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Abstract: In this paper we review the methodology of forecasting with log-linearised DSGE
models using Bayesian methods. We focus on the estimation of their predictive distributions,
with special attention being paid to the mean and the covariance matrix of h-steps ahead fore-
casts. In the empirical analysis, we examine the forecasting performance of the New Area-Wide
Model (NAWM) that has been designed for use in the macroeconomic projections at the Euro-
pean Central Bank. The forecast sample covers the period following the introduction of the euro
and the out-of-sample performance of the NAWM is compared to nonstructural benchmarks,
such as Bayesian vector autoregressions (BVARs). Overall, the empirical evidence indicates
that the NAWM compares quite well with the reduced-form models and the results are there-
fore in line with previous studies. Yet there is scope for improving the NAWM’s forecasting
performance. For example, the model is not able to explain the moderation in wage growth
over the forecast evaluation period and, therefore, it tends to overestimate nominal wages. As
a consequence, both the multivariate point and density forecasts using the log determinant and
the log predictive score, respectively, suggest that a large BVAR can outperform the NAWM.
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1. Introduction

Since the turn of the century, we have witnessed the development of a new generation of dy-

namic stochastic general equilibrium (DSGE) models that build on explicit micro-foundations

with optimising agents. Major advances in estimation methodology allowed estimating variants

of these models that are able to compete, in terms of data coherence, with more standard time

series models, such as vector autoregressions (VARs); see, among others, Christiano, Eichen-

baum, and Evans (2005), Smets and Wouters (2003, 2007), Adolfson, Laséen, Lindé, and Villani

(2007), and Christoffel, Coenen, and Warne (2008). Accordingly, the new generation of DSGE

models provides a framework that appears particularly suited for evaluating the consequences

of alternative macroeconomic policies.

Efforts have also been undertaken to bring these models to the forecasting arena. Results in

Smets and Wouters (2004) suggest that the new generation of closed-economy DSGE models

compare well with conventional forecasting tools such as VAR models; see also Edge, Kiley,

Note: The paper is in preparation for appearing as a chapter in an ‘Oxford Handbook’ on Economic Forecasting,
edited by Michael P. Clements and David F. Hendry. We are very grateful to Marta Bańbura who has estimated
and computed the forecasts for the two large Bayesian VAR models we have used in the paper. We have received
valuable comments from participants at the Nottingham workshop on DSGE modelling, December 2009, and
seminar participants at the Humboldt University in Berlin. We are particularly grateful for discussions with and
comments from Richard Anderson, Michael Burda and Alexander Meyer-Gohde. The views expressed in this
paper do not necessarily reflect those of the European Central Bank.



and Laforte (2009). Similarly, the study by Adolfson, Lindé, and Villani (2007) shows that also

open-economy DSGE models can compete well with reduced-form models. However, it is worth

recalling that the study by Del Negro, Schorfheide, Smets, and Wouters (2007) finds evidence

that the Smets and Wouters model is misspecified when estimated on postwar U.S. data and

when applying the goodness-of-fit tools proposed in that study. Moreover, they show that this

DSGE model is outperformed by a so-called DSGE-VAR in terms of out-of-sample point forecast

accuracy.

Against this background, the goal of the current paper is to review and illustrate the method-

ology of forecasting with DSGE models using Bayesian methods. We limit the scope of the paper

to log-linearised DSGE models; and, hence, we neither consider DSGE-VARs, as in Del Negro

and Schorfheide (2004), nor do we consider DSGE models based on higher-order approximations,

as in Fernández-Villaverde and Rubio-Ramírez (2005). As regards the initial steps of forecast-

ing with DSGE models, Sargent (1989) was amongst the first to point out that a log-linearised

DSGE model can be cast in the familiar state-space form, where the observed variables are

linked to the model variables (and possibly to measurement errors) through the measurement

equation. At the same time, the state equation provides the reduced form of the DSGE model,

mapping current model variables to their lags and the underlying i.i.d. shocks, where the reduced

form is obtained by solving for the expectation terms in the structural form of the model using

a suitable method; see, e.g., Blanchard and Kahn (1980), Anderson and Moore (1985), Klein

(2000), or Sims (2002). The Kalman filter can thereafter be used to compute the value of the

log-likelihood function for any value of the model parameters when a (unique) solution of the

DSGE model exists. A classical approach to the estimation of these parameters would then be

to maximise the log-likelihood function with numerical methods. A Bayesian approach would

instead complement the likelihood with a prior distribution for the parameters and estimate the

posterior mode through numerical optimisation, or other properties of the posterior distribution

via Markov Chain Monte Carlo (MCMC) methods.

In this paper, we shall discuss an algorithm for estimating the predictive distribution of the

observed variables based on draws from the posterior distribution of the DSGE model param-

eters and simulation of future paths for the variables with the model. The general method,

called sampling the future, was first suggested for univariate time series models by Thompson

and Miller (1986). Their variant was simplified and adapted to VAR models by Villani (2001).

The particular version of the algorithm that can be used for state-space models was suggested

in Adolfson, Lindé, and Villani (2007). In case the forecast evaluation exercise only requires

moments from the predictive distribution, such as the mean and the covariance, then the sim-

ulation algorithm is not necessary. Estimation of such moments can instead be achieved by

properly combining population moments for fixed parameter values with draws from the poste-

rior distribution and, thus, without sampling the future via the model. However, if we also wish

to estimate, e.g., quantiles, confidence intervals or the probability that the variables reach some
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barrier, then the simulation algorithm may prove useful. We note that the algorithm does not

rely on a particular posterior sampler. It only requires that the draws characterise the posterior

distribution of the parameters.

We illustrate these tools by applying them to a particular DSGE model. We have selected

the New Area-Wide Model (NAWM), developed at the European Central Bank (ECB), which

is designed for use in the (Broad) Macroeconomic Projection Exercises regularly undertaken

by ECB/Eurosystem staff and for policy analysis. The specification of the NAWM was influ-

enced by both economic and statistical criteria. For example, impulse-response functions and

forecast-error-variance decompositions were used for assessing alternative specifications from

an economic perspective, while the marginal likelihood and comparisons between model-based

sample moments and estimates from the data only were applied as statistical model evaluation

criteria. In addition, a small forecast evaluation exercise was conducted, but it was treated

as one among many criteria for assessing the performance of the model. Here we extend the

forecast evaluation exercise to the full set of the NAWM’s endogenous variables. The forecast

sample covers the period following the introduction of the euro and we shall study both point

and density forecasts from 1 up to 8 quarters ahead. The DSGE model forecasts are compared

to those from a VAR and three Bayesian VARs (BVARs), as well as the naïve random walk and

(sample) mean benchmarks. We shall also consider different subsets of the observed variables

included in the NAWM, as well as different transformations of these variables.

The remainder of the paper is organised as follows. Section 2 sketches the NAWM, while

Section 3 reports on our implementation of Bayesian inference methods and on some selected

estimation results for the NAWM. Section 4 first discusses how the predictive distribution of a

DSGE model can be estimated, and it then presents the alternative forecasting models that are

used in the empirical analysis. Section 5 covers the forecast evaluation of the NAWM, focusing

first on point forecasts and then on density forecasts. Section 6 summarises the main findings

of the paper and concludes.

2. The New Area-Wide Model of the Euro Area

In this section we provide a brief overview of the NAWM to set the stage for our review of the

methodology for forecasting with log-linearised DSGE models. The NAWM is a micro-founded

open-economy model of the euro area designed for use in the ECB/Eurosystem staff projections

and for policy analysis; see Christoffel, Coenen, and Warne (2008) for a detailed description of

the NAWM’s structure. Its development has been guided by a principal consideration, namely to

provide a comprehensive set of core projection variables, including a number of foreign variables,

which, in the form of exogenous assumptions, play an important role in the projections. As a

consequence, the scale of the NAWM—compared with a typical DSGE model—is rather large,

and it is estimated on 18 macroeconomic time series.
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2.1. A Bird’s Eye View on the Model

The NAWM features four classes of economic agents: households, firms, a fiscal authority and a

monetary authority. Households make optimal choices regarding their purchases of consumption

and investment goods, they supply differentiated labour services in monopolistically competitive

markets, they set wages as a mark-up over the marginal rate of substitution between consumption

and leisure, and they trade in domestic and foreign bonds.

As regards firms, the NAWM distinguishes between domestic producers of tradable differen-

tiated intermediate goods and domestic producers of three types of non-tradable final goods:

a private consumption good, a private investment good, and a public consumption good. The

intermediate-good firms use labour and capital as inputs to produce their differentiated goods,

which are sold in monopolistically competitive markets domestically and abroad. Accordingly,

they set different prices for domestic and foreign markets as a mark-up over their marginal costs.

The final-good firms combine domestic and foreign intermediate goods in different proportions,

acting as price takers in fully competitive markets. The foreign intermediate goods are imported

from producers abroad, who set their prices in euro, allowing for an incomplete exchange-rate

pass-through. A foreign retail firm in turn combines the exported domestic intermediate goods,

where aggregate export demand depending on total foreign demand.

Both households and firms face nominal and real frictions, which have been identified as im-

portant in generating empirically plausible dynamics. Real frictions are introduced via external

habit formation in consumption and through generalised adjustment costs in investment, im-

ports and exports. Nominal frictions arise from staggered price and wage-setting à la Calvo

(1983), along with (partial) dynamic indexation of price and wage contracts. In addition, there

exist financial frictions in the form of domestic and external risk premia.

The fiscal authority purchases the public consumption good, issues domestic bonds, and levies

different types of distortionary taxes. Nevertheless, Ricardian equivalence holds because of the

simplifying assumption that the fiscal authority’s budget is balanced each period by means of

lump-sum taxes. The monetary authority sets the short-term nominal interest rate according to

a Taylor-type interest-rate rule, with the objective of stabilising inflation in line with the ECB’s

definition of price stability.

The NAWM is closed by a rest-of-the-world block, which is represented by a structural vector-

autoregressive (SVAR) model determining a small set of foreign variables: foreign demand,

foreign prices, the foreign interest rate, foreign competitors’ export prices and the price of oil.

The SVAR model does not feature spill-overs from the euro area, in line with the treatment of

the foreign variables as exogenous assumptions in the projections.

2.2. Some Key Model Equations

To better understand the cross-equation restrictions implied by the NAWM’s structure, it is

instructive to look at some key behavioural equations in their log-linearised form. We focus on
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those equations most closely related to the set of 12 observed variables that form the basis of

the forecasting performance evaluation in Section 5; namely, private consumption, investment,

imports and exports, the private consumption and the import deflator, wages and employment,

the short-term nominal interest rate and the real effective exchange rate. Real GDP and the

GDP deflator are obtained from the model’s aggregate resource constraint in real and in nominal

terms, respectively.

In order to derive the log-linearised equations, the NAWM is first cast into stationary form.

To this end, all real variables are measured in per-capita terms and scaled by trend labour

productivity zt. This variable is assumed to follow a random walk with stochastic drift and

defines the model’s balanced growth path. Similarly, we normalise all nominal variables with

the price of the consumption good PC,t. For example, we use ct = Ct/zt to denote the stationary

level of per-capita consumption, while we use pI,t = PI,t/PC,t to represent the stationary relative

price of the investment good. We then proceed with the log-linearisation of the transformed

NAWM around its deterministic steady state, where the logarithmic deviation of a variable

from its steady-state value is denoted by a hat (‘ ̂ ’). For example, the log-deviation from

steady state for the scaled consumption variable is ĉt = log(ct/c).

With these conventions, private consumption ĉt is characterised by an intertemporal optimal-

ity condition (Euler equation), which relates the log-difference of current and expected future

consumption to the ex-ante real interest rate, r̂t − Et[π̂C,t+1], noting that the specific form of

the households’ utility function, with additive habits and habit formation parameter κ, implies

that also lagged consumption enters the consumption equation:

ĉt =
1

1 + κg−1
z

Et [ ĉt+1] +
κg−1

z

1 + κg−1
z

ĉt−1 −
1 − κg−1

z

1 + κg−1
z

(
r̂t − Et [ π̂C,t+1] + ǫ̂RPt

)
(1)

−
1

1 + κg−1
z

(
Et [ ĝz,t+1] − κg−1

z ĝz,t

)
.

Here, ǫ̂RPt denotes a risk-premium shock, which drives an exogenous wedge between the riskless

interest rate set by the monetary authority and the effective interest rate faced by households.

The expected quasi-difference of trend labour productivity growth, Et[ĝz,t+1] − κg−1
z ĝz,t, enters

as an additional term because of the scaling of the consumption variable with the level of trend

productivity, where gz denotes the steady-state value of gz,t = zt/zt−1.

Investment ît is characterised by an equation with a similar structure. The intertemporal price

of investment is given by the log-difference of Tobin’s Q—the discounted sum of expected future

returns of the existing capital stock, with discount factor β—and the price of newly installed

capital goods, Q̂t − p̂I,t:

ît =
β

1 + β
Et

[
ît+1

]
+

1

1 + β
ît−1 +

1

γI g2
z (1 + β)

(
Q̂t − p̂I,t + ǫ̂It

)
(2)

+
1

1 + β

(
β Et [ ĝz,t+1] − ĝz,t

)
.
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The intertemporal price of investment is shifted by an investment-specific technology shock ǫ̂It ,

which affects the efficiency of newly installed capital goods. The lagged investment term reflects

the existence of adjustment costs related to incremental changes in investment, with sensitivity

parameter γI .

Private consumption and investment are composed of bundles of domestic and imported

intermediate goods, îm
C

t and îm
I

t . The demand for these import bundles depends on the total

demand for the consumption good, q̂Ct = ĉt, and the investment good, q̂It = ît, respectively.

Suppressing the consumption and investment superscripts for the sake of simplicity and focusing

on the generic form of the import demand equation, the share of imports in total demand is

then obtained as a function of the price of the imported intermediate-goods bundle relative to

the price of the generic final good, p̂IM,t − p̂t:

îmt = −µ
(
p̂IM,t − p̂t − Γ̂†

IM,t

)
+ q̂t. (3)

Here, the parameter µ represents the price elasticity of import demand. As in the case of invest-

ment, adjustment costs are incurred which, in their generic form Γ̂†
IM,t, dampen the influence of

changes in the relative price of imports on import demand.

The demand for euro area exports x̂t is determined in a similar way as a share of euro area

foreign demand ŷ∗t . This share varies with the price of euro area exports (translated into foreign

currency with the real effective exchange rate ŝt, denominated in terms of the GDP deflator

p̂Y,t) relative to the price of exports of the euro area’s competitors, p̂X,t − ŝt − p̂Y,t − p̂cX,t:

x̂t = −µ∗
(
p̂X,t − ŝt − p̂Y,t − p̂cX,t − Γ̂†

X,t

)
+ ŷ∗t + ν̂∗

t , (4)

where the parameter µ∗ denotes the price elasticity of exports. The term Γ̂†
X,t represents generic

adjustment costs, and the term ν̂∗
t is an exogenous shock to foreign export preferences.

Consumer prices are determined as a combination of the aggregate prices of the domestically

produced and the imported intermediate goods, p̂H,t and p̂IM,t. The evolution of these prices is

governed, in generic form, by forward-looking Phillips-curve equations according to which the

rate of price inflation π̂t gradually adjusts in response to fluctuations in real marginal costs m̂ct,

subject to an exogenous price mark-up shock ϕ̂t:

π̂t =
β

1 + βχ
Et [π̂t+1] +

χ

1 + βχ
π̂t−1 +

(1 − βξ) (1 − ξ)

ξ (1 + βχ)
(m̂ct + ϕ̂t) . (5)

This equation derives from the typical Calvo assumption that firms can only infrequently re-set

their prices optimally, namely with probability 1 − ξ. Those firms which are not permitted to

do so are allowed to index their prices to past inflation π̂t−1 with indexation parameter χ.

Real wages and hours worked are the key labour-market variables in the NAWM. Real wages

ŵt adjust gradually according to a forward-looking Phillips-curve equation which closes the gap

between the after-tax real wage ŵτ
t and the marginal rate of substitution m̂rst, subject to an
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exogenous wage mark-up shock ϕ̂Wt :

ŵt =
β

1 + β
Et [ŵt+1] +

1

1 + β
ŵt−1 +

β

1 + β
Et [π̂C,t+1] (6)

−
1 + βχ

W

1 + β
π̂C,t +

χ
W

1 + β
π̂C,t−1 −

(1 − βξ
W

) (1 − ξ
W

)

(1 + β) ξ
W

(1 + ϕW

ϕW −1
ζ)

(
ŵτ
t − m̂rst − ϕ̂Wt

)
.

As in the case of the price Phillips curves, the parameters 1 − ξ
W

and χ
W

denote, respectively,

the Calvo adjustment probability for (nominal) wages and the degree of indexation to past

consumer price inflation π̂C,t−1. The parameter ϕW denotes the steady-state wage markup and

ζ the Frisch elasticity of labour supply.

Since there exist no reliable data for hours worked in the euro area, we rely on employment

data and relate the employment variable Êt to the NAWM’s unobserved hours-worked variable

N̂t by an auxiliary equation following Smets and Wouters (2003),

Êt =
β

1 + β
Et[Êt+1] +

1

1 + β
Êt−1 +

(1 − βξ
E
) (1 − ξ

E
)

(1 + β) ξ
E

(
N̂t − Êt

)
. (7)

Here, the parameter ξ
E

determines the sensitivity of employment with respect to hours worked,

similar to the role of the Calvo parameters in the price and wage Phillips curves.

The monetary authority sets the short-term nominal interest rate r̂t according to a simple

Taylor-type interest-rate rule, where the parameter φR represents the degree of interest-rate

smoothing and the parameters φΠ, φ∆Π and φ∆Y determine the sensitivity of the interest-rate

response to, respectively, consumer price inflation, the change in inflation and real GDP growth

(relative to trend productivity growth):

r̂t = φR r̂t−1 + (1 − φR)φΠ π̂C,t−1 + φ∆Π (π̂C,t − π̂C,t−1) + φ∆Y (ŷt − ŷt−1) + η̂Rt . (8)

The term η̂Rt denotes a serially uncorrelated monetary policy shock.

Finally, the real effective exchange rate ŝt is determined by a risk-adjusted uncovered interest

parity condition:

ŝt = Et [ ŝt+1] − r̂t + r̂∗t − ǫ̂RPt + Et
[
π̂Y,t+1 − π̂∗

Y,t+1

]
− γB∗ ŝB∗,t+1 − ǫ̂RP

∗

t , (9)

where r̂∗t and π̂∗
Y,t+1 denote the foreign interest rate and foreign inflation, respectively. The last

two terms represent an external risk premium. It is composed of an endogenous component

related to the net holdings of foreign bonds, ŝB∗,t+1 with sensitivity γB∗ , and an exogenous

shock ǫ̂RP
∗

t .

The NAWM’s log-linearised equations, including the equations presented above, can be easily

cast in state-space form, where the state equation corresponds to the reduced-form solution

of the model, which we obtain using the AIM algorithm developed in Anderson and Moore

(1985). The observed variables are related to the model’s state variables through an appropriate

measurement equation.
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3. Bayesian Estimation of DSGE Models

We adopt the empirical approach outlined in Smets and Wouters (2003) and An and Schorfheide

(2007) and estimate the NAWM employing Bayesian inference methods. This involves obtaining

the posterior distribution of the model’s parameters based on its log-linear state-space represen-

tation using the Kalman filter. For the empirical analyses, we use YADA, a Matlab programme

for Bayesian estimation and evaluation of DSGE models; see Warne (2009).

In the following we sketch the adopted approach and describe the data and the shock processes

that we consider in its implementation. We then briefly report on the calibration of the model’s

steady state and present some selected estimation results.

3.1. Methodology

Employing Bayesian inference methods allows formalising the use of prior information obtained

from earlier studies at both the micro and macro level in estimating the parameters of a possibly

complex DSGE model. This seems particularly appealing in situations where the sample period

of the data is relatively short, as is the case for the euro area. From a practical perspective,

Bayesian inference may also help to alleviate the inherent numerical difficulties associated with

solving the highly non-linear estimation problem.

Formally, let p(θm|m) denote the prior distribution of the vector θm ∈ Θm with structural

parameters for some model m ∈ M, and let p(YT |θm,m) denote the likelihood function for the

observed data, YT = { y1, . . . , yT }, conditional on parameter vector θm and model m. The joint

posterior distribution of θm for model m is then obtained by combining the likelihood function

for YT and the prior distribution of θm,

p(θm|YT ,m) ∝ p(YT |θm,m) p(θm|m),

where ∝ denotes proportionality.

The posterior distribution is typically characterised by measures of location, such as the

mode or the mean, measures of dispersion, such as the standard deviation, or selected quantiles.

Following Schorfheide (2000), we adopt an MCMC sampling algorithm to determine the joint

posterior distribution of the parameter vector θm. More specifically, we rely on the random-walk

Metropolis algorithm with a Gaussian proposal density to obtain a large number of random draws

from the posterior distribution of θm. The posterior mode and the inverse Hessian matrix are

computed by a standard numerical optimisation routine, namely Christopher Sims’ optimiser

csminwel.

As discussed in Geweke (1999), Bayesian inference also provides a framework for comparing

alternative and potentially misspecified models on the basis of their marginal likelihood. For a

given model m the latter is obtained by integrating out the parameter vector θm,

p(YT |m) =

∫

θm∈Θm

p(YT |θm,m) p(θm|m) dθm.
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Thus, the marginal likelihood gives an indication of the overall likelihood of the observed data

conditional on a model. To estimate the marginal likelihood one may use the modified harmonic

mean estimator, suggested by Geweke (1999); see also Geweke (2005). An alternative estimator,

suggested by Chib and Jeliazkov (2001), relies on rewriting Bayes theorem into the so-called

marginal likelihood identity. The former estimator requires only draws from the posterior of θm,

while the latter also requires draws of these parameters from the proposal density.

3.2. Data and Shock Processes

In estimating the NAWM, we use times series for 18 macroeconomic variables which feature

prominently in the ECB/Eurosystem staff projections: real GDP, private consumption, total

investment, government consumption, extra-euro area exports and imports, the GDP deflator,

the consumption deflator, the extra-euro area import deflator, total employment, nominal wages

per head, the short-term nominal interest rate, the nominal effective exchange rate, foreign

demand, foreign prices, the foreign interest rate, competitors’ export prices, and the price of

oil. All time series are taken from an updated version of the AWM database Fagan, Henry,

and Mestre (2005), except for the time series of extra-euro area trade data the construction of

which is detailed in Dieppe and Warmedinger (2007). The sample period ranges from 1985Q1

to 2006Q4 (using the period 1980Q2 to 1984Q4 as training sample). The last five variables

are modelled using a structural VAR model, the estimated parameters of which are kept fixed

throughout the estimation of the NAWM. Similarly, government consumption is specified by

means of a univariate autoregressive (AR) model with fixed estimated parameters. For details,

see Christoffel, Coenen, and Warne (2008), Section 3.2.

Prior to estimation, we transform real GDP, private consumption, total investment, extra-

euro area exports and imports, the associated deflators, nominal wages per head, as well as

foreign demand and foreign prices into quarter-on-quarter growth rates, approximated by the

first difference of their logarithm. Furthermore, a number of additional transformations are

made to ensure that variable measurement is consistent with the properties of the NAWM’s

balanced-growth path and in line with the underlying assumption that all relative prices are

stationary. First, the sample growth rates of extra-euro area exports and imports as well as

foreign demand are matched with the sample growth rate of real GDP by removing the sample

growth rate differentials, reflecting the fact that trade volumes and foreign demand tend to

grow at a significantly higher rate than real GDP. Second, for the logarithm of government

consumption we remove a linear trend consistent with the NAWM’s steady-state growth rate of

2.0 percent per annum which is assumed to have two components: labour productivity growth

gz of roughly 1.2 percent and labour force growth of approximately 0.8 percent. The former

is broadly in line with the average labour productivity growth over the sample period. Third,

we take the logarithm of employment and remove a linear trend consistent with a steady-state

labour force growth rate of 0.8 percent, noting that, in the absence of a reliable measure of hours

worked, we use data on employment in the estimation. Fourth, we construct a measure of the
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real effective exchange rate from the nominal effective exchange rate, the domestic GDP deflator

and foreign prices (defined as a weighted average of foreign GDP deflators) and then remove the

mean. Finally, competitors’ export prices and oil prices (both expressed in the currency basket

underlying the construction of the nominal effective exchange rate) are deflated with foreign

prices before unrestricted linear trends are removed from the variables. Figure 1 shows the time

series of the transformed variables for the sample period 1985Q1 to 2006Q4.

To ensure that the 1-step ahead covariance matrix in the likelihood function for the observed

variables is non-singular, the NAWM features 12 distinct structural shocks, several of which

have been discussed in Section 2.2 above, plus the 6 shocks in the AR and SVAR models for

government consumption and the foreign variables, respectively. All shocks are assumed to follow

first-order autoregressive processes, except for the monetary policy shock and the shocks in the

AR and SVAR models, which are assumed to be serially uncorrelated. We recall in this context

that assuming an autoregressive process for trend labour productivity growth gz,t—referred to

as the NAWM’s permanent technology shock—implies that all real variables, with the exception

of hours worked and employment, share a common stochastic trend, in line with the model’s

balanced-growth property.

In addition, we account for measurement error in extra-euro area trade data (both volumes

and prices) in view of the fact that they are prone to revisions. We also allow for small errors

in the measurement of real GDP and the GDP deflator to alleviate discrepancies between the

national accounts framework underlying the construction of official GDP data and the NAWM’s

aggregate resource constraint.

3.3. Empirical Results

An extensive discussion of the empirical implementation of the NAWM is beyond the scope of

this paper, and the reader is thus referred to Christoffel, Coenen, and Warne (2008) for details.

Here we report selectively on the calibration of the model’s steady state and the posterior

distribution of some key estimated parameters, which is deemed helpful for understanding the

model’s forecasting performance analysed in Section 5.

Regarding the NAWM’s steady state, all real variables are assumed to evolve along a balanced-

growth path with a trend growth rate of 2 percent per annum, which roughly matches average

real GDP growth in our estimation sample. Since the steady-state growth rate for the labour

force can be seen as a proxy for population growth, all quantities within the NAWM can be

interpreted in per-capita terms once it has been accounted for. Consistent with the balanced-

growth assumption, we then calibrate key steady-state ratios of the model by matching their

empirical counterparts over the sample period. For example, the expenditure shares of private

consumption, total investment and government consumption are set to, respectively, 57.5, 21

and 21.5 percent of nominal GDP, while the export and import shares are set to 16 percent,

ensuring balanced trade in steady state. On the nominal side the monetary authority’s long-

run (net) inflation objective Π̄ − 1 is set equal to 1.9 percent at an annualised rate, consistent
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with the ECB’s quantitative definition of price stability of inflation being below, but close to 2

percent. This implies that, within the NAWM, nominal wages grow with a steady-state rate of

3.1 percent, corresponding to the sum of trend labour productivity growth of 1.2 percent and

the inflation objective of 1.9 percent.

As to the choice of prior distributions for the NAWM’s estimated parameters we follow Smets

and Wouters (2003) since their closed-economy model of the euro area is essentially nested within

the NAWM. Our choice of prior distributions for the parameters concerning the NAWM’s open-

economy dimension is informed by the priors employed in Adolfson, Laséen, Lindé, and Villani

(2007). Comparing the plots of the prior and posterior distributions we find that the observed

data provide additional information for most parameters. A number of estimation results are

noteworthy. First, the estimates of the parameters shaping the dynamics of domestic demand

in response to the model’s structural shocks—the degree of habit formation in consumption, κ,

and the investment adjustment cost parameter, γI—are broadly in line with those reported by

Smets and Wouters. Second, on the nominal side, we observe that the estimate of the Calvo

parameter constraining the frequency of price-setting decisions of domestic firms selling in home

markets, ξ
H
, is rather high. Yet our posterior mode estimate of about 0.92 is comparable with

a point estimate of about 0.90 for the Calvo parameter in the model of Smets and Wouters.

The estimate implies that the NAWM’s domestic Phillips curve is rather flat or, in other words,

that the sensitivity of domestic inflation with respect to movements in real marginal cost is

low. Similarly, the posterior mode estimate of the indexation parameter χ
H

is 0.42, suggesting a

relatively low degree of inflation persistence. Third, regarding the interest-rate rule, we observe

that the estimated response coefficients φR, φΠ, φ∆Π and φ∆Y are rather close to the estimates

reported in Smets and Wouters, despite the fact that the NAWM’s interest-rate rule does not

feature a response to the so-called flex-price output gap, unlike the rule considered by Smets

and Wouters. Finally, regarding the properties of the structural shocks, none of the estimated

shock processes appears excessively persistent.

Figure 2 depicts the prior and posterior distributions of the structural parameters κ, γI , ξ
H

and χ
H
, and the response coefficients of the interest-rate rule, φR, φΠ, φ∆Π and φ∆Y , using

the full sample, whereas Figure 3 shows the sequence of the posterior mode estimates when the

sample is updated recursively over the period following the introduction of the euro. Overall,

the recursively updated posterior mode estimates reveal a rather high degree of stability. Yet

the gradual upward shift of the Calvo parameter ξ
H

suggests that domestic inflation has become

less sensitive to movements in marginal costs over time. The gradual fall in the indexation

parameter χ
H

implies a diminishing degree of inflation persistence, which may be interpreted

as an indication that the anchoring of inflation expectations has been strengthened with the

introduction of the euro area.
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4. Bayesian Forecasting by Sampling the Future

4.1. Estimating the Predictive Distribution of a DSGE Model

Let θ ∈ Θ be a vector of parameters for the log-linearised DSGE model; to simplify notation

we have omitted the model m index in this section. Given that a unique convergent solution

exists at a particular value for the parameter vector, we can express the relationship between

the model variables, defined as deviations from the steady state, and the parameters as a VAR

system. Specifically, let ηt be a q-dimensional vector with i.i.d. standard normal structural

shocks (ηt ∼ N(0, Iq)), while ξt is an r-dimensional vector of model variables for t = 1, 2, . . . , T .

The solution (reduced form) of a log-linearised DSGE model can now be represented by:

ξt = Fξt−1 + Bηt, t = 1, . . . , T, (10)

where F and B are uniquely determined by θ. The observed variables are denoted by yt, an

n-dimensional vector, which is linked to the model variables ξt through the equation

yt = A′xt + H ′ξt + wt, t = 1, . . . , T. (11)

The k-dimensional vector xt is here assumed to be deterministic, while wt is a vector of i.i.d.

normal measurement errors with mean zero and covariance matrix R. The measurement errors

and the shocks ηt are assumed to be independent, while the matrices A, H, and R are uniquely

determined by θ.

The system in (10) and (11) is a state-space model with ξt being partially unobserved state

variables when, for example, r > n. Equation (10) gives the state or transition equation and

(11) the measurement or observation equation. Provided the number of measurement errors and

structural shocks is large enough, we can calculate the likelihood function for the observed data

YT = {y1, . . . , yT } via the Kalman filter; see, e.g., Hamilton (1994) for details. The filter can

also be used to estimate all unobserved variables in the model at the given value for θ.

The predictive density of yT+1, . . . , yT+H can be expressed as

p
(
yT+1, . . . , yT+H |YT

)
=

∫

θ∈Θ
p
(
yT+1, . . . , yT+H |YT , θ

)
p
(
θ|YT

)
dθ, (12)

where p(θ|YT ) is the posterior density of θ based on the data available at time T . Since the

integral in (12) cannot be evaluated analytically we can apply a numerical algorithm adapted by

Adolfson, Lindé, and Villani (2007) to state-space models; see also Thompson and Miller (1986).

That is:

(1) Draw θ from p(θ|YT );

(2) Draw the state variables at time T from ξT ∼ N(ξT |T , PT |T ), where ξT |T is the filter

estimate of ξT and PT |T is the covariance matrix of ξT given θ and YT ;

(3) Simulate a path for the state variables from (10) using the drawn value for ξT as initial

value and a sequence of structural shocks ηT+1, . . . , ηT+H drawn from N(0, Iq);
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(4) Draw a sequence of measurement errors wT+1, . . . , wT+H from N(0, R) and compute the

path for the observed variables yT+1, . . . , yT+H using the measurement equation (11);

(5) Repeat steps 2-4 M1 times for the same θ;

(6) Repeat steps 1-5 M2 times.

The algorithm thus gives M = M1M2 paths from the predictive distribution in (12). Point

and interval forecasts as well as quantiles can now be computed in a straightforward manner.

However, it may be noted that if the forecast evaluation exercise only requires moments from the

predictive distribution, such as the mean and the covariance matrix, then the above algorithm

is not needed. The population mean of yT+h given YT and θ is

E
[
yT+h|YT , θ

]
= A′xT+h + H ′F hξT |T , h = 1, . . . ,H. (13)

To estimate the mean of the predictive distribution of yT+h we may simply compute the sample

average of the right hand side of (13) for θ(i) ∼ p(θ|YT ), i = 1, . . . ,M . By choosing M large

enough, the numerical standard error of this estimator of E[yT+h|YT ] is negligible.

Similarly, the covariance matrix of yT+h conditional on YT and θ is

C
[
yT+h|YT , θ

]
= H ′F hPT |T

(
F h

)′
H + H ′




h∑

j=1

F j−1BB′
(
F j−1

)′

 H + R. (14)

The first term on the right hand side represents state-variable uncertainty given θ, the second

term reflects uncertainty due to the structural shocks, and the third the uncertainty due to

measurement errors. Following Adolfson, Lindé, and Villani (2007), the prediction covariance

matrix of yT+h is given by

C
[
yT+h|YT

]
= ET

[
C

[
yT+h|YT , θ

]]
+ CT

[
E

[
yT+h|YT , θ

]]
, (15)

where ET and CT denote the expectation and covariance with respect to the posterior of θ at

time T . The second term on the right hand side of (15) measures the impact that parameter

uncertainty has on the h-steps ahead forecasts based on the population mean, while the first

term can be decomposed into uncertainties due to unobserved state variables, structural shocks

and measurement errors, where the dependence on the parameters has now been dealt with.

The first term in (15) can be estimated by the sample average of C[yT+h|YT , θ(i)] in (14) for

the M draws from p(θ|YT ), while the second term can be estimated by the sample covariance

matrix of E[yT+h|YT , θ(i)] in (13) using these M draws. Again, we can choose M large enough

such that the numerical standard errors of the estimators are negligible.

4.2. Alternative Forecasting Models

Sims (1980) convincingly argued that vector autoregressions (VARs) provide a less restrictive

environment for modelling macroeconomic time series than the large-scale structural macroe-

conometric models, based on incredible identifying assumptions, that were prevalent at the time.

However, while VARs often provide a reasonably good fit of macroeconomic time series data, a
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problem with using them is that they are not parsimonious and, hence, the number of variables

that can be included is limited by a lack of long time series. To overcome this problem in fore-

casting situations, the so called Minnesota prior (Doan, Litterman, and Sims, 1984) makes use

of the old idea of shrinkage, a flexible method for constraining the dimension of the parameter

space. Given the view that the random walk is relatively accurate for forecasting macroeconomic

time series (in levels), the Minnesota prior is based on shrinking the VAR parameters towards

univariate random-walk processes.

Moreover, VAR models may be considered as linear approximations of DSGE models. For

instance, using the idea that VARs can be used to summarise the statistical properties of both

observed time series data and data simulated from a DSGE model, Smith (1993) showed how they

can serve as a device from which the structural parameters could be estimated and for conducting

(indirect) inference; see also Gourieroux, Monfort, and Renault (1993). Furthermore, the state-

space representation in (10)-(11) can, under certain conditions, be rewritten as an infinite order

VAR model; see Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (2007). If these

conditions are not met, then the state-space representation of the DSGE model may have a

VARMA representation, where the moving average term is not invertible.1

An early attempt of combining DSGE models with Bayesian VARs is Ingram and Whiteman

(1994), who proposed a way of deriving priors for VARs from the economic model; see also

DeJong, Ingram, and Whiteman (2000). This approach was further developed by Del Negro and

Schorfheide (2004) into the so-called DSGE-VAR, where the DSGE model is used to determine

the moments of the prior distribution of the VAR parameters using an inverted Wishart-normal

form. The authors find that this model can compete in forecasting exercises with BVARs based

on the Minnesota prior. Similar to the ideas in Smith (1993), they demonstrate how posterior

inference about the DSGE model parameters can be conducted via the VAR by integrating

out the dependence of the VAR parameters from the joint posterior and thereby obtaining a

marginal likelihood function for the parameters of the DSGE model; see also Del Negro and

Schorfheide (2006). Moreover, they showed how the DSGE model can be utilised for providing

identifying restrictions for the DSGE-VAR, thereby allowing for comparisons of, e.g., impulse

responses between the DSGE model and the DSGE-VAR. The DSGE-VAR approach was further

enriched by Del Negro, Schorfheide, Smets, and Wouters (2007) into a framework for assessing

the time series fit of a DSGE model.

In this study, we shall consider two classes of BVARs, one that is intended for systems with a

smaller dimension and one that has been proposed for large data sets; cf. Bańbura, Giannone,

and Reichlin (2008). The usefulness of BVARs of the Minnesota type for forecasting purposes

has long been recognised, as documented early on by Litterman (1986), and such models are

therefore natural benchmarks in forecast evaluations. While a DSGE-VAR is also a relevant

1 Since the number of shocks and measurement errors of the NAWM is greater than the number of observed
variables, the model does not satisfy the conditions in Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson
(2007).
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candidate forecast model, we have opted to focus on BVARs with statistically motivated priors.

In addition to models estimated with Bayesian methods, we shall also consider more traditional

forecasting models in our empirical exercise.

The small BVAR is based on the parameterisation and prior studied by Villani (2007). That

is, we consider a VAR model with a prior on the steady-state parameters, and a Minnesota-style

prior on the parameters on the lags of the endogenous variables; see also Adolfson, Lindé, and

Villani (2007). For the p-dimensional covariance stationary vector zt the VAR is given by:

zt = Ψdt +

k∑

l=1

Πl

(
zt−l − Ψdt−l

)
+ εt, t = 1, . . . , T. (16)

The d-dimensional vector dt is deterministic, and the residuals εt are assumed to be i.i.d. normal

with zero mean and positive definite covariance matrix Ω. The Πl matrix is p × p for all lags,

while Ψ is p× d and measures the expected value of xt conditional on the parameters and other

information available at t = 0.

One advantage with the parameterisation in (16) is, as pointed out by Villani (2007), that

the steady state (or mean) of the endogenous variables is directly parameterised via Ψ. For the

standard parameterisation of a VAR model the parameters on the deterministic variables are

written as Φ = (Ip −
∑k

l=1 Πl)Ψ when dt = 1. This makes it difficult to specify a prior on Φ

which gives rise to a reasonable prior distribution on the steady state. Moreover, when zt is

a subset of the observed variables used in the estimation of the NAWM, we can directly form

a prior on the steady state of zt that is consistent with the steady-state prior for the NAWM

as captured by a prior on A. This allows for a more balanced comparison between the models

since they can share the same prior mean, or steady state, for the variables that appear in both

models. The steady state in the NAWM is calibrated, while the steady-state prior covariance

matrix is positive definite for the BVAR. Hence, some imbalance between the models remains

for the steady-state parameters. Details on the small BVAR model specification are given in

Appendix A.

Let p(Ψ,Π,Ω|ZT ) denote the posterior density, where Π = [Π1 · · · Πk] and ZT = {z1, . . . , zT }.

Simulation from this distribution is performed via Gibbs sampling for the three groups of param-

eters Ψ, Π, and Ω using the full conditional posteriors given by Villani (2007, Proposition 2.1).

Out-of-sample forecasts for the BVAR are calculated for the sample T + 1, . . . , T + H, with the

objective of estimating the predictive distribution p(zT+1, . . . , zT+H |ZT ). The algorithm used

for a BVAR was adapted to a multivariate setting by Villani (2001) from the univariate approach

suggested by Thompson and Miller (1986). That is,

(1) Draw (Ψ,Π,Ω) from p(Ψ,Π,Ω|ZT );

(2) Draw residuals εT+1, . . . , εT+H from N(0,Ω) and calculate a path for the endogenous

variables zT+1, . . . , zT+H using the VAR in (16);

(3) Repeat step 2 M1 times for the same (Ψ,Π,Ω);

(4) Repeat steps 1-3 M2 times.
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If the forecast evaluation exercise only requires estimates of, e.g., the mean and the covariance

matrix of the predictive distribution, the above algorithms need not be used. For example, if

the lag order of the VAR is k = 1 and dt = 1, the mean of zT+h given ZT and the parameters is

E
[
zT+h|ZT ,Ψ,Π,Ω

]
= Ψ + Πh

(
zT − Ψ

)
. (17)

The mean of zT+h given ZT can therefore be estimated by the average of the right-hand side

of (17) over M draws from the posterior of (Ψ,Π,Ω). To estimate the covariance matrix of the

predictive distribution we first note that

C
[
zT+h|ZT ,Ψ,Π,Ω

]
=

h−1∑

i=0

ΠiΩ
(
Πi

)′
. (18)

The covariance matrix of zT+h given ZT can now be estimated by adding the sample average

of (18) over M draws from the posterior of the parameters to the sample covariance matrix of

(17) over the same draws. The former term measures the part of the h-steps ahead forecast

uncertainty due to the VAR innovations, while the latter term reflects parameter uncertainty.

In this paper, the variables in the BVAR with a steady-state prior are the same as were used

by Smets and Wouters (2003), except they are measured as in the NAWM. That is, we use the

following variables: real GDP growth, real private consumption growth, real total investment

growth, GDP deflator inflation, employment, nominal wage growth, and the short-term nominal

interest rate. Hence, two of the variables are given in levels (employment and the short-term

nominal interest rate), while the remaining appear in first differences.

Bańbura, Giannone, and Reichlin (2008) advocate the use of high-dimensional BVARs for

macroeconomic forecasting purposes. Building on the well-known Minnesota prior and its de-

velopments (Doan, Litterman, and Sims, 1984; Litterman, 1986), the authors suggest that as the

dimension of the model increases, the overall shrinkage should be stronger; i.e., that the prior

should be tighter. Building on this idea, the authors find that the forecasting performance of a

small VAR model can be much improved upon by considering a high-dimensional VAR model

(131 macroeconomic indicators). Moreover, their results suggest that forecasting performance is

already substantially improved when the VAR model has 20 (carefully) selected macroeconomic

variables.

We will therefore include two large Bayesian VARs that cover the same 18 variables as the

NAWM in the study. That is, we let dt = 1 and zt = yt so that p = n in (16). Moreover, we

reparameterise the deterministic part such that we can use the constant term (Φ) instead of the

steady-state term (Ψ). The VAR may therefore be expressed as:

yt = Φ +

k∑

l=1

Πlyt−l + εt, t = 1, . . . , T. (19)

The prior distribution is based on the extension of the usual Minnesota prior to a nor-

mal/inverted Wishart, as in Kadiyala and Karlsson (1997) and Robertson and Tallman (1999),
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and this prior is implemented via dummy observations (see, e.g., Lubik and Schorfheide, 2006).

Additional dummy observations are added through a prior on the sum of the Πl matrices, thereby

yielding non-zero prior correlations between the autoregressive parameters (see Sims and Zha,

1998). Details concerning the implementation of the dummy observations prior are given in

Bańbura, Giannone, and Reichlin (2008); see also Appendix B below.

Two large BVAR models for yt will be studied in the forecast exercises below. These models

primarily differ in how the prior mean of the autoregressive parameters is treated. In both

models, the prior mean of Πl for all l ≥ 2 as well as for the off-diagonal elements of Π1 are

zero. For the diagonal elements of Π1, the prior mean is zero in one of the large BVAR models,

henceforth the white-noise prior. The second large BVAR sets the prior mean of these diagonal

elements equal to unity if the variable is measured in levels, and zero if in first differences. Below

we shall refer to this as a mixed prior. Apart from these differences in the treatment of the mean,

the priors of the two large BVARs differ only in terms of the numeric value given to the overall

tightness hyperparameter; cf. Appendix B.

Posterior sampling is straightforward for the large BVAR models. Specifically, the marginal

posterior of Ω is inverted Wishart, while the posterior distribution of (Φ,Π) conditional on Ω is

normal; see Appendix B for details. To sample from the joint posterior we may therefore use

direct sampling; see, e.g., Geweke (2005, Chapter 4.1).

Since we will compare the forecasting performance of the NAWM with a small BVAR, we

shall also estimate a VAR model for the same choice of variables in zt with maximum likelihood,

keeping the lag length fixed at the same value as for the BVAR (k = 4). Moreover, we shall

check how well the DSGE model fares when comparing it to the naïve random walk and mean

benchmarks. The mean is here estimated by the within-sample mean of the variables to be

forecast. Similarly, we shall consider a random walk in the variables that are forecasted. Below

we shall study the forecasting performance for both quarterly and annual changes of (a subset

of) the variables that appear in first differences in the NAWM. Hence, the NAWM and the

various VAR models do not change with these changes in the forecasted variables (although their

forecasts are affected by it), the mean and the random-walk models do change. Accordingly,

no matter which criterium is used for evaluating the forecasting performance across annual and

quarterly changes, the ranking of the mean and random-walk models relative to the other models

is likely to change.2

5. Evaluating Forecast Accuracy

The forecast performance of the NAWM along with the 6 reduced-form models will be assessed

in this section using a rolling procedure where the parameters are estimated up to period T

2 If a variable xt appears in first differences in the NAWM, ∆xt = xt−xt−1, the random-walk model for quarterly
changes is simply ∆xt = ∆xt−1 + ǫt, while the random-walk model for annual changes is ∆4xt = ∆4xt−1 + ǫt.
The latter model can be rewritten as ∆xt = ∆xt−4 + ǫt. Similarly, the mean model for quarterly changes is
∆xt = µq + ǫt, while the mean model for annual changes is ∆4xt = µa + ǫt. The latter model can equivalently
be expressed as ∆xt = µa −∆xt−1 −∆xt−2 −∆xt−3 + ǫt.
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when the predictive distribution of periods T + 1, . . . , T + H is to be computed and when T is

the 4th quarter of the year. When T corresponds to some quarter i = 1, 2, 3, the DSGE model

and the alternative Bayesian models are estimated using data until T − i. Hence, these models

are re-estimated annually. The other models are always estimated with data until period T .

The first out-of-sample forecasts are computed for 1999Q1, i.e., the first quarter after the

introduction of the euro, while the final period is 2006Q4. The length of the maximum forecast

horizon, H, is 8 quarters, yielding 32 observations of the 1-step ahead forecasts and 25 of the

8-steps ahead forecasts. Most variables in the NAWM, such as real GDP, are measured in first

differences at a quarterly frequency. Since year-on-year changes are often of interest in practice

we shall also, as mentioned above, study how the models perform when forecasting annual

changes.

The forecast comparisons involve both point forecasts and density forecasts. For the point

forecasts we analyse univariate and multivariate mean squared error (MSE) measures. The

univariate tool is the usual root mean square error, while the trace and log determinant statistics

of scaled MSE matrices for the different horizons are used when examining multivariate point

forecasts. For the density forecasts we focus on the log predictive score under the assumption of

normality for each individual forecast horizon.

5.1. Point Forecasts

Figure 4 shows the root mean squared forecast errors (RMSE) when forecasting quarterly changes

for the variables in first differences. To facilitate the comparisons with the multivariate point

forecast analysis below, the forecast errors have here been scaled with the estimated standard

deviation of the variable over the period 1995Q1-2006Q4.

The number of variables in Figure 4 is equal to 12 and the variables are the same as the

ones we shall focus on both for the multivariate point forecasts and the density forecasts. The

remaining 6 variables are essentially exogenous for the NAWM and they include the 5 variables in

the foreign VAR block and real government consumption. Since the parameters that determine

the behaviour of these variables have been calibrated using data until 2006Q4, the comparison

between the NAWM and the 6 alternative models in an out-of-sample forecasting exercise would

not be fair in those dimensions and we have therefore excluded them from the analysis.

The univariate RMSE analysis reveals that the DSGE model fares quite well against the com-

petitors. In particular, the NAWM does well in forecasting real GDP growth, real export and

import growth, import price deflator inflation, employment and the short-term nominal interest

rate. The most difficult dimensions for the DSGE model concern nominal wage growth in partic-

ular, but also consumption deflator inflation at the shorter horizons. It is worth underlining that

all forecast models have dimensions where their performance is relatively good, and dimensions

where they are less successful.

The RMSE results when forecasting annual changes of the variables in first differences are

shown in Figure 5; the results for employment, the nominal interest rate and the real effective
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exchange rate concern their levels and are therefore equal to those in Figure 4. It should be

noted that the scaling of the RMSEs are now based on the estimated standard deviations for

annual real GDP growth, etc., and hence the scaled RMSEs for, e.g., the 1-step ahead forecasts

differ from the results when forecasting quarterly changes. Moreover, recall that the mean and

random-walk models change when forecasting annual rather than quarterly growth since they

concern the mean of, e.g., annual real GDP growth and a random walk in annual real GDP

growth.

It appears from Figure 5 that the naïve random-walk benchmark performs better relative to

the competitors when forecasting annual changes instead of quarterly changes. In particular, it

seems to work rather well when forecasting annual changes in private consumption, the GDP

deflator, the consumption deflator, and nominal wages; see Atkeson and Ohanian (2001) for a

discussion of the forecasting accuracy of annual inflation when using Phillips curves relative to

a random walk on U.S. data. The more successful dimensions of the DSGE model remain when

forecasting annual changes, while some of its weaker dimensions are emphasised. For instance,

the NAWM does not forecast annual real private consumption growth well beyond 2 quarters

when compared with, e.g., the random-walk model.

Multivariate measures of point forecast accuracy are often based on the (scaled) h-steps ahead

MSE matrix:

ΣM (h) =
1

Nh

T+Nh−1∑

t=T

ǫ̃t+h|tǫ̃
′
t+h|t, h = 1, . . . ,H, (20)

where ǫ̃t+h|t = M−1/2ǫt+h|t, and ǫt+h|t = yt+h − yt+h|t is the h-steps ahead forecast error from a

forecast of yt+h produced at t. The scaling matrix M is positive definite, while Nh is the number

of h-steps ahead forecasts.

The trace and the log determinant are two measures that are often used in practice for

evaluating multivariate forecast accuracy; see, e.g., Adolfson, Lindé, and Villani (2007). The

choice of scaling matrix has a direct impact on the ranking of forecasting models when using

the trace statistic since tr[ΣM (h)] = tr[M−1ΣI(h)], where ΣI is based on M = I, the identity

matrix. Since log |ΣM (h)| = log |ΣI(h)| − log |M | it follows that the log determinant statistic is

invariant to the choice of M .

Moreover, and as emphasised by Clements and Hendry (1993), measures based on the MSE

matrix in (20) are, at least, for linear models generally not invariant to non-singular, scale-

preserving linear transformations, while the class of models is itself invariant to such isomorphic

transformations. This is due to the fact that the h-steps ahead forecast errors are linear func-

tions of current and past innovations up to order h − 1. The chosen transformation affects the

parameterisation of these forecast errors and, thus, the weights given to the innovations. An

exception is the log determinant statistic for the 1-step ahead forecasts, but not when h ≥ 2.

Since MSE-based measures are unable to account for the correlation between forecast errors at
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different horizons, the ranking of forecast models may depend on the choice of data transfor-

mation.3 When we compute forecasts of, say, annual changes from a model with variables in

quarterly changes, the resulting forecast errors for the annual changes are equal to the sum of

the forecast errors for quarterly changes for the current and previous three quarters. Hence,

MSE-based statistics may lead to different ranking of models when forecasting annual changes

compared with quarterly changes since the weights on the innovations in the moving average

expressions of the forecast errors are affected by the choice of transformation.

The trace and the log determinant statistics are both functions of the eigenvalues of the MSE-

matrix, where the largest eigenvalue gives the least predictable dimension and the smallest the

most predictable. Since the trace is equal to the sum of the eigenvalues it follows that this

statistic tends to be dominated by the largest eigenvalues, while the determinant is the product

of the eigenvalues and is therefore also influenced by the smallest. That is, the trace measure

tends to be dominated by the least predictable dimensions, while the log determinant measure

may be driven by the most predictable dimensions.

The MSE statistics are computed for 3 different cases. First, we consider all the 12 variables

displayed in Figure 4. Since the small VAR and BVAR models do not cover all these variables,

the second case has the 7 variables that all models cover. That is, real GDP growth, real private

consumption growth, real total investment growth, GDP deflator inflation, employment, nominal

wage growth, and the short-term nominal interest rate. Finally, we examine a case with only

3 of these 7 variables, namely, real GDP growth, GDP deflator inflation and the short-term

nominal interest rate. This choice of variables may be viewed as comprising the minimum set of

variables relevant to monetary policy analysis.

The trace statistics when forecasting quarterly changes for the variables in first differences

are displayed in Figure 6. The scaling matrix M is here assumed to be diagonal with diagonal

elements given by the variances of the variables. The variances have been estimated over the

period 1995Q1-2006Q4 and the scaling is therefore the same as for the individual RMSEs in

Figure 4.

With this scaling matrix, the trace statistics are the sum of the squared RMSEs in Figure 4.

Given the results for the univariate RMSEs when forecasting quarterly changes, it is therefore

not surprising that the NAWM compares favourably to the alternative models, in particular over

the longer forecast horizons. The mean model fares very poorly in these comparisons, which is

consistent with its difficulties predicting, among other variables, the short-term nominal interest

rate. Turning to the trace statistic when forecasting annual changes of the variables in first

differences, the forecasting performance of the NAWM is, however, less impressive; see Figure 7.

The main reason for this is undoubtedly the reweighing of the underlying innovations, where

3 The (log) determinant statistic of an expanded MSE-matrix based on the forecast errors for the 1-step ahead
until the H-steps ahead forecasts is, as pointed out by Clements and Hendry, invariant to these transformations,
but due to short forecast samples it is often not possible to calculate such a measure in practice. Moreover, it
should be kept in mind that their measure need not be invariant to increases in the maximum forecast horizon,
H .
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forecast errors prior to one year ahead when forecasting quarterly changes now matter for the

forecasts of annual changes beyond one year.

It should be noted that the chosen scaling matrix does not work in favour of the NAWM

when using the trace statistic. When M = I, the NAWM is very competitive also at the shorter

horizons when forecasting quarterly changes and is often among the best at all horizons for the

annual changes. The primary explanation for this is that the NAWM forecasts the more volatile

variables (trade variables, short-term nominal interest rate, and the real effective exchange rate)

relatively well, while the variables where it is less successful (nominal wage growth, real private

consumption growth, and consumption deflator inflation) are less volatile.

The log determinant statistic is invariant across forecasting models to the choice of scaling

matrix and is displayed in Figures 8 and 9 when forecasting quarterly and annual changes,

respectively. For quarterly changes we find that the NAWM is competitive at the longer forecast

horizons in all 3 cases. Overall, the large BVAR with a mixed prior tends to outperform the other

models, especially at the shorter horizons. When forecasting annual changes, the log determinant

statistic again tends to favour the large BVAR with a mixed prior, but now the random-walk

model performs almost as well in the 7 and 3 variable cases. Moreover, at longer forecast horizons

the mean model often performs well, in particular for the 12 and 7 variable cases.

Since the trace (log determinant) is equal to the sum of (the log of) the eigenvalues, it is pos-

sible to make additional interpretations of the multivariate point forecast results by performing

a singular value decomposition of the MSE-matrices and compute decompositions of the MSEs

based on the shares due to the different eigenvalues. That is, let ΣM(h) = V ΛV ′, where V is

the matrix with eigenvectors with typical element vij , V ′V = Is, while Λ = diag[λ1, . . . , λs] is a

diagonal matrix with the eigenvalues in descending order. It now follows that the share of the

h-steps ahead forecast error variance of variable i due to eigenvalue j is given by:

σij,M(h) =
v2
ijλj∑s

j=1 v2
ijλj

, i, j = 1, . . . , s.

Since large (small) eigenvalues are equal to the least (most) predictable dimensions at a given

forecast horizon, MSE-based variance decompositions may help us link the larger (smaller)

eigenvalues to certain variables.

For the NAWM we find that the largest eigenvalue always explains most of the forecast error

variance of nominal wage growth in the 12 and 7 variable cases. At the same time, the smaller

eigenvalues typically explain a large share of the forecast error variance in employment and to a

lesser extent in the short-term nominal interest rate. Hence, the NAWM is typically punished for

its poor performance when forecasting nominal wage growth and using the trace statistic, while

its relatively good performance from the perspective of the log determinant is to a fairly large

extent due to its employment forecasts. For the case with 3 variables, the largest eigenvalue

is similarly linked with GDP deflator inflation and the smallest with the short-term nominal

interest rate. While the RMSEs in Figures 4 and 5 suggest similar interpretations, it should
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be kept in mind that, unlike the MSE-based decompositions, they do not take the correlation

structure into account and need therefore not be consistent with the eigenvalue-based forecast

error variance decompositions.

5.2. Density Forecasts

Dawid (1984) pointed out that an important purpose of statistical analysis is to not only make

sequential forecasts of the future, but also to provide suitable measures of the uncertainty that

is linked to them. That is, forecasts are both probabilistic and sequential in nature, taking the

form of probability distributions over a sequence of future values. This basic premise is the

foundation of what Dawid called the prequential approach.

While point forecasts are sometimes of first-order importance, forecast uncertainty has since

Dawid’s article been given an increasingly more important role with both important methodolog-

ical developments (see, e.g., Diebold, Gunther, and Tay, 1998; Christoffersen, 1998; Amisano

and Giacomini, 2007) and interesting empirical applications (Diebold, Tay, and Wallis, 1999;

Clements and Smith, 2000; Adolfson, Lindé, and Villani, 2007); see also Tay and Wallis (2000)

for a survey. Moreover, the use of uncertainty bands in the inflation reports of several central

banks (e.g., the Bank of England and Sveriges Riksbank) has become instrumental in commu-

nicating with the public.

The predictive density makes it feasible to take forecasting uncertainty into account and may

also be used to evaluate the goodness-of-fit of a model. It is well known (see, e.g., Section 2.6.2.

in Geweke, 2005) that the predictive density can be expressed as the ratio between the marginal

likelihood of a model for the extended sample YT+H and the estimation sample YT . That is,

p
(
yT+1, . . . , yT+H |YT ,m

)
=

p
(
YT+H |m

)

p
(
YT |m

) .

Hence, the height of the predictive density at any realised values yT+1, . . . , yT+H is equal to the

improvement in the marginal likelihood when the extended sample includes these future values.

Provided that the models we wish to compare are not subject to Lindley’s paradox (Bartlett,

1957; Lindley, 1957), the marginal likelihood is one important criterion for evaluating the

goodness-of-fit of a model estimated with Bayesian methods: the larger the value of the marginal

likelihood, the better a model fits the observed data. Since the height of the predictive density is

equal to the ratio of the marginal likelihood for the extended sample and the estimation sample,

model mi, say, may have a larger value for the height of the predictive density than model mj ,

but still have lower values for the marginal likelihood than model mj for both the full sample

and the estimation sample.

Nevertheless, if the focus of our attention is out-of-sample forecasting, then the within-sample

goodness-of-fit or lack thereof should not directly be a concern. Moreover, as Geweke and
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Amisano (2009) and Gneiting, Balabdaoui, and Raftery (2007) note, the assessment of a pre-

dictive distribution on the basis of its density and the observed data only is consistent with the

prequential approach.

Scoring rules are used to evaluate the quality of probabilistic forecasts by giving a numerical

value using the predictive distribution and an event or value that materialises. A scoring rule

is said to be proper if the forecaster maximises the expected score (utility) for an observation

drawn from a distribution Di when the forecaster gives the probabilistic forecast Di rather than

Dj 6= Di. Furthermore, a scoring rule is said to be strictly proper if the maximum is unique.

Proper scoring rules are therefore important since they encourage the forecaster to be honest,

i.e., there is no gain from reporting Dj instead of Di.

A widely used scoring rule that was suggested by Good (1952) is the log predictive score. We

may define this scoring rule by:

S(m) =
1

N

T+N−1∑

t=T

log p
(
yt+1, . . . , yt+H |Yt,m

)
. (21)

If the value of the predictive density only depends on the actual realisations of y over the

prediction sample, then the scoring rule is said to be local. Under the assumption that only local

scoring rules are considered, Bernardo (1979) showed that every proper scoring rule is equivalent

to a positive constant times the log predictive score plus a real valued function that only depends

on the observed data. For a survey of scoring rules, see Gneiting and Raftery (2007).

We can similarly define a scoring rule within the parametric classical framework. Let θ̂tm be

the maximum likelihood estimator of θm using the data Yt and the likelihood p(Yt; θm,m). The

log predictive score is now given by:

S(m) =
1

N

T+N−1∑

t=T

log p
(
yt+1, . . . , yt+H |Yt, θ̂

t
m,m

)
, (22)

where p(yt+1, . . . , yt+H |Yt, θ̂
t
m,m) is the predictive likelihood.

When evaluating the density forecast of the NAWM and of the alternative forecasting models

we shall focus on the h-steps ahead forecasts. This means that we consider the log predictive

score function

Sh(m) =
1

Nh

T+Nh−1∑

t=T

log p
(
yt+h|Yt,m

)
, h = 1, . . . ,H, (23)

when using Bayesian methods. For the models which are estimated with classical methods, we

use an expression such as in (22), but where the likelihood function concerns yt+h|Yt and N is

replaced with Nh.

The relationship between the marginal likelihood and the log score function in (23) holds

when h = 1, but breaks down for h > 1. As pointed out by Adolfson, Lindé, and Villani (2007),

this means that the marginal likelihood cannot be used to assess if some model performs well on

certain forecast horizons, while other models do better on other horizons. Moreover, to compute

Sh(m) in (23) for h > 1 is generally not a simple matter for models estimated with Bayesian
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methods since p
(
yt+h|Yt,m

)
does not have a known analytical form. Furthermore, estimation

of the density via kernel density estimation techniques is not practical when the dimension,

n, is large. Following Adolfson, Lindé, and Villani (2007) we shall therefore approximate the

predictive density with the multivariate normal.

The mean and the covariance matrix for the h-steps ahead forecasts are calculated for each t in

the forecast sample using the 250,000 simulated values of yt+h for the DSGE model and the two

large BVARs with n = 18. Similarly, the mean and the covariance matrix for the small BVAR

with a steady-state prior are computed from the 250,000 h-steps ahead forecast values per t of

zt+h. For the small VAR model, the predictive likelihood is multivariate normal with mean equal

to zt+h|t = E[zt+h|Yt, θm,m] and covariance matrix Σ = E[(zt+h− zt+h|t)(zt+h− zt+h|t)
′; θm,m],

evaluated at the maximum likelihood estimates based on the conditioning information.

In addition, we can compute the log predictive score for the random-walk and mean models

by assuming that the 1-step ahead prediction errors are multivariate normal with mean zero

and covariance matrix Σ. The 1-step ahead population covariance matrix is estimated using the

conditioning information. For the random-walk model we have that the h-steps ahead population

forecast error covariance matrix is equal to hΣ, while it is equal to Σ for all h in the mean model.

The density forecast evaluation will again focus on the three cases with 12, 7, and 3 variables

that we studied in the previous section. The assumption that the predictive density can be

approximated by a multivariate normal is particularly convenient since we may simply use the

properties that (i) the distribution of any subset of the variables is also normal, and (ii) the

mean and the covariance matrix of the distribution for the subset is equal to the same subset of

the mean and the covariance matrix of the joint distribution.4

The log predictive scores when forecasting quarterly changes of the variables in first differences

are shown in Figure 10. It is striking that for all three cases and all forecast horizons, the large

BVAR with a mixed prior obtains the highest value for the log predictive score. At the other

end of the spectrum, we find that for the cases where the small VAR model can be evaluated,

it always obtains the lowest value. The other 5 models therefore rank somewhere in between,

with the DSGE model often coming close to the large BVAR with a mixed prior, especially at

the longer horizons and in the 3 variable case. The random-walk model is here ranked close

to the DSGE model for the shorter but not the longer horizons. The same can be said for the

large BVAR model with a white-noise prior, while the small BVAR with a steady-state prior

also tends to be more competitive relative to the DSGE model at the longer horizons.

In Figure 11 we find the log predictive scores when forecasting annual changes of the variables

in first differences. It was pointed out in Section 5.1 that the multivariate MSE-based trace and

4 In the case of the DSGE model, the normality assumption is probably not so critical since most of the forecast
error variance is explained by factors other than parameter uncertainty; see, e.g., Adolfson, Lindé, and Villani
(2007, Figure 4). Similar results are available for the NAWM. For the VAR models, however, parameter uncer-
tainty is considerably more important and, hence, the assumption of normality is more likely to be questionable.
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log determinant statistics are not invariant to non-singular, scale-preserving linear transforma-

tions in linear models. The log predictive score in (23) is similarly not invariant to the choice of

predicting quarterly or annual changes of the variables other than for 1-step ahead forecasts.5

For example, the small BVAR with a steady-state prior ranks below the DSGE when h = 7

when forecasting quarterly changes, and above the DSGE at the same horizon when forecasting

annual changes. Nevertheless, the rankings of the DSGE and the different VAR models are very

stable when comparing the quarterly to the annual changes.

Regarding the mean and the random-walk models, the annual and quarterly models are not

isomorphic and, hence, we do not expect any forecast evaluation criteria to preserve their ranks.

For example, the random-walk model is very competitive when forecasting annual changes, where

the value of the log predictive score is often close to that of the large BVAR with the mixed

prior, and is always better than the DSGE model. By contrast, the random-walk model when

forecasting quarterly changes is often ranked towards the bottom, as in the 12 variable case.

Still, it should be borne in mind that the h-steps ahead covariance matrix of the random-walk

and mean models do not reflect uncertainty. Hence, the rankings of these models are boosted

by the choice of covariance estimator.

5.3. Relating the forecast performance of the DSGE model to its structure

We identify two main factors which explain the relative strengths and weaknesses of the NAWM

in the forecasting exercise. On the one hand, the NAWM builds on explicit micro-foundations

which allows to derive a parsimoniously parameterised structure respecting a large number of

cross-equation restrictions. On the other hand, because of the assumed balanced-growth path,

the NAWM’s flexibility to deal with differing trends in the data is rather limited, when compared

to the reduced-form models. While parsimony is likely to be an advantage for achieving forecast

accuracy, an excessively rigid treatment of trends may give rise to a bias in the forecasts and,

hence, inflate the RMSEs.

Concerning the role of trends, the NAWM’s balanced-growth path implies tight restrictions

on the mean of the growth rates of its observed variables. First, the model assumes common

growth rates for the subsets of real and nominal variables, respectively. Second, these growth

rates are constant over time and there is no further updating in a Bayesian sense. For example,

the deterministic steady-state component of the common growth rate for the real variables is

calibrated to equal 2 percent per annum, which is close to the average of annual real GDP

growth over the full estimation sample. Medium-run deviations from this deterministic growth

component are captured by the model’s permanent technology shock. A positive permanent

technology shock implies a permanent increase in the levels and a transitory increase in the

growth rates of the real variables with a half-life of 3 quarters. All other shocks display a

5 If we compute the log predictive score using (21), the ranking between models is invariant to scale-preserving
linear transformations of the variables. Still, the ranking may change when extending the maximum forecast
horizon from H to, say, H + 1.
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rather fast mean reversion in terms of growth rates, implying a strong role for the deterministic

steady-state growth rate for the higher forecast horizons.

Maintaining a common, and constant, steady-state growth rate for groups of variables is

inducing two types of biases in the forecasts, as can be inferred from Table 1. First, the steady-

state growth rate of some variables differs from the mean growth rate over the forecast evaluation

sample. For example, the NAWM assumes that, in steady state, investment grows at the common

growth rate of 2 percent per annum, while observed investment growth is actually 2.7 percent

per annum. Consequently, the model tends to underpredict investment growth. Second, there

are notable differences between the mean growth rates of the different variables within a specific

group. For example, in contrast to investment growth, private consumption growth over the

forecast evaluation period has been below the model’s steady-state growth rate of 2 percent.

Furthermore the NAWM’s cross-equation restrictions imply that a bias in the forecast for one

variable might be transmitted through the model.

To investigate in some more detail the most problematic dimension for the NAWM’s nomi-

nal variables, we have plotted the 1 to 8-steps ahead mean forecast paths of quarterly nominal

wage growth for all forecasting models in the upper part of Figure 12. The NAWM generally

overpredicts nominal wage growth in a manner that resembles the behaviour of the forecasts

from the mean model, as can be seen from Figure 4. We can relate this overprediction to the

difference between the steady-state growth rate of real wages of 1.2 percent per annum and the

observed mean growth over the forecast sample which is only 0.3 percent per annum. Over the

prediction horizon real wages are returning to the model’s steady state. In terms of observable

variables this implies that nominal wage growth is overpredicted and private consumption defla-

tor inflation is underpredicted. The systematic overprediction is also affecting the expectations

of households which are repeatedly expecting higher real wage growth. This in turn implies an

overprediction of real private consumption. Accordingly, the predictions for nominal wages, the

private consumption and the GDP deflator, as well as real private consumption tend to have

relatively large mean errors, as can be seen in Table 2.

The fluctuations of the NAWM’s variables around the balanced-growth path respect a tightly

specified economic structure, based on intertemporal optimality conditions. From the equations

reported in Section 2 it is apparent that the parameterisation of the model is very parsimonious.

Taking the consumption equation (1) as an example, we can see that this equation depends on

one estimated parameter κ (the habit formation parameter) and one calibrated parameter gz

(the deterministic steady-state trend growth rate of productivity). Since all equations are solved

simultaneously we can derive a reduced-form representation of the model (equations (10) and

(11)) which obeys the underlying cross-equation restrictions. This reduced-form representation

depends on 45 estimated parameters and explains the dynamics of the model’s 12 observed

endogenous variables.
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In comparison to a VAR the number of parameters is significantly reduced. This economi-

cally motivated shrinkage, in combination with the implied cross-equation restrictions is likely

to improve the forecasting performance. Sims (1980) argued that most of the restrictions in

macroeconomic models are false, but the models might still be useful tools for forecasting and

policy analysis unless the restrictions are “very false”. Moreover, employing Bayesian inference

methods, which combine prior information obtained from earlier studies at both the micro and

the macro level with the likelihood function for the data, results in rather tightly estimated

structural parameters, which account for only a small part of the dispersion of the NAWM’s

predictive distributions. This compares with a relatively high share of parameter uncertainty in

the predictive uncertainty of the BVARs.

The advantages of the parsimonious and tight parameterisation of the NAWM can be inferred,

for example, from the lower part of Figure 12 which depicts the 1 to 8-steps ahead mean forecast

paths for the short-term nominal interest rate across models. Compared with the reduced-form

models, the NAWM fares very well, consistent with the pattern of the RMSEs shown in Figure 4.

6. Summary and Conclusions

In a thought-provoking article in the Journal of Economic Perspectives, Diebold (1998) specu-

lated on the future of macroeconomic forecasting. Unlike many other observers at that time, he

did not view the failure of the large-scale system-of-equations macroeconomic forecasting models

(that had been popular until the 1970s) as signifying a bleak future for macroeconomic forecast-

ing. From what began with neoclassical models under the rational expectations paradigm, such

as the real business cycle model in Kydland and Prescott (1982) or linear-quadratic models as in

Hansen and Sargent (1980), and nonstructural time-series models like the VAR in Sims (1980),

Diebold (1998, p. 189) predicted that a hallmark of macroeconomic forecasting in the first 20

years of the 21st century would be:

. . . a marriage of the best of the nonstructural and structural approaches, facili-

tated by advances in numerical and simulation techniques that will help macroe-

conomists to solve, estimate, simulate, and yes, forecast with rich models.

The highly influential studies by Christiano, Eichenbaum, and Evans (2005), Smets and Wouters

(2003, 2007), and Adolfson, Laséen, Lindé, and Villani (2007) have contributed greatly to the

development of DSGE models since the time when Diebold made his predictions, while Del Ne-

gro and Schorfheide (2004, 2006) and Del Negro, Schorfheide, Smets, and Wouters (2007) are

important examples of what may be regarded as a “marriage” of the nonstructural and structural

approaches that Diebold referred to. Nevertheless, among the many insightful predictions made

by Diebold, one factor that seems to have surpassed his expectations concerns the potential in-

crease in the scale of DSGE models. Where Diebold viewed it possible to see no more than eight

or ten variables in equilibrium, the DSGE model in Adolfson, Laséen, Lindé, and Villani (2007),

based on euro area data, has 12 of its 15 observed variables that are endogenously determined
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by the model, while the 3 foreign variables are exogenous to the rest of the system and modelled

as a structural VAR. Similarly, 12 of the 18 observed variables in the NAWM are endogenously

determined by the internal mechanisms of the DSGE model, while Christiano, Trabandt, and

Walentin (2009) have extended this dimension even further when applying their DSGE model

to Swedish data.

In this paper we have reviewed forecasting with DSGE models, using the NAWM as an illustra-

tion. This DSGE model was designed for regular use at the euro area level in the macroeconomic

projections undertaken by ECB/Eurosystem staff. The forecast evaluation exercise that we have

conducted covers both point and density forecasts. As a consequence, we have discussed estima-

tion of the predictive distribution of a DSGE model based on Bayesian methods, as well as the

estimation of moments of the marginal h-steps ahead distributions. We have also discussed rel-

evant benchmarks for the DSGE model, such as forecasts taken from VARs, BVARs, a random

walk, and a location parameter, namely the mean.

The out-of-sample forecast evaluation exercise covers the period after the introduction of the

euro and focuses on the 12 observed variables in the NAWM that are endogenously determined

by the model. Overall, the results suggest that the NAWM performs quite well when compared

with the reduced-form forecasting tools. In particular, the model compares favourably when

forecasting real GDP growth, the trade variables, employment, the real exchange rate, and

the short-term nominal interest rate. However, the NAWM is less successful when forecasting

certain nominal variables, in particular nominal wage growth. One explanation for this is that

the year-on-year steady-state growth of nominal wages is 3.1 percent in the NAWM, while wage

moderation over the forecast evaluation period has kept nominal wage growth down at around 2

percent. The relatively strong mean reversion properties of the model therefore lead to persistent

negative forecast errors.

Nevertheless, the results in this paper support earlier studies of the forecasting ability of

DSGE models. At this stage of their development, they can compete when we use out-of-sample

forecast performance as a measure of fit. Naturally, this does not mean that they necessarily

“win” the competition in all dimensions. Moreover, Clements and Hendry (2005) emphasise that

forecast performance is not a good instrument for evaluating models in general, except when

the model is intended for forecasting; see also Granger (1999). In particular, they note that a

“good” out-of-sample forecast performance should not be viewed as a “seal of approval” to the

model or the theory it may be based on. Similarly, poor performance need not imply that the

model or the theory is invalidated.

Still, the forecasting performance of the NAWM in this study, as well as the performance of

DSGE models documented in previous studies, is quite impressive, not least in view of the large

number of cross-equation restrictions that are imposed. Moreover, it is important to recall that

forecasting (and policy analysis) with false restrictions may not hurt the performance of a model.

In fact, as long as the restrictions are not “very false”, they may even help a model to function
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for these purposes; see, e.g., Sims (1980, Section 1D). A DSGE model—like all macroeconomic

models—is a simplification of an actual economy and is therefore, one may argue, misspecified.

The degree to which such misspecification matters for, say, policy analysis may be diagnosed by

making use of tools that allow us to study departures from the restrictions implied by the model.

With the aid of one such tool, DSGE-VARs, Del Negro, Schorfheide, Smets, and Wouters (2007)

note that misspecification of the DSGE model they estimate is not so large that it prevents its

use in policy analysis, but that it remains a concern.
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Appendix A: The BVAR with a Steady-State Prior

Following Villani (2007) we assume that Ψ is a priori independent of Πl and Ω with vec(Ψ) ∼

N(µψ,Σψ) and Σψ being positive definite. Regarding the parameters on lags of the endogenous

variables, we define Π = [Π1 · · · Πk] and assume that vec(Π) ∼ N(µπ,Σπ). Finally, we use a

diffuse prior on Ω, as represented by the well-known form p(Ω) ∝ |Ω|−(p+1)/2.

To parameterise the prior on Π we assume that the prior mean of Πl is zero for all l ≥ 2. For

the first lag all off-diagonal elements are assumed to be zero, while the diagonal elements are

equal to λD when zi,t is a first differenced variable (e.g., GDP growth), and given by λL when

zi,t is a level variable (e.g., the nominal interest rate). Regarding the parameterisation of Σπ we

use a Minnesota-style prior; cf. Doan, Litterman, and Sims (1984); Litterman (1986). Letting

Πij,l denote the element in row (equation) i and column (on variable) j for lag l. The matrix

Σπ is assumed to be diagonal with

Var
(
Πij,l

)
=





λ2
o

lλh
, if i = j,

λ2
oλcΩii

lλhΩjj
, otherwise.

(A.1)

The parameter Ωii is simply the variance of the residual in equation i and, hence, the ratio

Ωii/Ωjj takes into account that variable i and variable j may have different scales.

Formally, this parameterisation is inconsistent with the prior being a marginal distribution

since it depends on Ω. As is common for the Minnesota type of prior we deal with this by

replacing the Ωii parameters with the within-sample maximum likelihood estimate. The hyper-

parameter λo > 0 gives the overall tightness of the prior around the mean, while 0 < λc < 1 is

the cross-equation tightness hyperparameter. Finally, the hyperparameter λh > 0 measures the

harmonic lag decay.

In the empirical application the BVAR model has 7 variables that are taken from the observed

variable set for the NAWM. The variables we have selected are the same type of variables as

were used by Smets and Wouters (2003). They are: real GDP growth, real private consumption

growth, real total investment growth, GDP deflator inflation, employment, nominal wage growth,

and the short-term nominal interest rate. For the steady-state prior we let:

µ′
ψ =

[
0.5 0.5 0.5 0.475 0 0.775 4.4

]
,

diag(Σψ)′ =

[
1 1 4 1 0.5 1 5

]
,

while all off-diagonal elements of Σψ are zero. The hyperparameters for the Πl parameters

are given by λL = 0.9, λD = 0, λ2
o = λc = 0.5, while λh = 1. All variables are treated as

first differenced variables except employment and the short-term nominal interest rate. The lag

order, k, is set to 4.
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Appendix B: Dummy Observation Prior for the Large BVAR Models

The VAR model in (19) can be rewritten more compactly as:

yt = βxt + εt, (B.1)

where β = [Π Φ] is an n × (nk + 1) matrix, and xt = [y′t−1 · · · y′t−k 1]′. The conjugate

normal/inverted Wishart prior is represented by the pair vec(β)|Ω ∼ N(µβ,Ωβ ⊗ Ω) and

Ω ∼ IW (A, v), where ⊗ is the Kronecker product. By constructing Td = n(k + 1) + 1

dummy observations for yt and xt, collected in the matrices y(d) (n × n(k + 1) + 1) and x(d)

(nk + 1 × n(k + 1) + 1), we can link these matrices to the prior hyperparameters of the Min-

nesota prior; see Appendix A. Specifically, Ωβ = (x(d)x
′
(d))

−1, µβ = vec(β0), β0 = y(d)x
′
(d)Ωβ,

A = (y(d) −β0x(d))(y(d) −β0x(d))
′, while v = Td− (nk+1)+2 so that the prior mean of Ω exists.

To ensure that the Kronecker structure in the prior on β is feasible, the cross-equation tightness

parameter of the Minnesota prior is set to unity, i.e., λc = 1. In addition, the harmonic lag decay

hyperparameter is given by λh = 2. Next, let ωi be the scale parameter of residual i, while δi is

the prior mean of the diagonal element i in Π1. The dummy observation matrices are now:

y(d) =

[
(1/λo)diag[δ1ω1, . . . , δnωn] 0n×n(k−1) diag[ω1, . . . , ωn] 0n×1

]

x(d) =




(1/λo)
(
Jk ⊗ diag[ω1, . . . , ωn]

)
0nk×n 0nk×1

01×nk 01×n ǫ


 ,

(B.2)

where Jk = diag[1, . . . , k], while ǫ is a very small number which handles the use of an improper

prior on Φ.

The sum of the Πl matrices part of the prior is implemented by appending the n dummy

observations (1/τ)diag[δ1µ1, . . . , δnµn] to the y(d) matrix, and [(1/τ)(ı′k⊗diag[µ1, . . . , µn]) 0n×1]
′

to the x(d) matrix. The hyperparameter τ > 0 takes care of shrinkage, where τ → 0 means that

the prior on (In −
∑k

l=1 Πl) approaches the case of exact differences, while shrinkage decreases

as τ becomes larger. The hyperparameter µi reflects the mean of yit, while ık is a k × 1 unit

vector. The total number of dummy observations is therefore Td = n(k + 2) + 1.

In the empirical applications, τ = 10λo, i.e., a relatively loose prior on the sum of the au-

toregresive matrices. For the BVAR with a white-noise prior, δi = 0 for all variables, while the

BVAR with a mixed prior has δi = 0 if yit is a first differenced variable and δi = 1 when yit is a

level variable. The ωi hyperparameter is given by the within-sample residual standard deviation

from an AR(k) model for yit, while µi is given by the within-sample mean of yit. The lag order

is k = 4.

The formula suggested by Bańbura, Giannone, and Reichlin for selecting λo can here be

expressed as

λo(φ) = argminλ

∣∣∣∣∣∣
φ −

1

q

q∑

j=1

σ2
j (λ)

σ2
j (0)

∣∣∣∣∣∣
, (B.3)
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where φ ∈ (0, 1) is the desired fit, and σ2
i (λ) is the 1-step ahead mean square forecast error of

variable i when λo = λ. The 1-step ahead within-sample mean square forecast errors used in the

selection scheme are based on the sample 1985Q1-1998Q4. With φ = 0.5, q = 3 using real GDP

growth, GDP deflator inflation and the short-term nominal interest rate, this selection scheme

gives λo = 0.0827 for the white-noise prior, and λo = 0.0693 for the mixed prior.

With y = [y(d) y1 · · · yT ] and x = [x(d) x1 · · · xT ], the joint posterior distribution of (β,Ω) is

given by the pair:

vec(β)|Ω,YT ∼ N
(
µ̄β, (xx′)−1 ⊗ Ω

)
, Ω|YT ∼ IW (Ω̄, T + Td + 2 − (nk + 1)), (B.4)

where µ̄β = vec(β̄), β̄ = yx′(xx′)−1, and Ω̄ = (y − β̄x)(y − β̄x)′. The marginal posterior

distribution of β is matrix-t; see, e.g., Bauwens, Lubrano, and Richard (1999, Theorem A.19).
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Table 1. DSGE model steady-state values and sub-sample means of selected
variables.

Variable Steady state 1985Q1-2006Q4 1985Q1-1998Q4 1999Q1-2006Q4

Real GDP 0.500 0.568 0.586 0.537

Private consumption 0.500 0.554 0.614 0.450

Total investment 0.500 0.708 0.729 0.671

Exports 0.500 0.568 0.378 0.901

Imports 0.500 0.568 0.774 0.208

GDP deflator 0.475 0.749 0.906 0.475

Consumption deflator 0.475 0.725 0.854 0.500

Import deflator 0.475 0.009 −0.386 0.701

Employment 0.000 0.000 −0.486 0.851

Nominal wages 0.775 0.933 1.135 0.581

Nominal interest rate 4.400 6.225 8.020 3.082

Real exchange rate 0.000 0.000 2.485 −4.349

Table 2. Percentage share for squared mean errors of mean squared errors when
forecasting quarterly changes of variables in first differences.

DSGE BVAR - mixed prior Mean

Variable h = 1 h = 4 h = 8 h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

Real GDP 0.0 28.9 32.7 0.2 0.4 0.6 2.0 6.8 24.5

Private consumption 12.6 62.9 51.7 11.2 7.8 4.4 18.6 27.5 46.6

Total investment 39.1 34.1 0.2 0.0 0.1 0.2 0.4 4.7 12.4

Exports 0.5 0.8 1.3 4.9 1.6 0.6 4.9 2.8 0.0

Imports 0.2 0.0 8.3 2.5 0.6 0.2 7.8 8.6 15.3

GDP deflator 8.3 43.6 32.7 10.6 8.6 4.1 70.4 71.6 72.3

Consumption deflator 21.9 65.1 45.5 5.4 3.0 8.7 67.1 71.6 78.2

Import deflator 1.8 3.8 2.1 0.3 0.0 3.6 12.0 9.3 3.2

Employment 7.5 28.4 32.8 1.9 0.0 0.5 73.8 91.1 95.8

Nominal wages 45.1 79.2 78.8 0.1 25.7 16.0 75.0 80.5 81.0

Nominal interest rate 25.7 2.3 12.7 54.8 0.9 0.1 96.5 96.9 97.3

Real exchange rate 1.2 5.5 17.6 3.5 11.3 23.1 38.7 37.3 49.5
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Figure 1. The Data.
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Note: This figure shows the time series of the observed variables used in the estimation of the NAWM. Details on

the variable transformations are provided in Section 3.2. Inflation and interest rates are reported in annualised

percentage terms.
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Figure 2. Prior and posterior densities of selected structural parameters of the
NAWM.
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Note: The marginal posterior densities are based on 550,000 draws (blue solid line) and are plotted against their

marginal prior densities (red dotted line), with 50,000 draws being discarded as burn-in sample. The solid vertical

black line is the marginal mode and the dashed vertical black line the joint mode.

Figure 3. Recursive posterior mode estimates of selected structural parameters
of the NAWM.
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Figure 4. Scaled root mean squared forecast errors for 12 variables when fore-
casting quarterly changes of variables in first differences.

 

 

Mean

Random walk

Small VAR

Small BVAR

Large BVAR - mixed prior

Large BVAR - white-noise prior

DSGE

2

2

2

2

2

222

2

222

222

444

444

444

444

666

666

666

666

888

888

888

888

1.8

1.8

1.8

1.6

1.6

1.6

1.6
1.6

1.4

1.4

1.4

1.4

1.4

1.4
1.4

1.2

1.2

1.2

1.2

1.2

1.2
1.2

1

1

1

1

1

1

11

1

1

11

0.8

0.8

0.8

0.80.8 0.6

1.5

1.5

1.5

0.5

0.5

3

0

0

Real GDP Private consumption Total investment

Exports Imports GDP deflator

Consumption deflator Import deflator Employment

Nominal wages Nominal interest rate Real effective exchange rate

– 36 –



Figure 5. Scaled root mean squared forecast errors for 12 variables when fore-
casting annual changes of variables in first differences.
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Figure 6. Trace statistics of the scaled MSE matrices when forecasting quar-
terly changes of variables in first differences.
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Figure 7. Trace statistics of the scaled MSE matrices when forecasting annual
changes of variables in first differences.
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Figure 8. Log determinant statistics of the scaled MSE matrices when forecast-
ing quarterly changes of variables in first differences.
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Figure 9. Log determinant statistics of the scaled MSE matrices when forecast-
ing annual changes of variables in first differences.
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Figure 10. Log predictive scores when forecasting quarterly changes of vari-
ables in first differences.
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Figure 11. Log predictive scores when forecasting annual changes of variables
in first differences.
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Figure 12. Quarterly nominal wage growth and nominal interest rate forecast paths.
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