , z ) is

first decreasing, then increasing, and then again decreasing in x ; and so u is not quasi-concave

in x . Since the better MU sets are convex, u exhibits quasi-concave differences. The zero IMU

“curve” is now a correspondence consisting of two zero IMU curves. Since u (x , z ) is decreasing in

x below the lower curve and increasing above it, any point on the lower zero-IMU curve is a local

minimum. The upper zero IMU curve thus depicts the maxima so, just as in Figure 1, concavity of

the consumption function is seen to obtain. Again, the reason is that the better MU sets are convex

(quasi-concave differences) although now I M U (+) is the lens between the I M U (0) curves and not

everything below I M U (0) as in the quasi-concave setting of Figure 1.

To sum up, quasi-concave differences implies concavity of policy functions whether or not the

policy function is monotone and regardless of any concavity or quasi-concavity assumptions. In

this light, this Section’s main result (Theorem 1 below) will come as no surprise to the reader. In

fact, the proof below is just a formalization of the previous graphical argument that avoids us-

ing differentiability. There is only one complication related to solutions g (z ) touching the lower

boundary of X , i.e., solutions such that g (z ′) = inf X for some z ′ ∈ Z . In fact, such solutions will

ruin any hope of obtaining a concave policy function for reasons that are easily seen graphically.

Figure 3: Concavity is destroyed when the policy function touches the lower boundary inf X = 0.

In Figure 3, we see a policy function which at z’ touches the lower boundary inf X = 0 of the

constraint set X =R+, and stays at this lower boundary point as z is further increased. It is evident

that the resulting policy function will not be concave, even though it is concave for z ≤ z’. As

17With quasi-convex differences the interpretation is in each instances reversed. Think of giving part of income to
charity. Concave better IMU sets (quasi-convex differences) then means that as your income increases, you need to
give progressively more of your current income to experience the same “warm glow” (utility gain). Presumably this
would be because you need to feel you are making a sufficient sacrifice to get the same marginal utility effect, and you
therefore have to progressively give more as a proportion of income for the sacrifice to keep its bite.
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discussed at length in the working paper version of this paper (Jensen (2012)), this observation is

robust: concave policy functions and lower boundary optimizers cannot coexist save for some very

pathological cases. Of course, there is no problem if the optimization problem is unconstrained

below, i.e., if inf X = −∞. Nor is there a problem if attention is restricted to interior optimizers

(witness Figure 3 where we do have concavity when z is below z’).

Theorem 1 (Concavity of the Policy Function) Let Z be a convex subset of a vector space, and

X ⊆R a convex subset of the reals. Assume that the decision problem maxx∈X u (x , z ) has a unique

solution g (z ) = arg maxx∈X u (x , z ) > inf X for all z ∈ Z . Then if u : X × Z → R exhibits quasi-

concave differences, g : Z → X is concave.

Proof. Pick z1, z2 ∈ Z and let x1 = g (z1)and x2 = g (z2)be the optimal decisions. Since x1, x2 > inf X ,

there exists δ > 0 such that u (x1 − δ, z1)− u (x1, z1) ≤ 0 and u (x2 − δ, z2)− u (x2, z2) ≤ 0. Letting

x̃q = xq − δ where q = 1, 2, this can also be written u (x̃1, z1) − u (x̃1 + δ, z1) ≤ 0 and u (x̃2, z2) −
u (x̃2 +δ, z2) ≤ 0. For λ ∈ [0, 1] set x̃λ = λx̃1 + (1−λ)x̃2 and zλ = λz1 + (1−λ)z2. By quasi-concave

differences, u (x̃λ+δ, zλ)−u (x̃λ, zλ)≥min{u (x̃1+δ, z1)−u (x̃1, z1), u (x̃2+δ, z2)−u (x̃2, z2)} ≥ 0. Since

u (x̃λ+δ, zλ)−u (x̃λ, zλ) = u (xλ, zλ)−u (xλ−δ, zλ)≥ 0 where xλ =λx1+ (1−λ)x2, this implies that

u (xλ, zλ)−u (xλ−δ, zλ)≥ 0 .(8)

Since u exhibits quasi-concave differences, u (x , zλ) − u (x − δ, zλ) is quasi-concave in x for

any δ > 0 close to zero. To simplify notation, let inf X = 0 from now on. By quasi-concavity in x ,

u (x , zλ)− u (x −δ, zλ) is non-decreasing in x on [δ, x̂ ] and non-increasing in x on [x̂ , xλ] where

x̂ ∈ [δ, xλ]. There are three cases:

1. x̂ = δ. In this case, u (x , zλ)− u (x − δ, zλ) is non-increasing in x on [δ, xλ]. Imagine that

there is a maximum x ∗ in [δ, xλ). Then for all x ∈ [x ∗, xλ]: 0 ≤ u (xλ, zλ)− u (xλ − δ, zλ) ≤
u (x , zλ)−u (x −δ, zλ)≤ u (x ∗, zλ)−u (x ∗−δ, zλ)≤ 0, where the first inequality is (8). It follows

that u (xλ, zλ) = u (x ∗, zλ) so xλ ∈ arg max[δ,xλ] u (x , zλ).

2. x̂ = xλ. In this case, u (x , zλ)−u (x−δ, zλ) is non-decreasing in x on [δ, xλ]. Imagine that there

is a maximum x ∗ in [δ, xλ). Then for any ε > 0 with x ∗−ε≥ 0: 0≤ u (x ∗, zλ)−u (x ∗−ε, zλ)≤
u (x ∗ + ε, zλ)− u (x ∗, zλ) ≤ u (x ∗ + 2ε, zλ)− u (x ∗ + ε, zλ) ≤ . . .. This implies that u (x ∗, zλ) ≤
u (x ∗ + ε, zλ) ≤ u (x ∗ + 2ε, zλ) ≤ . . .. Now pick a (small) ε > 0 for which xλ = x ∗ +mε, some

m ∈N. We then get that u (x ∗, zλ)≤ u (x ∗+mε, zλ) = u (xλ, zλ). So xλ ∈ arg max[δ,xλ] u (x , zλ).

3. δ < x̂ < xλ: Repeat the argument of 2 for the initial interval, [δ, x̂ ], in order to conclude that

x̂ ∈ arg max[δ,x̂ ] u (x , zλ). It follows that maxx∈[δ,x̂ ] u (x , zλ)≤maxx∈[x̂ ,xλ] u (x , zλ). Next repeat

the argument from 1 for the second interval [x̂ , xλ] to show that xλ ∈ arg max[x̂ ,xλ] u (x , zλ).
Combine to see that xλ ∈ arg max[δ,xλ] u (x , zλ).

We get in all three cases that xλ ∈ arg max[δ,xλ] u (x , zλ). This implies that there exists some x̂ ∈
arg max[δ,sup X ] u (x , zλ)with x̂ ≥ xλ. Because inf X is never optimal and δ can be picked arbitrarily

small, x̂ ∈ arg max[inf X ,sup X ] u (x , zλ). So g is concave: λg (z1) + (1−λ)g (z2) = xλ ≤ x̂ = g (λz1+ (1−
λ)z2).
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Corollary 1 (Convexity of the Policy Function) Let Z be a convex subset of a vector space, and

X ⊆R a convex subset of the reals. Assume that the decision problem maxx∈X u (x , z ) has a unique

solution g (z ) = arg maxx∈X u (x , z ) < sup X for all z ∈ Z . Then if u : X × Z → R exhibits quasi-

convex differences, g : Z → X is convex.

Proof. Let−X ≡ {−x ∈R : x ∈ X }. Apply Theorem 1 to the optimization problem maxx̃∈−X u (−x̃ , z )
and use that the policy function of this problem is concave if and only if g is convex.

3.2 The General Case

In situations such as the income allocation problem of Section 2.2, it is too restrictive to assume

that the constraint set X is fixed. Further, one may face decision problems with multiple solutions

unless strict quasi-concavity in x or some similar condition holds.18 We then face the general

decision problem

G (z ) = arg max
x∈Γ (z )

u (x , z ).(9)

Here Γ : Z → 2X is the constraint correspondence and G : Z → 2X is the policy correspondence.

A policy function is now a selection from G , i.e., a function g : Z → X with g (z ) ∈ G (z ) for all

z ∈ Z . The assumption of a one-dimensional decision variable X ⊆R is maintained to keep things

simple. Appendix III deals with the general case where X is a subset of a topological vector lattice.

For (9) the result of Topkis (1978) tells us that if u exhibits increasing differences and Γ is an

ascending correspondence, then G is ascending. The precise definition of an ascending corre-

spondence is not important for us here; it suffices to say that it naturally extends the notion that

a function is increasing to a correspondence. As it turns out, the conclusion of Theorem 1 gen-

eralizes in a very similar manner. The only question is how to extend concavity/convexity from a

function to a correspondence in a suitable way for our results.19

Definition 3 (Concave Correspondences) A correspondence Γ : Z → 2X is concave if for all z1, z2 ∈
Z , x1 ∈ Γ (z1), x2 ∈ Γ (z2), and λ ∈ [0, 1], there exists x ∈ Γ (λz1+ (1−λ)z2)with x ≥λx1+ (1−λ)x2.

For illustrations, see Figures 1-2 where the sets I M U (+) depict graphs of concave correspon-

dences. In parallel with concave/convex functions, Γ : Z → 2X is said to be convex if −Γ : Z → 2−X

is concave where −Γ (z ) ≡ {−x ∈ R : x ∈ Γ (z )}. As mentioned, Definition 3 naturally generalizes

concavity of a function to a correspondence. In particular, one immediately sees that if Γ is single-

valued, then it is concave if and only if the function it defines is concave (and obviously, Γ is convex

if and only if it is convex as a function). Recall that a correspondence Γ : Z → 2X has a convex graph

if {(x , z ) ∈ X ×Z : x ∈ Γ (z )} is a convex subset of X ×Z . Convexity of a correspondence’s graph is

a much stronger requirement than concavity and convexity of Γ . In fact, a correspondence with

a convex graph is both concave and convex.20 Furthermore, if Γ has a convex graph, it also has

18Note that in the previous subsection, uniqueness of the optimizer was imposed directly to avoid assuming quasi-
concavity in the decision variable.

19The following definition can be found in Kuroiwa (1996) who also offers an extensive discussion of set-valued
convexity. Lemma 2 below appears to be new, however.

20To see this, simply pick x =λx1+ (1−λ)x2 ∈ Γ (λz1+ (1−λ)z2) in Definition 3.
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convex values, i.e., Γ (z )must be a convex subset of X for all z ∈ Z . In contrast, convex values is

not implied by either concavity or convexity and so will have to be assumed directly when needed

(as it will be below).

The following result sheds further light on the definition. It tells us that concavity and con-

vexity of a correspondence is intimately tied to concavity and convexity of extremum selections

(when they exist). For most applications, this result is also enough to establish that a given con-

straint correspondence is concave or convex since it covers inequality constraints where Γ (z ) =
{x ∈ X : γ(z )≤ x ≤ γ(z )}.

Lemma 2 (Extremum Selection Criteria) If Γ : Z → 2X admits a greatest selection, γ(z )≡ supΓ (z )
∈ Γ (z ) for all z ∈ Z , then Γ is concave if and only if γ : Z → X is a concave function. Likewise, if

Γ admits a least selection γ(z ) ≡ infΓ (z ) ∈ Γ (z ) all z ∈ Z , Γ is convex if and only if γ is a convex

function.

Proof. Only the concave case is proved. Since Γ is concave, we will for any z1, z2 ∈ Z , and λ ∈ [0, 1]
have an x ∈ Γ (λz1+(1−λ)z2)with x ≥λγ(z1)+(1−λ)γ(z2). Since γ(λz1+(1−λ)z2)≥ x , γ is concave.

To prove the converse, pick z1, z2 ∈ Z and x1 ∈ Γ (z1), x2 ∈ Γ (z2). Since the greatest selection is

concave, x = γ(λz1+(1−λ)z2)≥λγ(z1)+ (1−λ)γ(z2)≥λx1+(1−λ)x2. Since x ∈ Γ (λz1+(1−λ)z2),
Γ is concave.

From this Lemma, one can often immediately spot a concave correspondence. For example,

we see that the union of the zero IMU curves in Figure 2 is the graph of a concave correspondence

where the lower zero IMU is the least selection and the upper zero IMO the greatest selection.

Lemma 2 also shows exactly how concavity and convexity relates to other known convexity con-

cepts for correspondences. In a diagram with z on the first axis and x on the second axis, draw

the graph of a concave function γ. Now extend this graph to the graph of a correspondence Γ by

drawing freely anything at or below the graph of γ. Then the resulting correspondence is concave

by Lemma 2. So in Figure 2 we could draw anything below the upper zero IMU and would still

have a concave correspondence. As an aside, it is evident from these Figures that convex values as

well as a convex graph are not implied — and it is equally evident that a convex graph implies that

the correspondence is both concave and convex (these facts were discussed in a more technical

manner a moment ago).

Theorem 2 (Concavity of the Policy Correspondence) Let Z be a convex subset of a vector space,

and X ⊆R a convex subset of the reals. Assume that the decision problem maxx∈Γ (z ) u (x , z ) has a

solution G (z ) = arg maxx∈Γ (z ) u (x , z ) 6= ; for all z ∈ Z and that the infimum of Γ (z ) is never optimal,

x ∈G (z )⇒ x > infΓ (z ). Then if u : X ×Z →R exhibits quasi-concave differences and Γ is concave

and has convex values, G : Z → 2X is concave.

Proof. Pick any z1, z2 ∈ Z , x1 ∈ G (z1), and x2 ∈ G (z2). Setting xλ = λx1 + (1 − λ)x2, and zλ =
λz1+(1−λ)z2, we must show that there exists x̂ ∈G (zλ)with x̂ ≥ xλ. As in the proof of Theorem 1,

we use quasi-concave differences to conclude that u (xλ, zλ)−u (xλ−δ, zλ)≥ 0 for any sufficiently

small δ > 0. We are clearly done if there does not exist x ∈ Γ (zλ) with x < xλ. So assume that such
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an x exists. By concavity of Γ , there also exists x̃ ∈ Γ (zλ) with x̃ ≥ xλ. Since Γ has convex values

therefore [x , x̃ ] ⊆ Γ (zλ). Since xλ ∈ [x , x̃ ] and infΓ (zλ) cannot be optimal, we may now proceed

precisely as in the proof of Theorem 1 and use quasi-concavity of u (x , zλ)− u (x − δ, zλ) in x to

show that there must exist a x̂ ∈ Γ (zλ)with x̂ ≥ xλ.

Corollary 2 (Convexity of the Policy Correspondence) Let Z be a convex subset of a vector space,

and X ⊆ R a convex subset of the reals. Assume that the decision problem maxx∈Γ (z ) u (x , z ) has

a solution G (z ) = arg maxx∈Γ (z ) u (x , z ) 6= ; for all z ∈ Z and that the supremum of Γ (z ) is never

optimal, x ∈G (z )⇒ x < supΓ (z ). Then if u : X ×Z →R exhibits quasi-convex differences and Γ is

convex and has convex values, G : Z → 2X is convex.

Proof. Let −Γ (z ) ≡ {−x ∈ R : x ∈ Γ (z )}. Apply Theorem 2 to the optimization problem

maxx̃∈−Γ (z ) u (−x̃ , z ) and use that the policy correspondence of this problem is concave if and only

if G is convex.

If the conditions of Theorem 2 hold and the policy correspondence is single-valued G = {g },
then g must be a concave function by Lemma 2. Hence Theorem 1 is a special case of Theorem

2. From Lemma 2 also follows that when u is upper semi-continuous and Γ has compact values

so that G has a greatest selection, this greatest selection must be concave.21 Finally, note that just

like in the theory of monotone comparative statics (Topkis (1978), Milgrom and Shannon (1994)),

these observations are valid without assuming that the objective function is quasi-concave in the

decision variable.

3.3 A User’s Guide and Some Examples

This subsection provides a practitioners’ guide to Theorems 1 and 2. Focus will be on simple appli-

cations. For more involved applications, the reader is referred to the next two sections. We begin

with a straight-forward consequence of Lemma 1.

Lemma 3 (Quasi-Concave Differences for Thrice Differentiable Functions) A thrice differentiable

function u : X ×Z →Rwhere X , Z ⊆R exhibits quasi-concave differences if and only if

2D 2
x x u (x , z )D 2

x z u (x , z )D 3
x x z u (x , z )≥ [D 2

x x u (x , z )]2D 3
x z z u (x , z ) + [D 2

x z u (x , z )]2D 3
x x x u (x , z ).(10)

Proof. (10) is the non-negative bordered Hessian criterion for quasi-concavity of Dx u (x , z ) (see

e.g. Mas-Colell et al (1995), pp.938-939). By Lemma 1, this is equivalent to u (x , z ) exhibiting quasi-

concave differences.

For applications, one usually only requires either this Lemma, or one of two facts about con-

cavity: that concavity is preserved by integration (used in the MPC example immediately following

21Note that it is unreasonable to expect the least selection to be concave also. In fact, this would not characterize any
reasonable concavity-type condition for a correspondence (in the case of a correspondence with a convex graph, for
example, the greatest selection is concave and the least selection is convex).
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Lemma 1) or that the minimum of a family of concave functions is concave (used in the second

example below).

Heterogenous Firms in International Trade Models. Consider the model of Melitz (2003). Each

firm in a continuum [0, 1] chooses output x ≥ 0 in order to maximize profits. A firm with cost

parameter z > 0, can produce x units of the output by employing l = z x + f workers where f > 0

is a fixed overhead (Melitz (2003), p.1699).22 The frequency distribution of the cost parameter z

across the firms is ηz . With revenue function R , a firm with cost parameter z chooses x ≥ 0 in

order to maximize

u (x , z ) =R (x )− z x − f .(11)

Let G (z ) = arg maxx≥0[R (x ) − z x − f ] denote the optimal output(s) given z . To show that G is

concave or convex, we may apply Theorem 1 or the more general Theorem 2. For Theorem 1,

R (x )− z x − f must be strictly quasi-concave or satisfy some other condition that guarantees that

firms have a unique optimal output level, G (z ) = {g (z )}. As one easily verifies, (10) holds if and

only if

R ′′′ ≤ 0.(12)

So by Theorem 1, if the revenue function has a non-positive third derivative and optimizers

are unique, the policy function g is concave on z ∈ {z ∈ Z : g (z ) > 0}, i.e., when attention is

restricted to the set of active firms. It follows from Observation 2 on page 2.1 that aggregate output
∫

[0,1] g (z ) ηz (d z ) decreases when firms become more diverse (a mean preserving spread to the

distribution ηz ). Such “decreasing returns to diversity” is easily understood in light of (12) which

says that the marginal revenue function is concave. A concave marginal revenue function tells

us that if we consider two firms that produce x1 and x2, respectively, and the firms have different

productivities z1 6= z2, then the average of their marginal revenues (R ′(x1)+R ′(x2))/2 will be lower

than the marginal revenue of a firm which produces the average output (x1 + x2)/2 and has the

average productivity (z1+ z2)/2. In particular, when x1 and x2 are optimal for the respective firms

and the marginal revenues therefore equal zero, the marginal revenue of the average productivity

firm will be positive, and it is therefore optimal for it to produce more than the average (x1+x2)/2.

Putting these observations together, we see that if production is spread across diverse firms, then

total output is lower than if production takes place among the same number of more similar firms.

For an extensive discussion of concave marginal revenue functions in the theory of production,

the reader is referred to Leahy and Whited (1996).

By appealing to Observations 1-5 on page 4 one can further go on to predict how the distri-

bution of the firms’ outputs changes when ηz is subjected to mean-preserving spreads or other

stochastic order changes. For example, the distribution of the outputs of a more diverse set of firms

will be second-order stochastically dominated by the distribution of outputs of a less diverse set

of firms when (12) holds (this is again by Observation 2). If u exhibits quasi-convex differences

(reverse the inequality (10) yielding the condition R ′′′ ≥ 0), we instead get a convex policy func-

22In terms of Melitz’ notation, z is the inverse of the firm’s productivity level ϕ.
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tion by Corollary 1; there is “increasing returns to diversity”, and all of the previous conclusions

are reversed.

The limitations of Theorem 1 are evident in the current situation since monopolistically com-

petitive firms’ objectives will often not be strictly quasi-concave or even quasi-concave and so

uniqueness of the optimizer is difficult to ensure in general. One can then instead use Theorem

2. Assuming only that solutions exist (so that G is well-defined), we can conclude that G is a con-

cave correspondence when the revenue function R has a non-positive third derivative. Hence the

greatest selection from the policy correspondence will be a concave function (Lemma 2), and the

maximum aggregate output decreases with a mean-preserving spread to ηz .

If R is assumed to be strictly concave so that R ′′ < 0, we might alternatively have applied the

implicit function theorem (IFT) to the first-order condition R ′(x )− z = 0. This yields x = g (z )
where Dz g = R ′′. The IFT is particularly easy to use in this case, and we immediately see that

(12) once again ensures concavity of g (this is because Dz g decreasing precisely means that g is

concave). Note, however, that Theorem 2 (and also Theorem 1) applies to many situations which

the IFT is unable to address.

Ambiguity Aversion. Consider an agent who makes an investment x ≥ 0 in a project whose ex-

pected return depends on a known signal z as well as a draw by nature among the possible states

z̄1, . . . , z̄l . The expected return is evaluated according to a Choquet/non-additive expected util-

ity criterion with state payoff U (z̄k , z ) and capacities ν. The cost c (x , z ) is assumed to be strictly

convex and differentiable in x . The policy function is thus,

g (z ) = arg max
x
[x min
µ̄∈C (ν)

l
∑

k=1

µ̄kU (z̄k , z )− c (x , z )] ,

where C (ν) denotes the core of ν.

If U is concave in z and Dx c (x , z ) is convex, then minµ̄∈C (ν)
∑l

k=1 µ̄kU (z̄k , z )−Dx c (x , z ) is con-

cave in (x , z ) (the first term is concave in z because the minimum of a family of concave functions

is concave). By Lemma 1, it follows that the objective exhibits quasi-concave differences and by

Theorem 1, g : Z → X is consequently concave. Since the first-order condition of this problem

is not differentiable in z , the implicit function theorem cannot be used to reach this conclusion.

Note that the previous conclusions also apply to other settings with ambiguity averse agents. An

example here is when the monetary policy committee of Section 2.1 is ambiguity averse with re-

spect to the realization of the oil price z̄ . The expected utility objective (3) is then replaced with a

non-additive utility objective and the previous argument applied.

4 Bayesian Games

The purpose of this section is to use Theorem 1 to deal with increased uncertainty in Bayesian

games. In Section 2.1, the central bank (the MPC) was the only agent who made a decision, and

that decision was not influenced by the other agent’s action (the forecast). The increase in uncer-

tainty on the other hand, affected only the forecaster (by assumption the MPC knew its private

signal). In reality, central banks take other agents’ responses into account when setting interest
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rates — and those agents will be aware of this and take that into account. So, any increase in un-

certainty spills over between the agents. Such considerations naturally lead us to study DCS in

Bayesian games.

A Bayesian game consists of a set of playersI = {1, . . . , I }, taken here to be finite, where player

i ∈ I receives a private signal zi ∈ Zi ⊆ R drawn from a distribution µzi
on (Zi ,B (Zi )).23 Agents

maximize their objectives and a Bayesian equilibrium is just a Nash equilibrium of the resulting

game (defined precisely in a moment). The question we ask is this: How will the set of equilibria

be affected if one or more signal distributions µzi
are subjected to mean-preserving spreads or

second-order stochastic dominance shifts? So if i = 1 is the MPC and z1 represents the MPC’s

assessment of the Philips/Lucas supply curve and the interest rate pass through, we are back in

the setting of Section 2.1 except that we now allow for the game-theoretic interaction between the

MPC and the other agents in the economy.

Assuming that private signals are independently distributed, an optimal strategy is a measur-

able mapping g i : Zi → X i such that for almost every zi ∈ Zi ,

g i (zi ) ∈ arg max
xi∈X i

∫

z−i∈Z−i

Ui (xi , g−i (z−i ), zi )µz−i
(d z−i ) .(13)

Here X i ⊆ R is agent i ’s action set and g−i = (g j ) j 6=i are the strategies of the opponents. A

Bayesian equilibrium is a strategy profile g ∗ = (g ∗1 , . . . , g ∗I ) such that for each player i , g ∗i : Zi → X i

is an optimal strategy given the opponents’ strategies g ∗−i : Z−i → X−i . Obviously, g i : Zi → X i is

a policy function when it satisfies (13) for all zi ∈ Zi . The optimal distribution of an agent i is the

measure on (X i ,B (X i )) given by:

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ) ∈ A} , A ∈B (X i )(14)

Note that for the previous description to be consistent we need uniqueness of optimal strate-

gies.

Assumption 1 For every i , the optimal strategy g i exists and is unique.

This assumption is satisfied if X i is compact and Ui (xi , x−i , zi ) is strictly concave in xi (risk

aversion), and continuous in (xi , x−i , zi ). Note that if uniqueness is not assumed, we could instead

use Theorem 2 but we favor here simplicity over generality.

For given opponents’ strategies the decision problem in (13) coincides with the MPC’s objec-

tive in Section 2.1. In particular, we know how changes in µzi
affect the optimal distribution of

the player µxi
when g i is concave or convex (see 1-5 on page 4). Combining with Theorem 1 we

immediately get:

Lemma 4 Consider a player i ∈I and let Assumption 1 be satisfied.

1. If
∫

z−i∈Z−i
Ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-concave differences in xi and zi , and

no element on the lower boundary of X i (inf X i ) is optimal, then a mean-preserving spread

23B (·) denotes the Borel subsets of a given set.
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toµzi
will lead to a second-order stochastic dominance decrease in the optimal distribution

µxi
.

2. If
∫

z−i∈Z−i
Ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-convex differences in xi and zi , and no

element on the upper boundary of X i (sup X i ) is optimal, then a mean-preserving spread to

µzi
will lead to a convex-increasing order increase in the optimal distribution µxi

.

As we saw in Section 3.1, the conditions of Lemma 4 are easy to verify if Ui is differentiable

in xi (see also the main Theorem below which provides sufficient conditions in the differentiable

case). The Lemma tells us that less precise private signals (increased uncertainty) leads to higher

variance of any affected player’s optimal distribution. Whether the mean actions increase or de-

crease depends, however, on whether the payoff function exhibits quasi-convex or quasi-concave

differences. The story clearly does not end there though. The increase in uncertainty will spill over

to the other players and make everybody’s game environments more uncertain. To deal with this,

we need the following straightforward generalization of a result found in Rothschild and Stiglitz

(1971).24

Lemma 5 Let Assumption 1 be satisfied and let g i (zi ,µx−i
) = arg maxxi∈X i

∫

Ui (xi , x−i , zi )µx−i
(d x−i ).

Then for j 6= i :

1. If Ui (x̃i , x−i , zi ) −Ui (xi , x−i , zi ) is concave in x j for all x̃i ≥ xi , then g i (zi ,µx−i ,− j
, µ̃x j
) ≤

g i (zi ,µx−i
)whenever µ̃x j

is a mean-preserving spread of µx j
.

2. IfUi (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is concave and increasing in x j for all x̃i ≥ xi , then g i (zi ,µx−i
)≤

g i (zi ,µx−i ,− j
, µ̃x j
)whenever µ̃x j

second-order stochastically dominates µx j
.

If in these statements concavity in x j is replaced with convexity, the first conclusion changes to:

g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) whenever µ̃ j is a mean-preserving spread of µx j
; and the second

conclusion changes to g i (zi ,µx−i
) ≤ g i (zi ,µx−i ,− j

, µ̃x j
) whenever µ̃x j

dominates µx j
in the convex-

increasing order.

Proof. Statement 1 is a direct application of Topkis’ theorem (Topkis (1978)) which in the situa-

tion with a one-dimensional decision variable and unique optimizers says that the optimal de-

cision will be non-decreasing [non-increasing] in parameters if the objective exhibits increasing

differences [decreasing differences]. The conclusion thus follows from the fact that
∫

Ui (xi , x−i , zi )
µx−i
(d x−i ) exhibits decreasing differences in xi (with the usual order) and µx j

(with the mean-

preserving spread order �c x ) if and only if the assumption of the statement holds. Also by Top-

kis’ theorem, if Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is increasing in x j for j 6= i and for all x̃i ≥ xi , then

µ̃x j
�s t µx j

⇒ g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) (here �s t denotes the first-order stochastic domi-

nance order). From this and Statement 1 follows Statement 2 because it is always possible to split

24Rothschild and Stiglitz (1971) consider mean-preserving spreads in the differentiable case. If Ui is differentiable in
xi , the main condition of Lemma 5 is equivalent to the concavity of Dxi

Ui (xi , x−i , ·) which exactly is the assumption of
Rothschild and Stiglitz (1971). See also Athey (2002) for related results. It is by combining such (known) results with
this paper’s new results that we are able to make progress on DCS in Bayesian games.
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a second order stochastic dominance increase �c v i into a mean preserving contraction �c v fol-

lowed by a first order stochastic dominance increase (Formally, if µ̃x j
�c v i µx j

, then there exists a

distribution µ̂x j
such that µ̃x j

�s t µ̂x j
�c v µx j

). The convex case is proved by a similar argument

and is omitted.

For given distributions of private signals µz = (µz1
, . . . ,µzI

) let Φ(µz ) denote the set of equilib-

rium distributions, i.e., the set of optimal distributions (14) where (g ∗1 , . . . , g ∗I ) is one of the (possi-

bly many) Bayesian equilibria. Fix a given stochastic order � on the probability space of optimal

distributions and consider a shift in the distribution of private signals from µz to µ̃z . In the Theo-

rem below,�will be either the second-order stochastic dominance order or the convex-increasing

order; and the shift from µz til µ̃z will be a mean-preserving spread. The set of equilibrium distri-

butions then increases in the order � if

∀µx ∈Φ(µz ) ∃µ̃x ∈Φ(µ̃z )with µ̃x �µx and ∀µ̃x ∈Φ(µ̃z ) ∃µx ∈Φ(µz )with µ̃x �µx(15)

If the order � is reversed in (15), the set of equilibrium distributions decreases. If Φ(µz ) and

Φ(µ̃z ) have least and greatest elements, then (15) implies that the least element of Φ(µz ) will be

smaller than the least element of Φ(µ̃z ) and the greatest element of Φ(µz ) will be smaller than the

least element of Φ(µ̃z ) (Smithson (1971), Theorem 1.7). In particular, if the equilibria are unique

and we therefore have a functionφ such that Φ(µz ) = {φ(µx )} and Φ(µ̃z ) = {φ(µ̃x )}, we getφ(µz )�
φ(µ̃z )which simply means that the functionφ is increasing.

Theorem 3 (Mean Preserving Spreads in Bayesian Games) Consider a Bayesian game as descri-

bed above and let µz = (µzi
)i∈I and µ̃z = (µ̃zi

)i∈I be two distributions of private signals.25

1. Suppose all assumptions of Lemma 4.1 are satisfied and Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is in-

creasing and concave in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for

any subset of the players, then the set of equilibrium distributions decreases in the second-

order stochastic dominance order (in particular the agents’ mean actions decrease, and the

actions’ variance increase).

2. Suppose all assumptions of Lemma 4.2 are satisfied and Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is in-

creasing and convex in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for

any subset of the players, then the set of equilibrium distributions increases in the convex-

increasing order (in particular the agents’ mean actions increase, and again the actions’ vari-

ance increase).

If Ui is differentiable in xi , all of these assumptions are satisfied if Dxi
Ui (xi , x−i , zi ) is increasing

in x−i and either concave in (xi , zi ) and x−i [case 1] or convex in (xi , zi ) and x−i [case 2].

Proof. As in previous proofs, let �c v i denote the concave-increasing (second-order stochastic

dominance) order and �s t denote the first-order stochastic dominance order. Recast the game in

25In the following statements, it is to be understood that any distribution µzi
that is not replaced with a mean-

preserving spread µ̃zi
is kept fixed.
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terms of optimal distributions: Agent i ’s problem is to find a measurable function g i which for a.e.

zi ∈ Zi maximizes
∫

x−i∈X−i
Ui (xi , x−i , zi )µx−i

(d x−i ). The policy function xi = g i (zi ,µx−i
)determines

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ,µx−i
) ∈ A} (A ∈B (X i )). An equilibrium is a vectorµ∗x = (µ

∗
x1

, . . . ,µ∗xI
) such

that for all i ∈ I : µ∗xi
(A) = µzi

{zi ∈ Zi : g i (zi ,µ∗x−i
) ∈ A} , all A ∈B (X i ). Letting fi (µx−i

,µzi
) denote

agent i ’s optimal distribution given µx−i
and µzi

, an equilibrium is a fixed point of f = ( f1, . . . , fI ).
By 2 of Lemma 5 and Observation 1 on page 4, µ̃x j

�c v i µx j
⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �s t fi (µx−i

,µzi
)

for all j 6= i . Since first-order stochastic dominance implies second-order stochastic dominance,

fi (µx−i ,− j
, µ̃x j

,µzi
) �s t fi (µx−i

,µzi
)⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �c v i fi (µx−i

,µzi
). It follows that the map-

ping f is monotone when µx ’s underlying probability space is equipped with the product order

�I
c v i . Again with the order �c v i on optimal distributions, it follows from Lemma 4 that each fi is

decreasing in µzi
with the convex (mean-preserving spread) order on µzi

’s underlying probability

space. f will also be continuous (it is a composition of continuous functions) and so the theo-

rem’s conclusions follow directly from Theorem 3 in Acemoglu and Jensen (2015) (the conditions

of that Theorem are immediately satisfied when f is viewed as a correspondence). For the sec-

ond statement of the theorem the argument is precisely the same except that one now equips the

set of optimal distributions with the convex-increasing order and notes that fi is monotone when

the private distributions µzi
’s underlying probability spaces are equipped with the mean preserv-

ing spread order. The differentiability conditions presented at the end of the theorem follow from

Lemma 1.

Note that under the assumptions of Theorem 3, the game is supermodular. Under the addi-

tional conditions of the following corollary, the game is monotone (i.e., a Bayesian game of strate-

gic complementarities, see Van Zandt and Vives (2007)). The proof follows along the same lines as

the proof of Theorem 3 and is omitted.

Corollary 3 (Second-Order Stochastic Dominance Changes) If in addition to the assumptions of

Theorem 3, it is assumed that Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is increasing in zi , then if µ̃zi
second-

order stochastically dominates µzi
for any subset of the players, the set of equilibria decreases in

the second-order stochastic dominance order in case 1. In case 2., the set of equilibria increases in

the convex-increasing order when µ̃zi
dominatesµzi

in the convex-increasing order for any subset

of the players.

There are many interesting applications of Theorem 3, ranging from auction theory to the Di-

amond search model. Here we will study a Bayesian version of the classical arms race game from

the field of conflict resolution (see e.g. Milgrom and Roberts (1990), p.1272), and ask whether

increased uncertainty about arms’ effectiveness and opponents’ intentions leads to an intensifi-

cation of the arms race or not. But before getting to that, let us round off our leading example of a

monetary policy committee.

In Section 2.1, z̄ in the expected utility formulation (3) was interpreted as an additional exoge-

nous variable (the oil price for example). That formulation was chosen deliberately because it also
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covers Bayesian games where z̄ is now instead the private signal of a second agent (“the public”):

u1(x1, z1) =

∫

U1(x1, g2(z2), z1)µz2
(d z2).(16)

z1 is the MPC’s private signal, and −U1 its loss function. As discussed in Section 2.1, the loss func-

tion incorporates the MPC’s assessment of the Lucas supply curve which depends on the MPC’s

private signal z1 but now also depends on what the public does, g2(z2). What the public does is, in

turn, uncertain to the MPC since it depends on the public’s private signal z2. We already discussed

both the conditions for and interpretation of u1 exhibiting quasi-concave differences in Sections

2.1 and 3.1. What is new is the condition in Lemma 5. Taking here condition 2. in Lemma 5, the in-

tuition is straight-forward: if we think of x2 as a measure of economic activity, condition 2 says that

the MPC’s marginal payoff (so minus the loss) is increasing and concave in x2, higher activity low-

ers the marginal loss associated with raising the interest rate (the loss function is decreasing in x2),

but decreasingly so as the level of activity increases (the loss function is convex in x2). This makes

a lot of sense economically. All else equal, higher activity makes interest increases less painful in

the eyes of an MPC, but this effect is bound to diminish as the economy progressively overheats.

Leaving a detailed “story” for future work, we may now add the public (agent i = 2), or we

could of course add more than a single agent and extend (16) accordingly. We then ensure that

the public’s objective function exhibits quasi-concave differences. For example, the public might

be thought of as generating economic activity, and a concave policy function would mean that

investments, etc., are decreasing at a steepening rate in the rate of interest. Adding the conditions

of Lemma 5, we may then apply Theorem 3. This result tells us that if uncertainty increases (either

for the central bank or the public) then in the Bayesian equilibrium both the interest rate and the

activity variable decrease in the sense of second-order stochastic dominance. So if uncertainty

increases for exogenous reasons, mean activity as well as the mean interest rate decrease, and the

economy will fluctuate more (the variances increase).

Finally, consider the arms-race advertised a moment ago. Consider two countries, i = 1, 2, with

identical state payoff functions ui (xi , x−i , zi ) = B (xi−x−i−zi )−c xi . B is a strictly concave function

and c > 0 a constant cost parameter. zi is a random variable that reflects the relative effectiveness

of the arms — real or imagined (for example a domestic media frenzy might correspond to a mean-

preserving spread to zi ).26 Assuming that B is sufficiently smooth, we can use the conditions at

the end of Theorem 3. By strict concavity, Dxi
u (xi , x−i , zi ) = B ′(xi − x−i + zi )− c is increasing in

x−i , and the question is therefore whether it is also either convex or concave in (xi , zi ) and in x−i .

Obviously, this depends entirely on whether B ′ is convex or concave, i.e., on whether the third

derivative of B is positive or negative. In the convex case (positive third derivative), the countries’

policy functions are convex. Hence greater uncertainty will increase the affected country’s (or

countries’) expected stock of arms as well as the variance (Lemma 4, which specifically says that

given the other country’s strategy, greater uncertainty will lead to a convex-increasing shift in the

optimal distribution). The increased variance of the affected country’s stock of arms will lead to a

26A myriad of other specifications would of course be possible, for example costs could instead be random. This
section’s results may be applied for any such specification.
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more uncertain environment for the other country and make it accumulate more arms (Lemma

5). This escalation continues until an equilibrium is reached with higher mean stocks of arms and

greater uncertainty about the exact size of the arsenals (Theorem 3).27 Note that a positive third

derivative means that the countries are “prudent” (Kimball (1990)) — a well-understood behav-

ioral trait that also plays a key role in other settings such as in income allocation problems (Car-

roll and Kimball (1996)). Of course, prudence, which in the words of Kimball (1990) (p.54) is “the

propensity to prepare and forearm oneself in the face of uncertainty”, has rather more beneficial

consequences in income allocation models than it does in arms races. It is therefore not uniformly

good news that experimental evidence seems to suggest that most people are prudent (Nussair et

al (2011)). But of course, prudence may be situation-dependent or imprudent politicians may be

elected. In this case B will have a negative third derivative, and the countries’ policy functions

will be concave so that greater uncertainty lowers the mean stock of arms in equilibrium. Note

however, that according to Theorem 3, the variance will still increase, so whether decision makers

are prudent or not, the risk of exceptionally high stocks of arms and the negative consequences in

case of war still increases when the environment becomes more uncertain.

5 Stochastic Dynamic Programming

This section uses Theorem 2 to study the topic introduced in Section 2.2, namely the concav-

ity/convexity of policy functions in stochastic dynamic programming problems. In income al-

location problems, the relationship between earning risk and wealth accumulation is guided by

whether the consumption function is concave or convex (Huggett (2004)). And in macroeco-

nomics, it determines the effect of increased individual uncertainty on aggregate market outcomes

in large dynamic economies (Acemoglu and Jensen (2015)) an example of which is the Aiyagari-

model mentioned in Section 2.2 and returned to below.

The treatment and notation follows Chapter 9 of Stokey and Lucas (1989). The dynamic pro-

gramming problem is,

max E0[
∑∞

t=0β
t u (xt , xt+1, zt )]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(17)

In comparison with Stokey and Lucas (1989), two structural restrictions are made to simplify

the exposition (but the results easily generalize, see Remarks 1-2 at the end of this section): first,

the zt ’s are assumed to be i.i.d. with distribution µz ; second, only the one-dimensional case is

considered, i.e., it is assumed that xt ∈ X ⊆ R and zt ∈ Z ⊆ R. We also maintain the standard

assumption of a concave objective even though our general results in fact do not even require

quasi-concavity (Remark 3 discusses this further).

Both X and Z are assumed to be convex sets equipped with their Borelσ-algebras.28 The value

27Note that since the conditions of Corollary 3 are satisfied, these conclusions are valid not just for mean-preserving
spreads but for second-order stochastic dominance decreases more generally.

28For our result on the policy function g (x , z )’s convexity in x , it may alternatively be assumed that Z is a countable
set equipped with theσ-algebra consisting of all subsets of Z (see Stokey and Lucas (1989), Assumption 9.5.a.).
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function v : X ×Z →R of (17) is,

v (x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(18)

The following assumptions are from Stokey and Lucas (1989), Chapter 9.

Assumption 2 Γ : X ×Z → 2X is non-empty, compact-valued, continuous, and has a convex graph,

i.e., for all x , x̃ ∈ X , z ∈ Z , and all λ ∈ [0, 1]: λy +(1−λ) ỹ ∈ Γ (λx +(1−λ)x̃ , z )whenever y ∈ Γ (x , z )
and ỹ ∈ Γ (x̃ , z ).

Assumption 3 u : X ×X ×Z →R is bounded and continuous, andβ ∈ (0, 1). Furthermore, u (x , y , z )
is concave in (x , y ) and strictly concave in y .

Note that Assumption 2 in particular requires Γ to have a convex graph. As discussed in the first

paragraph after Definition 3, this implies that Γ is a concave as well as a convex correspondence (cf.

the conditions of Theorem 2). Under Assumptions 2-3, the value function v = v (x , z ) is uniquely

determined, continuous, and concave in x . Furthermore, the policy function g : X ×Z → X is the

well-defined and continuous function

g (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(19)

Theorem 4 (Convex Policy Functions in Dynamic Stochastic Programming Problems) Consider

the stochastic dynamic programming problem (17) under Assumptions 2-3 and let g : X ×Z → X

denote the policy function (19). Assume that u (x , y , z ) is differentiable and satisfies the follow-

ing upper boundary condition: limy n↑supΓ (x ,z )Dy u (x , y n , z ) = −∞ (or in some other way ensure

that supΓ (x , z ) will never be optimal given (x , z )). Then the policy function g is convex in x if

Dx u (x , y , z ) is non-decreasing in y and there exists a k ≥ 0 such that 1
1−k [−Dy u (x , y , z )]1−k is con-

cave in (x , y ) and 1
1−k [Dx u (x , y , z )]1−k is convex in (x , y ).29 If in addition Γ (x , ·) is a convex corre-

spondence and 1
1−k [−Dy u (x , y , z )]1−k is concave in (y , z ), then the policy function g will also be

convex in z .

Proof. See Section 5.1.

Theorem 4 has a host of applications in macroeconomics. For example, it is applied in Ace-

moglu and Jensen (2015) to study how increased uncertainty affects the equilibria in large dy-

namic economies. As a concrete example, consider the decision problem faced by an individual

consumer in the model of Aiyagari (1994). Let r > 0 and w > 0 denote, respectively, the factor of

interest and wage rate. Let Γ (x , z ) = {y ∈ [−b , b ] : y ≤ r x +w z }, and let ũ be a strictly concave and

strictly increasing period utility function. The income allocation problem can then be written as

a dynamic programming problem:

max E0[
∑∞

t=0β
t ũ (r xt +w zt − xt+1)]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(20)

29In the limit case k = 1, 1
1−k [ f (x )]

1−k is by convention equal to log( f (x )).
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Note that this formulation explicitly incorporates borrowing limits (Aiyagari (1994)). Note also

that xt is savings at date t , so the policy function g (x , z ) is the savings function and the consump-

tion function is30

c (x , z ) = r x +w z − g (x , z ).(21)

c is concave in x (“concavity of the consumption function”) if and only if g is convex in x

(“convexity of the savings function”). In terms of this section’s general notation we have u (x , y , z ) =
ũ
�

r x +w z − y
�

. It is easy to verify (and well known) that Assumptions 2-3 are satisfied. Under a

standard boundary condition on ũ , we will never have g (x , z ) = supΓ (x , z ), i.e., the consumer will

not choose zero consumption at any date.

We have Dy u (x , y , z ) =−ũ ′(r x+w z−y ) and Dx u (x , y , z ) = r ũ ′(r x+w z−y ). Dx u is strictly in-

creasing in y since ũ is strictly concave. By Theorem 4, the consumption function is consequently

concave if 1
1−k [ũ

′(r x +w z − y )]1−k is concave and 1
1−k [r ũ ′(r x +w z − y )]1−k is convex in (x , y ).

When the Hessian determinants of Dx u and Dy u exist — i.e., when ũ is thrice differentiable as in

Carroll and Kimball (1996) — they both equal zero, and it is then straightforward to verify that the

previous conditions on ũ will hold if and only if

ũ ′ũ ′′′

(ũ ′′)2
= k ≥ 0.(22)

Thus we find the condition that ũ must be of the HARA-form introduced in Section 2.2. That ũ

is of the HARA-form is also assumed by Carroll and Kimball (1996) who establish concavity of the

consumption function when there are no borrowing limits. One easily verifies that the condition

for convexity in z (last sentence of Theorem 4) is also satisfied when ũ is of the HARA-form. Thus

we have generalized the result of Carroll and Kimball (1996) to the incomplete markets setting with

borrowing constraints.

5.1 Proof of Theorem 4

The value and policy functions will equal the pointwise limits of the sequences (v n )∞n=0 and (g n )∞n=0

determined by:

v n+1(x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

, and(23)

g n (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

.(24)

Under the Theorem’s conditions, v n is concave in x for all n . Since a concave function is ab-

solutely continuous, v n will be absolutely continuous in x for all n . The following result presents

conditions under which an absolutely continuous function is quasi-concave. It generalizes the

sufficiency part of Lemma 1.

30Note that if we let W = r x +w z (income), we will always have that g and c are functions of W . See Section 2.2
where this was made explicit.

26



Lemma 6 Assume that u : X ×Z →R is absolutely continuous in x ∈ X , i.e., assume that u (x , z ) =
α(a , z ) +

∫ x

a
p (τ, z ) dτ for a Lebesgue integrable function p : X ×Z → R (here a = inf X and α is

a function that does not depend on x ). Then u exhibits quasi-convex differences [quasi-concave

differences] if p (x , z ) is quasi-convex [quasi-concave].

Proof. The statement can be verified by going through the proof of Lemma 1 and everywhere

replace u ’s derivative with p .

Next we need a result on how to ensure that the sum of two functions exhibits quasi-concave

or quasi-convex differences.

Lemma 7 Let u be of the form u (x , z ) = f (x , z ) + h (−x , z ) where f , h : X × Z → R are differen-

tiable with Dx f (x , z ) = f ′x (x , z )≥ 0 and Dx h (x , z ) =−h ′x (−x , z )≤ 0. Then u exhibits quasi-convex

differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≤ 0} if there exists a k ≥ 0 such that 1
1−k [ f

′
x ]

1−k

is convex and 1
1−k [h

′
x ]

1−k is concave.31 If instead 1
1−k [ f

′
x ]

1−k is concave and 1
1−k [h

′
x ]

1−k is convex,

then u exhibits quasi-concave differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≥ 0}.

Proof. In the online appendix (Jensen (2015), Lemma 3).

From now on, call a function f : X → R k -convex [k -concave] if 1
1−k [ f (x )]

1−k is convex [con-

cave] where, as previously mentioned, the case k = 1 is taken to mean log-convex [log-concave]
by convention.32

Lemma 8 Given z , let a denote the least point at which v n (·, z ) is defined. Assume that

−Dy u (x , y , z ) is k -concave in (x , y ) [k -concave in (y , z )], and that v n (y , z ) =
∫ y

a
p n (τ, z ) dτwhere

p n (·, z ) is k -convex. Then g n (x , z ) is convex in x [convex in z ].

Proof. This is a direct application Theorem 2’s corollary (Corollary 2) to the optimization problem

in (24). We consider here only the convexity of g n in x (the exact same argument implies convex-

ity in z under the Lemma’s square-bracketed assumption). Except for quasi-convex differences

in (x , y ), all the assumptions of Corollary 2 are clearly satisfied (in particular, Γ is a convex corre-

spondence as mentioned immediately after Assumption 3). To see that quasi-convex differences

holds, we use Lemma 6 and must thus verify that,

Dy u (x , y , z ) +β

∫

p n (y , z ′)µz (d z ′),(25)

is quasi-convex in (x , y ) on the relevant set which, allowing for solutions at lower boundary points

is A ≡ {(x , y ) ∈ X 2 : Dy u (x , y , z ) + β
∫

Dy v n (y , z ′)µz (d z ′) ≤ 0}. To see that this holds, first use

that k -convexity is preserved under integration (Jensen (2015), Lemma 2) to conclude that when

p n (y , z ′) is k -convex in y , β
∫

p n (y , z ′)µz (d z ′) is k -convex in y . Then use Lemma 7.

To finish the proof we need just one last technical result.

31In the limit case k = 1, 1
1−k [ f

′
x ]

1−k is by convention equal to log( f ′x ) (similarly for h ′x ).
32Quite a bit can be said about such functions, but since this is mainly a mathematical distraction from the point of

view of this paper, further investigation has been relegated to the online appendix.
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Lemma 9 Assume that Dx u (x , y , z ) is k -convex in (x , y )and non-decreasing in y and that g n (x , z )
is convex in x . Then v n+1(x , z ) =

∫ x

a
p n+1(τ, z ) dτwhere p n+1(·, z ) is k -convex.

Proof. Since v n+1 is absolutely continuous, we can (abusing notation slightly) write it as: v n+1(x , z )
=
∫ x

a
Dx v n+1(τ, z ) dτ. In particular, Dx v n+1(x , z ) exists almost everywhere and when it exists

Dx v n+1(x , z ) = Dx u (x , g n (x , z ), z ) by the envelope theorem. k -convexity of p n+1(x , z ) ≡
Dx u (x , g n (x , z ), z ) in x now follows immediately from the fact that k -convexity is preserved under

convex, increasing transformations (Jensen (2015), Lemma 1).

To prove that g is convex, consider the value and policy function iterations (23)-(24). Start

with any value function v 0 such that v 0(y , z ) =
∫ y

a
p 0(τ, z ) dτ where p 0(·, z ) is k -convex. Then by

Lemma 8, g 0 is convex. Hence by Lemma 9, v 1(y , z ) =
∫ y

a
p 1(τ, z ) dτ where p 1(·, z ) is k -convex.

Repeating the argument, g 1 is convex and v 2(y , z ) =
∫ y

a
p 2(τ, z ) dτ where p 2(·, z ) is k -convex.

And so on ad infinitum. The pointwise limit of a sequence of convex function is convex, hence

g (·, z ) = limn→∞ g n (·, z ) is convex. The same argument applies for convexity in z , concluding the

proof of Theorem 4.

Remark 1 (General Markov Processes) The previous proof goes through without any modifica-

tions if zt is allowed to be a general Markov process, i.e., if the functional equation (18) is replaced

with:

v (x , z ) = sup
y ∈Γ (x ,z )

[u
�

x , y , z
�

+β

∫

v (y , z ′)Q (z , d z ′)] ,(26)

where Q is zt ’s transition function. Indeed, the previous proof goes through line-by-line if we

instead begin with the functional equation (26).

Remark 2 (Multidimensional Strategy Sets) The proof also easily extends to the case where X

and Z are multidimensional (a case treated in the Appendix). The only modification needed is

in the proof of Lemma 8 where now Theorem 5 in the appendix is needed to conclude that g n

is convex, in place of Theorem 2. Thus Theorem 4 extends to the multidimensional case if we

in addition assume that u is supermodular in y , that Γ ’s values are lower semi-lattices, and that

optimizers stay away from the upper boundary.33

Remark 3 (Dispensing with Concavity Assumptions) The results of this section can be extended

to cases where the objective function is not concave in (x , y ) and/or is not strictly concave in y

(see Assumption 3). What is critical for the proof is that the value function is absolutely continu-

ous so that Lemma 6 can be applied. Of course, absolute continuity of the value function can be

established under weak direct conditions (see e.g. Milgrom and Segal (2002)) instead of being de-

rived as a consequence of concavity as done above. Instead of a convex policy function one then

gets a convex policy correspondence.

33In particular, the objective function in (24) is supermodular in y when u is supermodular in y because supermod-
ularity/increasing differences is preserved under integration (Topkis (1998), Theorem 2.7.6.) and v n (y , z ′) is therefore
supermodular in y for all n .
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6 Conclusion

This paper contributes to distributional comparative statics (DCS), i.e., to the study of how changes

in exogenous distributions affect endogenous distributions in economic models. Most DCS ques-

tions can be answered if suitable policy functions are either concave or convex. In the main the-

oretical contribution of the paper (Theorem 1), it is shown that concavity of the policy function

hinges on an intuitive as well as easily verifiable condition on the primitives of a model, namely

quasi-concave differences. That observation parallels Topkis’ theorem (Topkis (1978)) which en-

sures that the policy function is increasing (strategic complementarity) when the objective func-

tion exhibits increasing differences. Theorem 2, as well as Theorem 5 in the Appendix, extends the

result to policy correspondences (multiple optimizers) and multi-dimensional action sets.

Several areas of application were discussed including uncertainty comparative statics, inter-

national trade models of heterogenous firms (Melitz (2003)), the macroeconomic modeling of

inequality, and stochastic dynamic programming. In all of these, the concavity of suitably defined

policy functions turns out to drive the conclusions, ultimately owing to Observations 1-5 in Sec-

tion 2.1 (page 4) and the fact that Lorenz dominance is equivalent to mean-preserving spreads and

generalized Lorenz dominance is equivalent to decreases in second-order stochastic dominance

(see the discussion at the end of Section 2.2). As a concrete illustration of uncertainty comparative

statics, a Bayesian arms race is studied and it is found that “prudence” (Kimball (1990)) determines

whether mean stocks of arms increase or decrease when uncertainty goes up — but in all cases,

a more uncertain environment also leads to higher equilibrium variance and thus greater uncer-

tainty about the scale of destruction in the event of a war. The stochastic dynamic programming

results are illustrated by generalizing a result due to Carroll and Kimball (1996) to allow for bor-

rowing constraints. These results play a key role for distributional comparative statics in dynamic

stochastic general equilibrium (DSGE) models — a theme taken up in Acemoglu and Jensen (2015)

who study, for example, how increased uncertainty about future earnings prospects affects output

per worker in the Aiyagari (1994) model.

7 Appendices

Appendix I: Proof of Observations 1-5 in Section 2.1

The distribution µx is the image measure of µ under g . Hence
∫

f (x )µx (d x ) =
∫

f (g (z ))µ(d z )
for any function f : X → R such that the integrals are well-defined. Each claim thus amounts to

saying that for classes of functions F and Fx , if
∫

h (z )µ̃(d z ) ≥
∫

h (z )µ(d z ) for all h ∈ F , then
∫

f (g (z ))µ̃(d z )≥
∫

f (g (z ))µ(d z ) for all f ∈Fx . In the case of Observation 1,F andFx both equal

the class of increasing functions and the claim follows from the fact that f ◦ g is increasing when

both f and g are increasing. For Observation 2,F is the class of convex functions andFx the class

of decreasing, convex functions, and the claim follows because f ◦ g is convex when g is concave

and f is convex and decreasing. For Observation 3, both F and Fx equal the class of increas-

ing, concave functions and the conclusion follows because f ◦ g is increasing and concave when

both f and g are increasing and concave. Observations 4-5 are proved by the same arguments as
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Observations 2-3 and may be omitted.

Appendix II: Proof of Lemma 1

To facilitate the results on multi-dimensional strategy sets in Appendix III, the general case where

X ⊆Rn is considered. The statement to be provided is that if u is differentiable in x , it will exhibit

quasi-concave differences if and only if Dx j
u (x , z ) is quasi-concave in (x , z ) for all j = 1, . . . , n

(evidently, Lemma 1 is a special case of this statement).

“⇒”: Since Dx j
u (x , z ) = limδ→0

u (x+δε j ,z )−u (x ,z )
δ where ε j denotes the j ’th unit vector, and

quasi-convexity is preserved under pointwise limits (Johansen (1972)), each partial derivative

Dx j
u (x , z ) is quasi-convex at (x , z ) when u exhibits quasi-convex differences at (x , z ). “⇐”: This

direction is not easy. The idea is to prove the contrapositive by contradiction (note that since

quasi-convexity is not preserved under integration, we cannot use the fundamental theorem of

calculus). So we assume that u does not exhibit quasi-convex differences, that each partial deriva-

tive Dx j
u (x , z ) is quasi-convex, and then derive a contradiction. Forα ∈ [0, 1] set xα ≡αx0+(1−α)x1

and zα = αz0 + (1− α)z1. Say that u exhibits quasi-convex differences in the direction η > 0 at

(x0, z0,α) if for all δn > 0 in some neighborhood of 0:

u (xα+δnη, zα)−u (xα, zα)≤max{u (x0+δnη, z0)−u (x0, z0), u (x1+δnη, z1)−u (x1, z1)}(27)

It is easy to see that if u exhibits quasi-convex differences (on all of X ×Z ), then it exhibits quasi-

convex differences in all directions η > 0 at all (x , z ,α) ∈ X × Y × [0, 1]. Let ε j denote the j ’th

unit vector (a vector with 1 in the j ’th coordinate and zeroes everywhere else). Since a function is

quasi-convex in all directions if and only if it is quasi-convex in all unit/coordinate directions ε j ,

we may (as always) restrict attention to the directions of the coordinates in the previous statement.

Hence if u does not exhibit quasi-convex differences, there will exist a coordinate direction ε j ,

(x0, z0), (x1, z1) ∈ X ×Y , α̂ ∈ [0, 1] and a sequence δn ↓ 0 such that for all n :

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)>max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(28)

Note that we necessarily have α̂ ∈ (0, 1) when the previous inequality holds. Intuitively, the

inequality says that there exists a point (xα, zα) on the line segment between (x0, z0) and (x1, z1) at

which u (·+δnε j , ·)− u (·, ·) takes a strictly higher value than at any of the endpoints. Now, divide

through (28) with δn and take limits:

Dx j
u (xα̂, zα̂)≥max{Dx j

u (x0, z0), Dx j
u (x1, z1)}

Since Dx j
u (·, ·) is quasi-convex, it follows that: Dx j

u (xα̂, zα̂) =max{Dx j
u (x0, z0), Dx j

u (x1, z1)}.
Assume without loss of generality that Dx j

u (x0, z0) ≥ Dx j
u (x1, z1). Since Dx j

u (x0, z0) is quasi-

convex and 0 < α̂ < 1, it follows that either (i) Dx j
u (x0, z0) = Dx j

u (xα, zα) for all α ∈ [0, α̂] or (ii)

Dx j
u (x1, z1) = Dx j

u (xα, zα) for all α ∈ [α̂, 1] (or both).34 Consider case (i) (the proof in case (ii)

is similar). When (i) holds, u ’s restriction to the line segment between (x0, z0) and (xα̂, zα̂) must

34A quasi-convex function’s restriction to a convex segment as the one considered here can always be split into two
segments, one which is non-increasing and one which is non-decreasing (and in the present situation, there must first
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necessarily be of the form: u (x , z ) = c x j + g (x− j , z ) where cn = Dxn
u (x0, z0) (a constant) and x− j

denotes all coordinates of x except for the j ’th one (remember that j is the positive coordinate of

e j ). But then u (xα̂+δnε j , zα̂)−u (xα̂, zα̂) = u (x0+δnε j , z0)−u (x0, z0) = cδnε j which implies that:

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)≤max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(29)

Comparing (29) with (28) we have a contradiction, and the proof is complete.

Appendix III: Multi-dimensional Decision Variables

This appendix treats concavity of the policy correspondence in the case where the decision vector

is allowed to live in an arbitrary ordered topological vector lattice V , x ∈ X ⊆ V . Note that in this

setting, the order mentioned in Definition 3 is the order inherited from V . So if V =RN with the

usual Euclidean order, the theorem below implies that each coordinate correspondence Gn : Z →
2X n ⊆ 2R is concave in the sense discussed in detail in Section 3.2.

The multi-dimensional setting forces us to make some additional assumptions. In comparison

with Theorem 2, X must be a lattice, u must be supermodular in the decision vector, and Γ must

be upper semi-lattice valued. Finally, Γ ’s values must be order convex rather than merely convex.35

Finally, the boundary conditions must be suitably generalized as we turn to first. It should be noted

that all of these assumptions automatically are satisfied when X is one-dimensional. Hence the

result to follow encompasses Theorem 2.

First, the basic definitions. Say that a point x ∈ Γ (z ) lies on the upper [lower] boundary of Γ (z )
if there does not exist an x ′ ∈ Γ (z )with x ′� x (x ′� x ). The upper boundary is denoted by B(Γ (z ))
and the lower boundary is denoted by B(Γ (z )). What we are going to require in the theorem below

is precisely as in Theorem 2 except that the infimum is replaced with the lower boundary.

Next, X must be a lattice, i.e., if x and x ′ lie in X so do their infimum x ∧x ′ and supremum x ∨
x ′. If X ⊆Rn with the usual Euclidean/coordinatewise order, the infimum (supremum) is simply

the coordinatewise minimum (maximum). Assuming that X is a lattice is actually a very weak

additional requirement in the present framework because it is the constraint correspondence Γ

that determines the feasible set. It is the next assumption that really has “bite”. A lower semi-

lattice [upper semi-lattice] is a subset A ⊂ X with the property that if x , x ′ ∈ A then the infimum

x ∧ x ′ [supremum x ∨ x ′] also lies in A. Either is of course weaker than being a lattice. The lower

or upper semi-lattice is order-convex if a , b ∈ A, and a ≤ a ′ ≤ b imply a ′ ∈ A (in words, if the set

contains an ordered pair of elements, it contains the entire order interval between these elements).

Note that order-convexity is stronger than convexity in general, although the two coincide in the

one-dimensional case. A budget set is an order-convex lower semi-lattice (it is not a lattice), and

be non-increasing segment since the function’s value weakly decreases between the endpoints). On the convex line
segment between (x0, z0) and (x1, z1) we have in the present situation that the function begins at Dx j

u (x0, z0), again
takes the value Dx j

u (x0, z0) at (xα, zα) and then moves to a weakly lower value Dx j
u (x1, z1) at the end-point (x1, z1). It

follows that if Dx j
u (·, ·) is not constant on the first interval (corresponding toα ∈ [0,α]) it must strictly decrease and then

strictly increase on this interval, which implies that Dx j
u (·, ·) is constant on the second of the two intervals.

35Note that this once again precisely parallels monotone comparative statics. In that setting supermodularity and
lattice-type assumptions are also unnecessary/trivially satisfied in the one-dimensional case but must be imposed in
multiple dimensions.
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a firm’s input requirement set is an order-convex upper semi-lattice (but again not a lattice). As

these examples indicate, the fact that we avoid assuming that Γ ’s values are sublattices of X greatly

expands the scope of the theorem below.

Finally, u must be supermodular in the choice variables. The well-known definition is as fol-

lows.

Definition 4 (Topkis (1978)) The objective function u : X ×Z → R is supermodular in x if u (x ∨
x ′, z ) +u (x ∧ x ′, z )≥ u (x , z ) +u (x ′, z ) for all x , x ′ ∈ X and for all z ∈ Z . If u is twice differentiable

in x and X ⊆ Rn , it is supermodular in x if and only if the Hessian matrix D 2
x x u (x , z ) ∈ Rn×n has

non-negative off-diagonal elements (for all x and z ).

We are now ready to state and prove the main result with multi-dimensional action sets. Note

that as in theorems 1-2, the boundary condition is trivially satisfied if the optimization problem is

unrestricted or attention is restricted to interior solutions.

Theorem 5 (Concavity of the Policy Correspondence, Multidimensional Case) Let Z be a con-

vex subset of a vector space and X a convex lattice. Define the policy correspondence G (z ) =
arg supx∈Γ (z ) u (x , z ) where u : X ×Z → R is supermodular in x and Γ : Z → 2X has order-convex

values. Assume that G (z ) is non-empty and compact for all z ∈ Z . Then:

1. The policy correspondence G is concave if u : X ×Z →R exhibits quasi-concave differences,

Γ is concave and upper semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

2. The policy correspondence G is convex if u : X ×Z →R exhibits quasi-convex differences,

Γ is convex and lower semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

Proof of Theorem 5. The convex case 2. is proved (the proof of the concave case is similar).

Pick z1, z2 ∈ Z , x1 ∈G (z1), and x2 ∈G (z2). Exactly as in the proof of Theorem 1, we can use quasi-

convex differences to conclude that for someδ� 0, u (xα, zα)≥ u (xα+δ, zα) for allα ∈ [0, 1]. Hence

by quasi-concavity of u in x , u (x , zα) is non-increasing for x ≥ xα. We wish to show that for all α

there exists x̂ ∈G (zα)with x̂ ≤ xα. Pick any x ∈G (zα). I am first going to prove that,

x ∧ xα ∈ Γ (zα)(30)

Since Γ has convex values, there exists some x̃ ∈ Γ (zα) with x̃ ≤ xα. We have x ∈ Γ (zα) (since

x ∈ G (zα)) and so since Γ ’s values are lower semi-lattices, x ∧ x̃ ∈ Γ (zα). But x ∧ x̃ ≤ x ∧ xα ≤ x ,

hence x ∧ xα ∈ Γ (zα) because Γ has order-convex values. That was what we wanted to show. Next

use supermodularity of u (·, t ) and the fact that u (·, zα) is non-increasing for x ≥ xα (implies that

u (xα, zα)≥ u (x ∨ xα, zα)) to conclude that:

u (x , zα)−u (x ∧ xα, zα)≤ u (x ∨ xα, zα)−u (xα, zα)≤ 0(31)

(30)-(31) imply that x ∧ xα ∈G (zα). But since clearly x ∧ xα ≤ xα this completes the proof.
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