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Abstract

Futures market efficiency has been one of the most researched topics for a number of years.
The huge amount of results produced, highly dependent on the econometric techniques
adopted and on the time period analysed, are often conflicting: for a given market, some
authors find evidence of efficiency, others of inefficiency. Although some of the conclusions
reached in the literature reflect genuine efficiency or inefficiency, some of them may reflect a
lack of attention paid to the institutional aspects governing the functioning of futures markets
and to the specific statistical characteristics of commodities time series price data, the most
relevant of which, although not yet extensively investigated, are seasonality, overlapping data
and unevenly spaced observations.
In this paper, we investigate thoroughly the effects of seasonality in testing efficiency over a
range of commodities. An important question which is addressed is the extent to which strong
and anticipated seasonal patterns can account for the inefficiency found in futures markets.
The efficiency testing procedure is carried out within a quasi-ECM model augmented with
seasonal deterministic terms. At both short and long forecast horizons we find evidence that
the seasonal terms are significant suggesting that the market inefficiencies are present since
information about the seasonal pattern is not embodied in the basis and can be used by agents
to predict future spot prices movements.
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1. Introduction

Efficient futures markets provide a mechanism for managing the risk associated with the

uncertainty of future events. The value of futures markets arises from their ability to predict the

price of a given asset at a specified future date efficiently and without bias. Therefore, futures

market efficiency is one of the most extensively researched topics in the empirical literature1.

The huge amount of results produced are often conflicting: the efficiency hypothesis is

supported only for certain markets and only over some periods. The rejections of the efficiency

hypothesis have been interpreted as arguing that economic agents do not process rationally the

information available and that the futures price is a biased predictor due to the presence of a

constant or time-varying risk premium. It is worth stressing that the results produced so far are

also highly dependent on the econometric techniques adopted.

Although some of the conclusions reached in the literature reflect genuine efficiency or

inefficiency, some of them may reflect the lack of attention paid to the institutional aspects

governing the functioning of futures markets and to the specific statistical characteristics of

commodities time series price data, the most relevant of which, although not yet extensively

investigated, are seasonality, overlapping data and unevenly spaced observations. In a previous

paper (Newbold et al., 1999) we dealt with efficiency testing in the context of unevenly spaced

contracts and we argued that failing to take into account this feature can lead to incorrect and

inaccurate conclusions about efficiency and its related measures for the five markets analysed

(corn, wheat, cocoa, coffee and cotton).

In this paper, we aim to investigate thoroughly the effects of seasonality in testing efficiency

over a range of soft and hard commodities. An important question which is addressed is the

extent to which strong and anticipated seasonal patterns can account for the inefficiency found

in futures markets. As stated in Hylleberg (1992),

seasonality is the systematic, although not necessarily regular, intra-year movement
caused by changes of the weather, the calendar and timing of decisions, directly or
indirectly through the production and consumption decisions made by the agents of the
economy. These decisions are influenced by the endowments, the expectations and the
preferences of the agents, and the production techniques available in the economy.

                                                       
1 See, for example, Fama (1970, 1984), Malkiel (1992), Crowder and Hamed (1993), Krebiel and Adkins
(1993), Beck (1994), Kellard et al. (1999)
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As pointed out by Franses (1996), although seasonal variation can be deterministic because of

weather or calendar effects, some seasonal fluctuations are the result of the economic agents

behaviour and may therefore not be constant over time. For example, producers of

commodities that are harvested seasonally smooth their output using inventories, which, in

turn, will show a seasonal pattern. Thus, economic agents take into account the seasonality

present in some variables when forming expectations for other variables. A change in their

habits and utility functions may be mirrored in a changing seasonal pattern.

When seasonal effects are strong it is very likely that the contracts are unevenly spaced, but in

order to disentangle the two effects, that is seasonality and unevenly spaced data per se, in this

paper only time series sampled at regular intervals are examined. These are the futures and spot

data for heating oil, live hogs, live cattle, soybeans and orange juice; all contract details are

reported in Table A in the appendix. This paper is organised as follows: section 2 deals with

estimation issues in testing market efficiency in the presence of seasonal effects and  section 3

summarises the main findings and offers some concluding considerations.

2. Data and estimation

Since augmented Dickey-Fuller tests suggested that the series are characterised by an in-

sample nonstationary behaviour, in order to avoid the spurious regression problem (Granger

and Newbold, 1974) the efficiency testing procedure is carried out within the quasi-Error

Correction Mechanism (ECM) framework as in Kellard et al. (1999),

Model 1
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where st and ft are the logarithms of spot and futures prices sampled on contract termination

date, respectively; st-τ and ft-τ are spot and futures prices sampled from a specific day less than a

month for monthly contracts from the last trading day of the delivery month. Longer forecast
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horizons would cause autocorrelation problems because of informational overlap;

autocorrelation, in turn, would lead to false rejections of the efficiency hypothesis even in

efficient markets. The variables  st-τ and ft-τ are, therefore, selected by working backwards 28

days from the contract termination date for monthly contracts (heating oil) and also 56 days for

two-monthly contracts (live hogs, live cattle, soybeans and orange juice).

The efficient market hypothesis requires that in (1) the constant term is not significantly

different from zero and that the basis (ft-τ-st-τ) coefficient is not significantly different from

unity. The inclusion of lagged changes in spot and futures prices in (1) allows us to test

whether additional information to the basis is optimally used in forecasting changes in the spot

prices; thus, the statistical significance of such lags provides evidence of inefficiency. The lag

order is selected through general-to-specific testing by initially setting k=12 and dropping lags

that are not significant at the 5% level, but preserving the symmetry on the lag length for the

change in spot and futures price.

In order to take into account the seasonal effects the above model (1) is augmented with

seasonal dummies2 (see box below) whose statistical significance can be considered an

indication that the market is inefficient because information about the seasonal pattern is not

embodied in the basis.

Model 2
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where j=1, 2,…,11 for heating oil contracts

and j=1,2,…,5 for live hogs, soybeans, live cattle and orange juice contracts.

j=1 refers to the first delivery month of the year; j=2 to the second delivery month and so on.

In the next paragraphs we discuss the results obtained for each commodity market separately.
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2 In empirical studies such as, for example, Miron (1996) and Franses (1996), it is found that seasonal dummy
variables often can capture about 80% to 90% of the seasonal variation.
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Heating Oil

Since the contracts have a monthly frequency, a 28 day forecast horizon could have been more

appropriate, as mentioned above, but in that case we have for 32 termination prices3 a problem

of overlapping observations which, by inducing autocorrelation in the errors of (1) and (2),

could lead to the finding of inefficiency even if the market is efficient. Thus, a 21 day forecast

horizon is preferred. Data for heating oil futures and spot prices are graphed in fig.1 for the

sample period January 1980 - May 1999. The series appear to be characterised by a large fall at

the end of 1985 and by two peaks corresponding to the termination price of the 1989

December contract and 1990 September contract, when tight supply and unusual cold weather

drove up crude and gas oil prices4.

In order to avoid the undue influence of particular circumstances on the results, the analysis

reported below is conducted for the subsample November 1990 - May 1999 (103

observations), when the data display a more regular behaviour.

Table 1A contains the results for the estimated models for the heating oil market. For

comparison purposes we also report model 1 in the first column, where the efficiency tests are

carried out by ignoring the seasonality issue. For this model, although the constant term is not

significantly different from zero and no lags are necessary to account for the dynamic pattern

of the change in the spot price, we have to reject the hypothesis that the basis coefficient is

equal to unity (p-value=0.0019). Model 2 is the augmented version of the first model, the

results suggesting that seven out of eleven seasonal terms are significant at the conventional

5% level and two (FEB, MAR) at 11%. As expected, the test for their joint exclusion from the

estimated model generates a very low p-value of 0.0084. All dummies are positive and their

average value is about 0.07. Since the November term is not significantly different from zero,

in that month the seasonal pattern is not different from the December one, which represents the

dummy base. For this model we can argue that the basis coefficient is equal to unity at a level

of 5.5%.

                                                       
3 Of which 16 in the subsample.
4 See Financial Times issues 5.12 1989 and 8.12.1989.
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Table 1A contains also two alternative specifications, labelled model 3 and model 4. Model 3,

as well as step seasonal dummies, includes also multiplicative seasonal terms which interact

with the basis; the seasonal effects are now picked up by interactive terms and almost all step

dummies are no longer significant. The two tests for the exclusion of each set of dummies

suggest that they can be eliminated from the model; but their overall exclusion is not

recommended on the grounds of the last test reported in Table 1A. Therefore, the results

suggest that a seasonal pattern is indeed present, but in model 3 it is likely to have been

overparemeterised. A more parsimonious specification alternative to model 2 is represented by

model 4, which includes only multiplicative seasonal terms, all of which turn out to be

significant and the unbiasedness hypothesis is generally not rejected. The only exceptions are

related to the April and December contracts. According to the Schwarz (SC) and Hannan-

Quinn (HQ) information criteria, apart from model 1 which ignores the seasonality issue,

model 2 is the preferred model. As noticed before, the evidence provided by this model

suggests that the seasonal pattern is dichotomous given that we can single out two groups of

contracts showing similar features. The first consists of contracts from January to October and

the second one is represented by November and December contracts. In order to achieve a

parsimonious specification we model this feature of the heating oil data by including just one

dummy variable (DUM) which takes value zero for November and December and the value

one for all other contracts. The estimated model is reported in Table 2A (model 5). The results

suggest that the seasonal term is highly significant and that we have to reject the hypothesis

that the basis coefficient is equal to unity. Model 6 of Table 2A differs from the previous model

because it also includes a multiplicative dummy. Model 7 is estimated with additional seasonal

regressors (DUMNOV and DUMNOVb) which are dummies assuming value zero just in

November and one for all the other contracts. Model 8 restricts to zero the coefficients on the

DUM and DUMb variables. Across all the different specifications the seasonal terms are in

general significant and the basis coefficient is always significantly different from unity.

According to the information criteria the preferred model is model 5, which suggests that

economic agents have an asymmetric loss function for their forecast errors: they associate a

higher weight to errors caused by underestimation of the future spot price. In other words,

they manage the risk that heating oil spot prices increase in November and December by

locking-in in futures contracts whose price turns out to be higher than the actual spot price.

This interpretation is supported by the evidence provided by the estimated models reported in
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Table 4A. These models are univariate time series specifications for the change in the spot and

futures prices, the basis, and the forecast error (st-ft-τ). The regressor variables are their own

lags, included to get rid of autocorrelation, and seasonal dummy variables. The aim of these

models is to unveil the major source of seasonality. For the change in the spot price, eleven

lags are necessary to ensure white noise residuals, but all the seasonal terms, with the

exception of the October dummy, turn out to be not significant. On the other hand, the change

in the futures price is strongly influenced by seasonal effects. Although the dynamics are

accounted for by just two lags, most of the dummy variables are significant. The test for their

joint exclusion from the model yields a very low p-value (0.0154). In the model for the basis,

only the March dummy is significant, although the test for the hypothesis that all the seasonal

terms should be restricted to zero is significant at 6%. As expected, the forecast error series is

characterised by highly significant seasonal effects; the model for the forecast error

complements the analysis carried out within the framework of model 2 (Table 1A). In fact,

consistent with this latter model, the dummies which significantly account for the behaviour of

the forecast error series are the same which picked up the seasonal pattern detected in the

quasi-ECM model for the change in the heating oil spot prices. The last column of Table 4A

reports a parsimonious version for the univariate forecast error model. Although a much richer

dynamic specification is necessary (10 lags), the seasonality is now captured only by the DUM

variable, which is highly significant. For the heating oil markets it appears that the inefficiency

is mainly due to the presence of seasonal effects that the agents do not systematically account

for in the formation of their expectations about future spot prices.

Live hogs

The live hogs futures markets is analysed with respect to two different forecast horizons; given

that the frequency of the contracts is two-monthly the estimated models refer to a 28 days and

to a 56 days horizon. A common 28 days forecast horizon allows us to formulate comparisons

across markets with contracts of different durations, while with two horizons for each market

it is possible to check whether the results obtained are dependent, to a certain extent, on the

length of the chosen forecast period.

Table 1B reports the models for the short forecast horizon of 28 days. Model 1 represents the

benchmark model to assess the importance of any seasonal effect on the behaviour of the
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change in the spot price5. According to this model the live hogs market is inefficient since we

can rule out that the basis coefficient is equal to unity. Model 2 includes the step seasonal

dummy variables, which, with the exception of the one for the October contracts, turn out to

be not significantly different from zero; on the grounds of the evidence provided by this model

the unbiasedness hypothesis can be rejected. Moving from model 2 to a more general

specification which allows for interactive dummy variables, the results suggest the presence of

relevant seasonal effects. The slope seasonal terms are jointly significant and the unbiasedness

hypothesis is not rejected for February and August contracts. In model 4 we account for the

seasonal pattern only by means of the multiplicative dummies. Apart from the February one,

they are all significant at the conventional levels and only the April contracts appear to be

characterised by biased predictions.

In Table 2B we report the estimation of the univariate models for the change in the spot and

futures prices, the basis and the forecast error series in order to detect the source of the

seasonal effects we detected within the ECM framework. The univariate model for the change

in the live hogs spot price suggests that the seasonal effects are not relevant6. All the dummies

can be jointly excluded from the model, although the one related to October contracts is highly

significant. For the forecast error series similar results are obtained, while the change in the

futures prices and the basis series show a clear seasonal behaviour.

Table 3B reports the analysis for the 56 days forecast horizon. Again model 1 is estimated by

ignoring the seasonality issue. We can claim that the live hogs market is efficient on the

grounds that the lags can be jointly excluded from the model and that the basis coefficient is

equal to unity (at 8% level). When we tackle the seasonality issue by estimating model 2 it

turns out that the dummy variables are significant at the 6% level and that we cannot restrict to

zero the coefficient on the second lag for the change in the futures price. Once we account for

seasonal effects the unbiasedness hypothesis no longer holds true. Model 3 and model 4 allow

for the presence of the multiplicative seasonal dummies7, but their joint inclusion in both

models can be ruled out. According to the SC and HQ information criteria the preferred model

across the four estimated ones is model 2. From the univariate models reported in Table 4B we

                                                       
5 Note that a similar model is reported in Kellard et al. (1999), where the focus is not on the seasonality issue.
6 Note that the test for their joint exclusion obtains a p-value of 0.073.
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can argue that both the change in spot prices and the basis series show strong seasonal

behaviour. As far as the change in futures prices is concerned, although none of the dummy

variables is significant at the conventional 5% level, they cannot be excluded from the model

on the basis of the test for their joint significant (p-value = 0.0485). The forecast error series

shows no indication of seasonal effects, so it can be argued that, although the live hogs market

is inefficient agents’ predictions are not biased because agents fail to take seasonality into

account. Although we always reject the presence of seasonality effects for the estimated ECM

models, for the individual series the dummy variables are highly significant. A possible

explanation for this finding is that seasonal variation in the change of the spot price is picked

up by the same kind of seasonality affecting the basis series and the change in the futures price,

thus ensuring white noise residuals from the ECM models.

Live cattle

Table 1C reports the analysis for the live cattle market for the 28 day forecast horizon; again in

model 1, which is the same estimated by Kellard et al. (1999), the seasonality issue is ignored

and the results suggest that the market is inefficient. The hypotheses that the intercept term

does not significantly differ from zero and the basis coefficient from unity are both rejected;

furthermore, the test for the joint inclusion of seven lagged terms for the change of the spot

and the change of the futures prices is significant at 7% level. As for the previously analysed

markets we estimate models 2, 3 and 4 in order to check if the inefficiency present in this

market is due to lack of attention to seasonality effects. However, in all three models we

cannot reject the hypothesis that the coefficient of the seasonal terms (additive, multiplicative

or jointly) are equal to zero.

In Table 2C the above analysis is carried out with respect to a 56 day forecast horizon; for

model 1 we select a lag order as high as nine and all the lags are jointly significant at 7% level.

Although the constant is not significantly different from zero, the unity restriction on the basis

coefficient is strongly rejected. Model 2 is estimated including step seasonal dummies which,

although allowing for a more parsimonious dynamic specification (3 lags), are not significant

and the market appears to be very inefficient at this horizon as well. In model 3 we introduce

the set of regressors represented by the basis-multiplicative dummies; when the seasonality is

                                                                                                                                                                            
7 The multiplicative dummy variables are the step seasonal dummies multiplied by the basis.
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modelled by interactive terms, the results suggest that part of the variability in the change of

the spot price is due to seasonal effects, which are particularly relevant for the April contracts.

Given that the step dummies are not jointly significant in model 3, we restrict them to zero and

estimate model 4 with only 3 lags and slope seasonal terms. These latter are jointly highly

significant and the unity restriction on the basis coefficient is not rejected for February and

October contracts.

Table 3C reports the univariate specifications for the variables involved in the estimation of the

ECM models; the results obtained suggest that seasonality affects the change in the futures

price (February dummy is significant) and the basis series (February and June dummies are

significant), but not the change in the spot price or the forecast error series.

The evidence provided in this paper confirms that the live cattle market is very inefficient at

both short and long forecast horizons, but the seasonal effect appears to account only

marginally for such inefficiency. Our findings show some consistency with previous studies, in

particular Beck (1994) and Kellard et al. (1999).

Soybeans

The analysis of the soybeans market is also carried out for two different forecast horizons.

Table 1D reports model 1, which is the same estimated in Kellard et al. (1999); although the

constant is significantly different from zero, we cannot reject the hypothesis that the basis

coefficient is equal to unity. In model 2 we check whether any seasonal effect is determining

the behaviour of the change in the spot price; when contract dummy variables are included a

richer dynamics has to be specified, the eighth lag of spot and futures price change is now

significant at the 6% level. However, the sixteen lags included in the model are not jointly

significant. There is some evidence of seasonality since the dummy variables can be restricted

to zero only at the 8.6% level; the basis coefficient does not differ significantly from one, as in

the previously estimated model. Model 3 represents an extension of model 2, since we allow

the seasonal effects to influence the change in the soybeans spot price through the basis as

well. The estimation results indicate a stronger presence of seasonality when both sets of

dummy terms are included, since the test for their joint exclusion from the model is highly

significant. The hypothesis that the basis coefficient is equal to one is now rejected for July
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contracts. In fact, the overall significance of the seasonal variables is driven almost entirely by

the significance of the additive and multiplicative July dummies. Therefore, we propose a more

parsimonious specification of the estimated model by including only such seasonal terms

(model 4). As expected, it turns out to be highly significant; within the new estimated model

the dynamics are adequately described by the inclusion of only two lags, which, although not

jointly significant are maintained in order to avoid misspecification problems and to ensure

white noise residuals.

Table 2D reports the investigation of the source of seasonality for the soybeans market; both

the variation in the change of spot and in the change of futures prices can be partly described

by seasonal influences. The September term is highly significant for explaining the behaviour of

the spot change, while the July dummy is determining the evolution of the futures price change.

All the seasonal terms are significant in the modelling of the basis series. In order to get rid of

non-normality problems in the estimated residuals we need to include some impulse dummies

for some extreme observations. The forecast error series, on the other hand, does not appear

to be determined by any seasonal variation.

Turning to the longer 56 days horizon (Table 3D), we find that the seasonal step dummies

(model 2) highly improve the model fit; the overall significance of the seasonal terms is

generated by the highly significant May contracts dummy. Eight lags of the change in spot and

the change in futures price are included along with an impulse dummy in order to obtain well-

behaved residuals. The unity hypothesis on the basis coefficient is not rejected and, therefore, it

is consistent with the efficient market hypothesis. In model 3 the multiplicative seasonal

dummies do not appear to be relevant in accounting for the variation of the dependent variable,

even if when the additive dummies are restricted to zero (model 4) they are forced to pick up

some of the seasonal effects. Again the May contracts are the only ones which display a little

evidence of seasonality.

According to the SC ad HQ information criteria, model 2 appears to provide the most

adequate specification for testing the soybeans market efficiency without overlooking the

seasonal pattern embodied in the data.
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The results obtained from the estimation of the univariate models for the change in the spot

and futures prices, the basis and the forecast error series, reported in Table 4D, indicate that all

variables show a seasonal pattern, although not the same dummies turn out to be significant for

each variable examined.

From our analysis seasonality effects seem to considerably affect the soybeans market,

particularly at the longer forecast horizon of 56 days. Although the hypothesis that the basis

coefficient is equal to one is exceptionally rejected (for July contracts for the 28 days horizon

and for May contracts at 56 days horizon), our results provide valuable information in an

attempt to explain the mixed evidence produced in the empirical literature on commodity

market efficiency testing (Beck, 1994).

Orange Juice

For the orange juice futures market no matching spot price series is available. Following Beck

(1994), we assume that the spot price series is actually the futures price on the day of contract

expiration. The two prices should be same since arbitrage will drive them together. Table 1E

reports the analysis of the forecast error. Seasonal variation does not seem to affect this

market. On the basis of the results obtained all the seasonal dummy terms can be restricted to

zero.

3. Summary and concluding remarks

This paper has aimed to investigate thoroughly the effects of seasonality in testing market

efficiency over a range of five different commodities, namely heating oil, live hogs, live cattle,

soybeans and orange juice. The robustness of the results has been checked by carrying out the

analysis with respect to a short (28 days) and a long (56 days) forecast horizon. The most

relevant question we addressed is whether a strong and anticipated seasonal pattern can

account for the inefficiency found in futures markets. In order to tackle the seasonality issue

we propose an estimation procedures which involves the augmentation of the quasi-ECM

model suggested in Kellard et al.(1999) with seasonal dummy terms. All the contracts

examined in this paper have an equally spaced settlement pattern, so that the analysis is not

influenced by the unequally spaced data problem (Newbold et al. 1999).
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Our main findings are summarised for the short horizon analysis in Table 1 and for the long

horizon in Table 2. Focusing on the short horizon analysis, the results suggest that the heating

oil market is strongly affected by seasonality. Economic agents operating in this market appear

to have an asymmetric loss function since they prefer to manage the risk of oil price increases

in November and December by locking-in futures contracts whose price turns out to be higher

than the actual spot price. This behaviour results in systematic negative forecast errors that

make the market apparently very inefficient. The hypothesis that the basis coefficient is equal

to unity is almost always rejected.

The seasonality present in the live hog market is adequately described by a model which

includes just contract dummy variables interacting with the basis term; the hypothesis of a unit

coefficient for the basis is rejected only for April contracts. For all the other estimated models,

including the one in which we ignored the seasonality issue, the unbiasedness hypothesis was

always rejected.

The live cattle market, confirming the results already obtained by Beck (1994) and Kellard et

al. (1999), appears to be very inefficient. However, the tests on the significance of the seasonal

terms suggest that this market for the short forecast horizon is not affected by seasonality.
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Table 1 - Short Forecast Horizon

HEATING OIL LIVE HOGS LIVE CATTLE SOYBEANS

Contracts monthly Feb, Apr, Jun,
Aug, Oct, Dec

Feb, Apr, Jun,
Aug, Oct, Dec

Jan, Mar, May,
Jul, Sep, Nov

Model 1 Basis coeff. = 1
(No seasonal terms)

rejected rejected rejected not rejected

Model 2
Zero restrictions on
additive seas. terms

rejected not rejected not rejected not rejected
[0.09]

Basis coeff. = 1 rejected [0.055] rejected rejected not rejected

Zero restrictions on
additive seas. terms

not rejected not rejected not rejected rejected

Model 3
Zero restrictions on
multiplic. seas
terms

not rejected rejected not rejected rejected

Zero restrictions on
all seasonal terms

rejected rejected not rejected rejected

Basis coeff. = 1 not rejected
(Aug at 9%)

not rejected in
Feb and Aug

not rejected in
Oct and Dec

rejected  in Jul

Model 4
Zero restrictions on
multiplic. seas
terms

rejected rejected not rejected rejected*

Basis coeff. = 1 rejected in Apr,
and Dec

rejected in Apr not rejected in
Oct and Dec

rejected

Model 5
Zero restriction on
DUM

rejected -- -- --

Basis coeff. = 1 rejected -- -- --

No seasonality in ∆st not rejected not rejected
[0.07]

-- rejected

No seasonality in ∆ft rejected rejected -- rejected

No seasonality in the basis not rejected
[0.06]

rejected -- rejected

No seasonality in the forecast
error

rejected not rejected -- not rejected

*Note that for the soybeans market model 4 is estimated including only the additive and multiplicative
seasonal term for July contracts.

The soybeans market is generally efficient; seasonal effects are confined to July contracts. The

most parsimonious specification we propose is a model for the change in the spot price which
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includes only the additive and multiplicative dummy variable for July contracts; these turned

out to be the only contracts characterised by inefficient and biased predictions.

Table 2 - Long Forecast Horizon

LIVE HOGS LIVE CATTLE SOYBEANS

Contracts
Feb, Apr, Jun,
Aug, Oct, Dec

Feb, Apr, Jun,
Aug, Oct, Dec

Jan, Mar, May,
Jul, Sep, Nov

Model 1 Basis coeff. = 1
(No seasonal terms)

not rejected
[0.08]

rejected not rejected

Model 2
Zero restrictions on
additive seas. terms

rejected [0.06] not rejected rejected

Basis coeff. = 1 rejected rejected not rejected

Zero restrictions on
additive seas. terms

not rejected
[0.09]

not rejected not rejected
[0.08]

Model 3
Zero restrictions on
multiplic. seas
terms

not rejected rejected not rejected

Zero restrictions on
all seasonal terms

not rejected rejected rejected

Basis coeff. = 1 rejected in Jun
(Apr [0.06])

not rejected in
Feb and Oct

not rejected
(in May [0.06],

Jul [0.08]

Model 4
Zero restrictions on
multiplic. seas
terms

not rejected rejected not rejected

Basis coeff. = 1 not rejected not rejected in
Feb and Oct

rejected in Mar
[0.08] and May

No seasonality in ∆st rejected not rejected rejected

No seasonality in ∆ft rejected rejected rejected

No seasonality in the basis rejected rejected rejected

No seasonality in the forecast
error

not rejected not rejected rejected

Turning to the long forecast horizon of 56 days, we can argue that our previous findings are

quite robust; for this horizon as well there is evidence that the markets are influenced by

seasonality.
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For the live hog market spot price change an adequate specification is achieved when the

seasonal step dummies are included; the seasonality effects are mainly due to June and August

contracts.

The hypothesis that the basis coefficient is equal to unity is rejected. This contrasts with the

result we obtained for the model where seasonal effects were ignored; the unbiasedness

hypothesis was not rejected at the 8% level. Thus, it can be argued that a market can be

considered inefficient when seasonality effects are accounted for.

At a longer forecast horizon the live cattle market too seems to be affected by seasonality. The

preferred model is the one in which the seasonal features of the data are picked up by dummy

terms interacting with the basis variable. The market is efficient only with respect to February

and October contracts. Only for these contracts, in fact, is the basis coefficient not different

from unity once we take into account the seasonal influences.

Although the efficiency hypothesis is not rejected for the soybeans market, seasonality is

present for the 56 days forecast horizon as well. The behaviour of the change in the spot price

is adequately described by a very rich dynamics which includes eight own lags for the spot

price change and for the change in the futures price and step seasonal dummies, the most

significant of which is the one related to May contracts.

Our analysis has shown that seasonality represents an important issue in testing for market

efficiency in commodity markets. Although our results confirm those already presented in

previous studies, they also point out that more rigorous and robust conclusions on the

efficiency hypothesis can only be reached when the seasonality issue is not overlooked.
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APPENDIX

Table A Contract Details

Commodity Spot
Exchange

Future
Exchange

Contract
Period

Contract
Months

St Ft St−28 Ft-28 St−56 Ft-56

mean
(st.dev.)

mean
(st.dev.)

mean
(st.dev.)

mean
(st.dev.)

mean
(st.dev.)

mean
(st.dev.)

HEATING
OIL

New York New York
Mercantile
Exchange

11/90 to 05/99 All months 0.539 $/gal
(0.102)

0.538 $/gal
(0.102)

0.539 $/gal*
(0.113)

0.537 $/gal*
(0.108)

----- -----

LIVE HOGS Omaha,
Nebraska

Chicago
Mercantile
Exchange

05/82 to 10/96 Feb, Apr, Jun,
Aug, Oct, Dec

47.90 c/lb
(6.66)

48.24 c/lb
(6.03)

47.92 c/lb
(7.23)

48.69 c/lb
(6.43)

47.62 c/lb
(6.75)

48.14 c/lb
(6.05)

LIVE
CATTLE

Omaha,
Nebraska

Chicago
Mercantile
Exchange

05/82 to 10/96 Feb, Apr, Jun,
Aug, Oct, Dec

67.96 c/lb
(6.96)

68.03 c/lb
(6.58)

68.24 c/lb
(7.19)

68.68 c/lb
(6.86)

67.95 c/lb
(7.00)

68.15 c/lb
(6.55)

SOYBEANS Chicago
board of
Trade

Chicago board
of Trade

03/80 to 11/96 Jan, Mar, May,
Jul, Sep, Nov

627.02 c/bu
(98.34)

642.18 c/bu
(101.59)

624.77 c/bu
(100.37)

637.20 c/bu
(103.60)

623.00 c/bu
(93.18)

638.38 c/bu
(96.53)

ORANGE
JUICE

----- New York
Cotton
Exchange
(NYCE)

01/80 to 01/99 Jan, Mar, May,
Jul, Sep, Nov

----- 124.25 c/lb
(30.65)

----- ----- ----- 124.84 c/lb
(29.53)

* For Heating Oil contracts the forecast horizon is 21 days.
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Fig. 1
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Table 1A HEATING OIL - sample period: Nov 1990-May 1999

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant 0.004 (0.614) -0.054 (-2.636) 0.052 (1.177) 0.010 (1.241)
θ1 Basis 0.540 (3.654) 0.689 (4.248) -6.005 (-2.403) -3.866 (-3.179)

δ1 JAN 0.055 (1.924) -0.036 (-0.719)
δ2 FEB 0.046 (1.603) -0.065 (-1.328)
δ3 MAR 0.049(1.624) -0.059 (-1.194)
δ4 APR 0.112 (3.680) 0.002 (0.039)
δ5 MAY 0.074 (2.472) -0.033 (-0.663)
δ6 JUN 0.039 (1.318) -0.060 (-1.222)
δ7 JUL 0.069 (2.332) -0.024 (-0.449)
δ8 AUG 0.077 (2.587) 0.007 (0.124)
δ9 SEP 0.081 (2.743) -0.037 (-0.661)
δ10 OCT 0.098 (3.297) -0.038 (-0.660)
δ11 NOV 0.008 (0.267) -0.122 (-2.252)

φ1 JANb 5.689 (2.135) 3.686 (2.610)
φ2 FEBb 7.765 (2.837) 5.326 (3.270)
φ3 MARb 6.636 (2.637) 4.611 (3.652)
φ4 APRb 6.609 (2.627) 4.166 (3.307)
φ5 MAYb 6.674 (2.650) 4.471 (3.529)
φ6 JUNb 7.373 (2.888) 5.335 (3.986)
φ7 JULb 5.228 (1.506) 4.143 (1.987)
φ8 AUGb 3.161 (0.932) 3.690 (1.893)
φ9 SEPb 7.420 (2.493) 5.480 (3.560)
φ10 OCTb 8.416 (2.777) 6.461 (4.172)
φ11 NOVb 7.896 (2.834) 3.326 (2.352)

Obs. 103 103 103 103
Var. 2 13 24 13
RSS 0.437832 0.335012 0.278672 0.336642
SC Inf Crit -5.371 -5.143 -4.832 -5.138
HQ Inf Crit -5.401 -5.341 -5.198 -5.336

H0: θ1=1 9.6515 [0.0019] 3.6784 [0.0551]
H0: no step dummies 2.5111 [0.0084] 1.494 [0.1504]
H0: no slope
dummies

1.452 [0.1670] 2.4593 [0.0098]

H0: no seas. dummies 2.051 [0.0110]

t-statistics are reported in parenthesis



22

Testing unbiasedness
Model 3

H0: θ1+φ1=1 2.0136 [0.1559] H0: θ1+φ7=1 0.5437 [0.4609]
H0: θ1+φ2=1 0.4635 [0.4960] H0: θ1+φ8=1 2.8031 [0.0941]
H0: θ1+φ3=1 1.5037 [0.2201] H0: θ1+φ9=1 0.0660 [0.7972]
H0: θ1+φ4=1 1.8172 [0.1776] H0: θ1+φ10=1 0.6771 [0.4106]
H0: θ1+φ5=1 1.0894 [0.2966] H0: θ1+φ11=1 0.5221 [0.4699]
H0: θ1+φ6=1 0.4937 [0.4823]

Model 4
H0: θ1+φ1=1 2.1406 [0.1434] H0: θ1+φ7=1 0.1617 [0.6875]
H0: θ1+φ2=1 0.1682 [0.6817] H0: θ1+φ8=1 0.5193 [0.4711]
H0: θ1+φ3=1 0.8780 [0.3487] H0: θ1+φ9=1 0.3359 [0.5622]
H0: θ1+φ4=1 7.4644 [0.0063] H0: θ1+φ10=1 2.1914 [0.1388]
H0: θ1+φ5=1 1.8414 [0.1748] H0: θ1+φ11=1 3.3358 [0.0678]
H0: θ1+φ6=1 0.7927 [0.3733]
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Table 2A HEATING OIL - sample period: Nov 1990-May 1999

∆St Model 5 Model 6 Model 7 Model 8

θ0 Constant -0.050 (-3.381) -0.045 (-1.813) -0.070 (-2.222) -0.070 (-2.067)
θ1 Basis 0.658 (4.667) 0.393 (0.345) 1.891 (1.520) 1.891 (1.413)

α0 DUM 0.065 (4.010) 0.061 (2.360) -0.036 (-0.807)
α1 DUMb 0.270 (0.235) 6.667 (2.641)

β0 DUMNOV 0.122 (2.233) 0.078 (2.280)
β1 DUMNOVb -7.898 (-2.809) -1.314 (-0.976)

Obs. 103 103 103 103
Var. 3 4 6 4
RSS 0.377187 0.376976 0.348299 0.411129
SC  Inf Crit -5.475 -5.430 -5.419 -5.344
HQ Inf Crit -5.520 -5.491 -5.511 -5.404

H0: θ1=1 5.8596 [0.0155]
H0: θ1+α1=1 5.5749 [0.0182]
H0: θ1+α1+β1=1 5.912 [0.0150]
H0: θ1+β1=1 8.2307 [0.0041]

H0: α0=α1=0 7.9908 [0.0006] 8.749 [0.0003]
H0: β0=β1=0 3.9933 [0.0215] 3.215 [0.0444]
H0: α0=α1=β0=β1=0 6.2337 [0.0002]

1 for JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT
DUM = 

0 for NOV, DEC

1 for JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, DEC
DUMNOV = 

0 for NOV

t-statistics are reported in parenthesis

Table 3

Testing the equality of the estimated error variances from model (1), (2), (3), (4), (5)

Model: (1) Vs (2): F(101,90)   =  1.1646 [0.23090]

Model: (1) vs (5): F(101,100) =  1.1493 [0.24352]

Model: (5) vs (2): F(100,90)   =  1.0133 [0.47587]

Model: (4) vs (3): F(90,79)     =  1.0604 [0.39622]

Model: (4) vs (2): F(90, 90)    =  1.0049 [0.49084]

Model: (5) vs (4): F(100,90)   =  1.0084 [0.48526]
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Table 4A HEATING OIL - sample period: Nov 1990-May 1999

HEATING OIL st-st-21 ft-ft-21 ft-21-st-21 st-ft-21 st-ft-21

θ0 Constant 0.005 (0.210) -0.051 (-2.339) 0.004 (0.422) -0.053 (-2.309) -0.051 (-2.868)
λ1 lag 1 -0.162 (-1.397) -0.004 (-0.035) 0.791 (7.578) 0.076 (0.716) 0.152 (1.491)
λ2 lag 2 -0.403 (-3.272) -0.086 (-0.802) -0.234 (-2.222) -0.085 (-0.800) -0.092 (-0.861)
λ3 lag 3 -0.314 (-2.442) -0.017 (-0.162)
λ4 lag 4 0.043 (0.322) 0.089 (0.826)
λ5 lag 5 -0.343 (-2.554) -0.134 (-1.235)
λ6 lag 6 0.069 (0.526) 0.192 (1.674)
λ7 lag 7 -0.169 (-1.322) -0.035 (-0.297)
λ8 lag 8 -0.035 (-0.287) -0.032 (0.278)
λ9 lag 9 0.258 (2.125) 0.905 (0.790)
λ1

0

lag 10 0.005 (0.042) -0.215 (-1.969)

λ1

1

lag 11 0.284 (2.441)

δ1 JAN 0.010 (0.299) 0.051 (1.669) 0.002 (0.139) 0.050 (1.563)
δ2 FEB 0.002 (0.069) 0.034 (1.100) -0.008 (-0.538) 0.039 (1.201)
δ3 MAR -0.009 (-0.259) 0.041 (1.390) -0.043 (-2.933) 0.060 (1.950)
δ4 APR 0.038 (1.097) 0.108 (3.639) -0.019 (-1.191) 0.124 (3.966)
δ5 MAY -0.008 (-0.234) 0.076 (2.453) -0.012 (-0.764) 0.078 (2.386)
δ6 JUN -0.051 (-1.473) 0.045 (1.487) 0.005 (0.300) 0.044 (1.383)
δ7 JUL -0.004 (-0.106) 0.067 (2.234) 0.003 (0.176) 0.069 (2.189)
δ8 AUG -0.003 (-0.091) 0.072 (2.353) -0.003 (-0.233) 0.070 (2.188)
δ9 SEP 0.043 (1.242) 0.078 (2.555) 0.006 (0.413) 0.074 (2.329)
δ10 OCT 0.076 (2.246) 0.096 (3.163) 0.001 (0.100) 0.091 (2.854)
δ11 NOV 0.006 (0.175) 0.018 (0.581) 0.006 (0.372) 0.009 (0.291)
α0 DUM 0.069 (3.566)

SC Inf Crit. -5.062 -5.011
HQ Inf Crit. -5.278 -5.206

Obs. 92 101 101 101 93
Var. 23 14 14 14 12
RSS 0.250797 0.306290 0.079075 0.337263 0.345289

Norm [0.0000]

H0: no seas. dummies 1.6337
[0.1086]

2.3126
[0.0154]

1.8198
[0.0625]

2.4305
[0.0109]

t-statistics are reported in parenthesis
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Table 1B LIVE HOGS - sample period: Jun 1982-Oct 1996 - forecast horizon 28 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.005 (-0.597) 0.031 (1.336) -0.057 (-1.557) -0.017 (-1.686)
θ1 Basis 0.489 (2.751) 0.420 (2.076) 1.957 (3.578) 1.444 (4.555)
λ1 ∆St-1 -0.277 (-2.125)
γ1 ∆Ft-1 0.208 (1.760)

δ1 FEB -0.037 (-1.276) 0.033 (0.759)
δ2 APR -0.052 (-1.790) 0.054 (1.263)
δ3 JUN -0.026 (-0.931) 0.077 (1.713)
δ4 AUG -0.030 (-0.971) 0.059 (1.426)
δ5 OCT -0.078 (-2.395) -0.005 (-0.116)

φ1 FEBb -0.966 (-1.281) -0.542 (-1.086)
φ2 APRb -2.286 (-3.198) -1.628 (-3.257)
φ3 JUNb -1.881 (-2.712) -0.932 (-2.239)
φ4 AUGb -1.420 (-2.035) -1.047 (-1.915)
φ5 OCTb -2.083 (-2.879) -1.0235 (-1.856)

Obs. 86 87 87 87
Var. 4 7 12 7
RSS 0.458500 0.446293 0.376895 0.420405
SC Inf Crit -5.027 -4.913 -4.826 -4.973
HQ Inf Crit -5.095 -5.032 -5.030 -5.092

H0: no lags 2.3995 [0.0971]
H0: θ1=1 8.2299 [0.0041] 8.1897 [0.0042]
H0: no step dummies 1.4108 [0.2293] 1.7316 [0.1377]
H0: no slope
dummies

2.7619 [0.0241] 2.4829 [0.0383]

H0: no seas dummies 2.1640 [0.0293]

t-statistics are reported in parenthesis

Testing unbiasedness
Model 3 Model 4

H0: θ1+φ1=1 0.0003 [0.9860] H0: θ1+φ1=1 0.0524 [0.8190]
H0: θ1+φ2=1 8.3458 [0.0039] H0: θ1+φ2=1 7.9546 [0.0048]
H0: θ1+φ3=1 4.6987 [0.0302] H0: θ1+φ3=1 2.3273 [0.1271]
H0: θ1+φ4=1 1.1439 [0.2848] H0: θ1+φ4=1 2.0269 [0.1545]
H0: θ1+φ5=1 5.6526 [0.0174] H0: θ1+φ5=1 1.9461 [0.1630]
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Table 2B LIVE HOGS - sample period: Jun 1982-Oct 1996 - forecast horizon 28 days

LIVE HOGS st-st-28 ft-ft-28 ft-28-st-28 st-ft-28

θ0 Constant 0.050 (2.074) 0.027 (0.997) 0.073 (7.793) -0.001 (-0.058)
λ1 lag 1 -0.016 (-0.123) 0.009 (0.077) 0.581 (6.348) 0.040 (0.355)
λ2 lag 2 -0.244 (-1.886) -0.009 (-0.077)
λ3 lag 3 -0.096 (-0.784) -0.050 (-0.414)
λ4 lag 4 -0.069 (-0.547) -0.013 (-0.109)
λ5 lag 5 -0.070 (-0.570) 0.055 (0.458)
λ6 lag 6 -0.020 (-0.168) 0.035 (0.292)
λ7 lag 7 -0.078 (-0.647) -0.246 (-2.065)
λ8 lag 8 -0.038 (-0.314)
λ9 lag 9 -0.192 (-1.555)
λ1

0

lag 10 -0.237 (-1.938)

λ1

1

lag 11 0.029 (0.232)

λ1

2

lag 12 -0.289 (-2.189)

δ1 FEB -0.030 (-0.859) -0.076 (-1.913) -0.075 (-5.051) -0.022 (-0.747)
δ2 APR -0.059 (-1.655) 0.056 (1.316) -0.067 (-4.835) -0.032 (-1.102)
δ3 JUN -0.010 (-0.330) -0.011 (-0.303) -0.041 (-3.010) -0.017 (-0.583)
δ4 AUG -0.050 (-1.411) -0.134 (-3.285) -0.114 (-8.051) 0.011 (0.380)
δ5 OCT -0.104 (-2.987) -0.047 (-1.148) -0.091 (-7.240) -0.031 (-1.038)

Obs. 75 80 86 86
Var. 18 13 7 7
RSS 0.296406 0.383415 0.090070 0.490702

H0: no seas. dummies 2.142 [0.0734] 5.2193 [0.0004] 18.057 [0.0000] 0.71493 [0.6141]

t-statistics are reported in parenthesis
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Table 3B LIVE HOGS - sample period: Jun 1982-Oct 1996 - forecast horizon 56 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.002 (-0.136) -0.059 (-1.478) -0.07 (-1.583) 0.004 (0.329)
θ1 Basis 0.566 (2.312) 0.348 (1.492) 0.659 (1.289) 0.522 (1.029)
λ1 ∆St-1 -0.137 (-0.583) -0.208 (-0.885) -0.110 (-0.447) -0.256 (-1.764)
λ2 ∆St-2 0.125 (0.590) 0.348 (1.650) 0.458 (1.965)
λ3 ∆St-3 0.029 (0.157)
λ4 ∆St-4 0.066 (0.362)
λ5 ∆St-5 0.083 (0.460)
λ6 ∆St-6 0.413 (2.189)
γ1 ∆Ft-1 0.002 (0.008) 0.0004 (0.002) -0.105 (-0.415) 0.139 (0.856)
γ2 ∆Ft-2 -0.313 (-1.408) -0.542 (-2.418) -0.627 (-2.654)
γ3 ∆Ft-3 -0.089 (-0.439)
γ4 ∆Ft-4 -0.298 (-1.411)
γ5 ∆Ft-5 -0.015 (-0.079)
γ6 ∆Ft-6 -0.338 (-1.666)

δ1 FEB 0.121 (1.993) 0.118 (1.839)
δ2 APR 0.054 (0.995) 0.050 (0.897)
δ3 JUN 0.104 (2.373) 0.134 (2.223)
δ4 AUG 0.137 (1.910) 0.146 (1.984)
δ5 OCT -0.052 (-0.861) -0.063 (-0.811)

φ1 FEBb 0.279 (0.390) 0.047 (0.075)
φ2 APRb -1.051 (-1.166) -0.689 (-0.776)
φ3 JUNb -0.442 (-0.720) 0.121 (0.247)
φ4 AUGb -0.502 (-0.636) -0.268 (-0.343)
φ5 OCTb -0.263 (-0.357) 0.420 (0.728)

Obs. 81 85 85 86
Var. 14 11 16 9
RSS 0.632355 0.635460 0.611323 0.721302
SC Inf Crit -4.093 -4.321 -4.098 -4.315
HQ Inf Crit -4.341 -4.510 -4.373 -4.468

H0: no lags 1.0276 [0.4347] 2.7143 [0.0362] 2.7914 [0.038] 1.7100 [0.1877]
H0: θ1=1 3.1491 [0.0760] 7.7845 [0.0053] 0.4440 [0.5052] 0.8891 [0.3457]
H0: no step dummies 2.239 [0.0592] 2.0102 [0.0880]
H0: no slope
dummies

0.5449 [0.7416] 0.5490 [0.7385]

H0: no seas dummies 1.3575 [0.2187]

t-statistics are reported in parenthesis

Testing unbiasedness
Model 3 Model 4

H0: θ1+φ1=1 0.0128 [0.9099] H0: θ1+φ1=1 0.9978 [0.3178]
H0: θ1+φ2=1 3.4351 [0.0638] H0: θ1+φ2=1 2.4788 [0.1154]
H0: θ1+φ3=1 3.8782 [0.0489] H0: θ1+φ3=1 1.6749 [0.1956]
H0: θ1+φ4=1 1.8218 [0.1771] H0: θ1+φ4=1 1.5233 [0.2171]
H0: θ1+φ5=1 1.1050 [0.2932] H0: θ1+φ5=1 0.0373 [0.8469]
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Table 4B LIVE HOGS - sample period: Jun 1982-Oct 1996 - forecast horizon 56 days

LIVE HOGS st-st-56 ft-ft-56 ft-56-st-56 st-ft-56

θ0 Constant -0.014 (-0.442) 0.005 (0.140) 0.102 (3.312) 0.004 (0.128)
λ1 lag 1 -0.336 (-2.936) -0.244 (-1.953) 0.255 (2.100) 0.039 (0.329)
λ2 lag 2 -0.122 (-1.040) -0.342 (-2.563) 0.290 (2.380) 0.084 (0.715)
λ3 lag 3 -0.098 (-0.832) -0.123 (-0.921) 0.167 (1.365) 0.007 (0.057)
λ4 lag 4 -0.147 (-1.251) -0.206 (-1.497) -0.020 (-0.161) -0.087 (-0.739)
λ5 lag 5 0.026 (0.217) -0.021 (-0.152) -0.145 (-1.062) 0.133 (1.136)
λ6 lag 6 0.054 (0.456) -0.058 (-0.435) 0.039 (0.290) 0.126 (1.076)
λ7 lag 7 -0.204 (-1.781) -0.268 (-2.050) 0.307 (2.283) -0.213 (-1.806)
λ8 lag 8 -0.280 (-1.969) -0.141 (-1.122)
λ9 lag 9 -0.192 (-1.333) -0.272 (-2.132)
λ1

0

lag 10 -0.310 (-2.119)

λ1

1

lag 11 -0.215 (-1.603)

λ1

2

lag 12 -0.300 (-2.297)

δ1 FEB 0.062 (1.324) -0.039 (-0.731) -0.064 (-1.453) -0.013 (-0.326)
δ2 APR 0.010 (0.207) 0.086 (1.452) -0.122 (-2.454) -0.009 (-0.225)
δ3 JUN 0.119 (2.782) 0.038 (0.774) 0.006 (0.150) 0.005 (0.138)
δ4 AUG 0.073 (1.458) -0.098 (-1.678) -0.182 (-3.491) -0.011 (-0.276)
δ5 OCT -0.081 (-1.805) -0.015 (-0.289) -0.211 (-4.878) -0.013 (-0.340)

Obs. 80 75 78 80
Var. 13 18 15 13
RSS 0.581423 0.403896 0.120445 0.682910

H0: no seas. dummies 4.4501 [0.0015] 2.3952 [0.0485] 7.5709 [0.0000] 0.0754 [0.9957]

t-statistics are reported in parenthesis
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Table 1C LIVE CATTLE- sample period: Jun 1982-Oct 1996 - forecast horizon 28 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.010 (-2.158) -0.001 (-0.092) -0.013 (-1.131) -0.10 (-2.282)
θ1 Basis 0.221 (1.919) 0.138 (1.101) 0.622 (1.485) 0.588 (1.611)
λ1 ∆St-1 0.055 (0.320) -0.019 (-0.108) -0.013 (-0.081) 0.006 (0.041)
λ2 ∆St-2 0.037 (0.239) 0.045 (0.272) 0.075 (0.482) 0.158 (1.103)
λ3 ∆St-3 -0.071 (-0.466) -0.055 (-0.351)
λ4 ∆St-4 -0.141 (-0.893) -0.125 (-0.758)
λ5 ∆St-5 -0.015 (-0.094) -0.051 (-0.310)
λ6 ∆St-6 0.044 (0.271) 0.048 (0.291)
λ7 ∆St-7 -0.285 (-1.840) -0.318 (-1.964)
γ1 ∆Ft-1 -0.030 (-0.251) 0.017 (0.129) 0.040 (0.321) 0.020 (0.177)
γ2 ∆Ft-2 -0.264 (-2.317) -0.281 (-2.240) -0.284 (2.424) -0.317 (-3.117)
γ3 ∆Ft-3 -0.083 (-0.727) -0.007 (-0.053)
γ4 ∆Ft-4 0.014 (0.125) 0.007 (0.059)
γ5 ∆Ft-5 -0.034 (-0.308) 0.003 (0.022)
γ6 ∆Ft-6 0.033 (0.292) -0.013 (-0.106)
γ7 ∆Ft-7 0.043 (0.393) 0.044 (0.354)

δ1 FEB -0.003 (-0.198) 0.020 (1.325)
δ2 APR -0.022 (-1.242) -0.006 (-0.388)
δ3 JUN -0.013 (-0.732) -0.003 (-0.199)
δ4 AUG -0.019 (-1.132) 0.002 (0.137)
δ5 OCT 0.007 (0.437) 0.007 (0.329)

φ1 FEBb -1.013 (-1.458) -0.783 (-1.219)
φ2 APRb -0.490 (-1.080) -0.470 (-1.157)
φ3 JUNb -0.458 (-1.005) -0.362 (-0.877)
φ4 AUGb -0.493 (-0.880) -0.418 (-0.824)
φ5 OCTb -0.119 (-0.211) 0.032 (0.080)

Obs. 80 80 85 85
Var. 16 21 16 11
RSS 0.070661 0.065276 0.077517 0.082526
SC Inf Crit -6.155 -5.961 -6.164 -6.362
HQ Inf Crit -6.441 -6.335 -6.438 -6.551

H0: no lags 1.7194 [0.0734] 1.2378 [0.2740] 2.1174 [0.0879] 3.0814 [0.0210]
H0: θ1=1 45.707 [0.0000] 47.484 [0.0000] 0.8161 [0.3663] 1.2722 [0.2594]
H0: no step dummies 0.9734 [0.4416] 0.8918 [0.4916]
H0: no slope
dummies

0.6015 [0.6989] 0.9422 [0.4590]

H0: no seas dummies 0.9135 [0.5260 ]

t-statistics are reported in parenthesis

Testing unbiasedness
Model 3 Model 4

H0: θ1+φ1=1 5.9952 [0.0143] H0: θ1+φ1=1 4.6195 [0.0316]
H0: θ1+φ2=1 21.675 [0.0000] H0: θ1+φ2=1 22.62 [0.0000]
H0: θ1+φ3=1 21.481 [0.0000] H0: θ1+φ3=1 21.03 [0.0000]
H0: θ1+φ4=1 5.1839 [0.0228] H0: θ1+φ4=1 4.9810 [0.0256]
H0: θ1+φ5=1 1.5582 [0.2119] H0: θ1+φ5=1 2.6943 [0.1007]
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Table 2C LIVE CATTLE- sample period: Jun 1982-Oct 1996 - forecast horizon 56 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.002 (-0.409) 0.003 (0.184) 0.008 (0.561) 0.002 (0.302)
θ1 Basis 0.092 (0.431) 0.175 (1.074) -0.040 (-0.095) -0.095 (-0.236)
λ1 ∆St-1 -0.216 (-0.860) -0.239 (-1.258) -0.441 (-2.403) -0.426 (-2.365)
λ2 ∆St-2 -0.225 (-0.945) -0.072 (-0.392) -0.114 (-0.625) -0.169 (-1.048)
λ3 ∆St-3 -0.408 (-1.791) -0.390 (-2.220) -0.527 (-3.113) -0.474 (-3.235)
λ4 ∆St-4 -0.125 (-0.559)
λ5 ∆St-5 0.281 (1.282)
λ6 ∆St-6 0.096 (0.452)
λ7 ∆St-7 -0.318 (-1.524)
λ8 ∆St-8 0.200 (0.959)
λ9 ∆St-9 0.383 (1.889)
γ1 ∆Ft-1 0.095 (0.438) 0.169 (0.931) 0.305 (1.778) 0.400 (2.498)
γ2 ∆Ft-2 -0.041 (-0.199) -0.298 (-1.684) -0.237 (-1.403) -0.108 (-0.751)
γ3 ∆Ft-3 0.108 (0.543) 0.116 (0.662) 0.348 (2.029) 0.304 (2.055)
γ4 ∆Ft-4 -0.112 (-0.597)
γ5 ∆Ft-5 -0.195 (-1.110)
γ6 ∆Ft-6 -0.092 (-0.537)
γ7 ∆Ft-7 0.145 (0.818)
γ8 ∆Ft-8 -0.108 (-0.621)
γ9 ∆Ft-9 -0.365 (-2.156)

δ1 FEB 0.013 (0.651) 0.003 (0.137)
δ2 APR -0.005 (-0.222) 0.016 (0.725)
δ3 JUN -0.012 (-0.532) -0.021 (-0.858)
δ4 AUG -0.026 (-1.123) -0.039 (-1.724)
δ5 OCT 0.010 (0.463) -0.001 (-0.053)

φ1 FEBb 0.530 (0.944) 0.518 (0.956)
φ2 APRb -1.318 (-2.165) -0.948 (-1.755)
φ3 JUNb -0.053 (-0.096) 0.178 (0.368)
φ4 AUGb 0.400 (0.780) 0.500 (1.024)
φ5 OCTb 0.760 (1.544) 0.785 (1.786)

Obs. 78 84 84 84
Var. 20 13 18 13
RSS 0.145433 0.172744 0.134067 0.150174
SC Inf Crit -5.168 -5.501 -5.491 -5.641
HQ Inf Crit -5.530 -5.726 -5.802 -5.866

H0: no lags 1.6777 [0.0707] 2.8801 [0.0144] 4.0585 [0.0016] 3.7391 [0.0027]
H0: θ1=1 18.064 [0.0000] 25.448 [0.0000]
H0: no step dummies 0.9031 [0.4840] 1.5858 [0.1763]
H0: no slope
dummies

3.8081 [0.0043] 3.173 [0.0121]

H0: no seas dummies 2.4449 [0.0151]

t-statistics are reported in parenthesis
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Testing unbiasedness
Model 3 Model 4

H0: θ1+φ1=1 1.9306 [0.1647] H0: θ1+φ1=1 2.4312 [0.1189]
H0: θ1+φ2=1 30.236 [0.0000] H0: θ1+φ2=1 28.384 [0.0000]
H0: θ1+φ3=1 11.056 [0.0009] H0: θ1+φ3=1 10.996 [0.0009]
H0: θ1+φ4=1 4.7402 [0.0295] H0: θ1+φ4=1 3.9963 [0.0456]
H0: θ1+φ5=1 0.9303 [0.3348] H0: θ1+φ5=1 1.3340 [0.2481]

Table 3C LIVE CATTLE - sample period: Jun 1982-Oct 1996 - forecast horizon 56 days

LIVE CATTLE st-st-56 ft-ft-56 ft-56-st-56 st-ft-56

θ0 Constant 0.007 (0.470) 0.002 (0.106) 0.022 (1.747) -0.003 (-0.199)
λ1 lag 1 -0.211 (-1.761) -0.254 (-2.188) 0.540 (4.224) 0.275 (2.332)
λ2 lag 2 -0.327 (-2.642) -0.427 (-3.546) 0.172 (1.133) 0.005 (0.044)
λ3 lag 3 -0.291 (-2.171) -0.177 (-1.317) 0.149 (1.028) 0.071 (0.583)
λ4 lag 4 -0.227 (-1.668) -0.036 (-0.278) -0.179 (-1.229) 0.135 (1.070)
λ5 lag 5 0.085 (0.637) 0.239 (1.900) 0.184 (1.335) 0.246 (1.953)
λ6 lag 6 -0.012 (-0.097) -0.099 (0.712) -0.121 (-0.939)
λ7 lag 7 -0.253 (-2.031) -0.094 (-0.679) -0.263 (-2.107)
λ8 lag 8 0.006 (0.042)
λ9 lag 9 0.081 (0.611)
λ1

0

lag 10 -0.369 (-2.778)

λ1

1

lag 11 0.064 (0.448)

λ1

2

lag 12 0.269 (2.092)

δ1 FEB -0.0004 (-0.022) 0.056 (2.386) -0.058 (-3.020) 0.013 (0.611)
δ2 APR 0.005 (0.237) -0.033 (-1.345) -0.013 (-0.664) -0.021 (-0.951)
δ3 JUN -0.034 (-1.556) -0.032 (-1.347) -0.049 (-2.703) 0.001 (0.067)
δ4 AUG -0.025 (-1.167) -0.012 (-0.495) -0.008 (-0.418) 0.003 (0.134)
δ5 OCT 0.005 (0.236) 0.001 (0.038) 0.011 (0.572) 0.003 (0.168)

Obs. 80 82 74 80
Var. 13 11 18 13
RSS 0.161646 0.191885 0.050133 0.194332

H0: no seas. dummies 1.2085 [0.3148] 4.0448 [0.0028] 5.0632 [0.0007] 0.53072 [0.7522]

t-statistics are reported in parenthesis
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Table 1D SOYBEANS - sample period: Mar 1980-Nov 1996 - forecast horizon 28 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.020 (-2.623) -0.018 (-0.804) -0.029 (-0.897) -0.014 (-1.821)
θ1 Basis 1.246 (4.363) 1.090 (2.926) 1.460 (0.143) 0.974 (3.273)
λ1 ∆St-1 -0.144 (-0.330) -0.324 (-0.766) -0.565 (-1.644)
λ2 ∆St-2 -0.068 (-0.149) -0.564 (-1.223) -0.168 (-0.502)
λ3 ∆St-3 -0.017 (-0.038) -0.085 (-0.197)
λ4 ∆St-4 0.145 (0.327) -0.040 (-0.093)
λ5 ∆St-5 0.035 (0.080) -0.007 (-0.017)
λ6 ∆St-6 -0.419 (-0.959) -0.201 (-0.491)
λ7 ∆St-7 -0.396 (-0.922) -0.479 (-1.170)
λ8 ∆St-8 -0.775 (-1.816) -0.922 (-2.211)
γ1 ∆Ft-1 -0.030 (-0.065) 0.181 (0.403) 0.527 (1.504)
γ2 ∆Ft-2 -0.011 (-0.024) 0.525 (1.083) 0.092 (0.263)
γ3 ∆Ft-3 0.048 (0.101) 0.075 (0.169)
γ4 ∆Ft-4 -0.100 (-0.218) 0.083 (0.186)
γ5 ∆Ft-5 0.035 (0.079) 0.075 (0.180)
γ6 ∆Ft-6 0.200 (0.454) -0.061 (-0.147)
γ7 ∆Ft-7 0.222 (0.515) 0.334 (0.811)
γ8 ∆Ft-8 0.817 (1.903) 1.018 (2.423)

δ1 JAN -0.017 (-0.580) 0.011 (0.274)
δ2 MAR 0.025 (0.974) 0.058 (1.551)
δ3 MAY 0.023 (0.903) 0.010 (0.251)
δ4 JUL -0.022 (-0.866) -0.121 (-2.597) -0.120 (-3.709)
δ5 SEP -0.032 (-1.048) -0.016 (-0.412)

φ1 JANb -2.010 (-1.405)
φ2 MARb -1.416 (-1.229)
φ3 MAYb 0.449 (0.377)
φ4 JULb 6.040 (2.726) 6.491 (3.617)
φ5 SEPb -0.650 (-0.527)

Obs. 101 93 93 99
Var. 2 23 28 8
RSS 0.284044 0.196108 0.155514 0.233516
SC Inf Crit -5.782 -5.041 -5.029 -5.678
HQ Inf Crit -5.813 -5.414 -5.483 -5.803

H0: no lags 0.9219 [0.5485] 1.3064 [0.2207] 0.9818 [0.4216]
H0: θ1=1 0.7442 [0.3883] 0.0579 [0.8098] 0.2184 [0.6402]
H0: θ1+φ4=1 13.346 [0.0003]
H0: no step dummies 2.0222 [0.0860] 4.4817 [0.0014]
H0: no slope
dummies

3.3934 [0.0087]

H0: no seas dummies 2.8807 [0.0049] 7.0618 [0.0014]

t-statistics are reported in parenthesis
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Testing unbiasedness
Model 3

H0: θ1+φ1=1 2.1365 [0.1438]
H0: θ1+φ2=1 2.3221 [0.1275]
H0: θ1+φ3=1 1.9565 [0.1619]
H0: θ1+φ4=1 10.708 [0.0011]
H0: θ1+φ5=1 0.0640 [0.8003]

Table 2D SOYBEANS - sample period: Mar 1980-Nov 1996 - forecast horizon 28 days

SOYBEANS st-st-28 ft-ft-28 ft-28-st-28 st-ft-28

θ0 Constant 0.012 (0.735) 0.016 (1.135) 0.029 (10.317) -0.014 (-1.108)
λ1 lag 1 -0.166 (-1.466) -0.096 (-0.895) 0.430 (6.280) -0.036 (-0.368)
λ2 lag 2 -0.005 (-0.042) -0.041 (-0.388) -0.071 (-0.743)
λ3 lag 3 0.076 (0.692) 0.062 (0.609) -0.013 (-0.141)
λ4 lag 4 0.091 (0.824) -0.006 (-0.065) 0.016 (0.175)
λ5 lag 5 0.118 (1.078) 0.083 (0.859) 0.132 (1.486)
λ6 lag 6 -0.291 (-2.719) -0.205 (-2.119) -0.180 (-2.016)
λ7 lag 7 -0.223 (-2.026)
λ8 lag 8 -0.037 (0.342)
λ9 lag 9 0.107 (1.047)
λ1

0

lag 10 -0.040 (-0.388)

λ1

1

lag 11 0.211 (2.081)

d40 -0.056 (-4.708)
d49 0.067 (5.511)
d5051 0.040 (4.756) 0.118 (3.423)
d81 0.169 (3.545)

δ1 JAN -0.009 (-0.405) -0.010 (-0.507) -0.025 (-5.634) -0.013 (-0.775)
δ2 MAR 0.016 (0.645) 0.015 (0.750) -0.0217 (-5.251) 0.014 (0.808)
δ3 MAY 0.024 (0.997) 0.012 (0.622) -0.020 (-4.932) 0.005 (0.299)
δ4 JUL -0.031 (-1.290) -0.044 (-2.234) -0.019 (-4.787) -0.029 (-1.650)
δ5 SEP -0.069 (-3.134) -0.027 (-1.366) -0.025 (-6.253) -0.022 (-1.309)

Obs. 90 95 100 95
Var. 17 12 10 14
RSS 0.203259 0.228499 0.011914 0.169470

H0: no seas. dummies 4.6773 [0.0009] 2.8331 [0.0206] 10.178 [0.0000] 1.84 [0.1143]

t-statistics are reported in parenthesis
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Table 3D SOYBEANS - sample period: Mar 1980-Nov 1996 - forecast horizon 56 days

∆St Model 1 Model 2 Model 3 Model 4

θ0 Constant -0.036 (-2.893) -0.035 (-1.701) -0.041 (1.386) -0.041 (-3.335)
θ1 Basis 1.756 (3.639) 1.617 (3.633) 1.806 (1.922) 1.896 (2.734)
λ1 ∆St-1 0.123 (0.259) 0.435 (0.963) 0.600 (1.239) 0.599 (1.246)
λ2 ∆St-2 -0.813 (-1.802) -0.733 (-1.690) -0.550 (-1.218) -0.641 (-1.402)
λ3 ∆St-3 -1.385 (-3.116) -1.284 (-2.993) -1.120 (-2.352) -1.185 (-2.484)
λ4 ∆St-4 -0.243 (-0.538) -0.258 (-0.592) -0.106(-0.237) -0.088 (-0.192)
λ5 ∆St-5 -0.202 (-0.469) -0.676 (-1.622) -0.688 (-1.602) -0.562 (-1.295)
λ6 ∆St-6 -0.110 (-0.260) -0.318 (-0.768) -0.190 (-0.438) -0.262 (-0.628)
λ7 ∆St-7 -0.531 (-1.233) -0.379 (-0.922) -0.402 (-0.958) -0.606 (-1.427)
λ8 ∆St-8 -1.025 (-2.627) -0.866 (-2.223) -0.924 (-2.216) -1.160 (-2.802)
γ1 ∆Ft-1 -0.396 (-0.800) -0.802 (-1.667) -0.979 (-1.874) -0.912 (-1.800)
γ2 ∆Ft-2 0.687 (1.461) 0.620 (1.350) 0.442 (0.922) 0.519 (1.067)
γ3 ∆Ft-3 1.399 (3.062) 1.330 (2.990) 1.152 (2.333) 1.179 (2.374)
γ4 ∆Ft-4 0.357 (0.765) 0.413 (0.909) 0.290 (0.626) 0.255 (0.535)
γ5 ∆Ft-5 0.114 (0.259) 0.617 (1.440) 0.668 (1.518) 0.514 (1.164)
γ6 ∆Ft-6 -0.051 (-0.119) 0.125 (0.295) -0.041 (-0.093) 0.025 (0.059)
γ7 ∆Ft-7 0.510 (1.163) 0.292 (0.698) 0.308 (0.720) 0.542 (1.273)
γ8 ∆Ft-8 0.984 (2.462) 0.854 (2.141) 0.910 (2.147) 1.120 (2.651)

d22 0.332 (5.123) 0.379 (6.119) 0.391 (6.106) 0.379 (5.786)

δ1 JAN 0.003 (0.099) 0.026 (0.560)
δ2 MAR 0.021 (0.869) 0.053 (1.186)
δ3 MAY 0.053 (2.138) 0.037 (0.979)
δ4 JUL -0.017 (-0.713) -0.035 (-0.953)
δ5 SEP -0.044 (-1.589) -0.029 (-0.751)

φ1 JANb -1.085 (-0.661) -0.489 (-0.511)
φ2 MARb -1.269 (-0.812) 0.390 (0.451)
φ3 MAYb 0.911 (0.740) 1.639 (1.976)
φ4 JULb 0.649 (0.503) -0.342 (-0.392)
φ5 SEPb -1.029 (-0.751) -1.793 (-1.618)

Obs. 93 93 93 93
Var. 19 24 29 24
RSS 0.259365 0.201706 0.187625 0.217810
SC Inf Crit -4.956 -4.964 -4.792 -4.887
HQ Inf Crit -5.264 -5.353 -5.263 -5.277

H0: no lags 2.1609 [0.0138] 3.08 [0.0006] 3.0895 [0.0007] 2.9526 [0.0009]
H0: θ1=1 2.4534 [0.1173] 1.9221 [0.1656] 0.7356 [0.3911]
H0: θ1+α1=1
H0: no step dummies 3.9448 [0.0033] 2.0592 [0.0821]
H0: no slope
dummies

0.9606 [0.4486] 2.6329 [0.0308]

H0: no seas dummies 2.4471 [0.0153]

t-statistics are reported in parenthesis
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Testing unbiasedness
Model 3 Model 4

H0: θ1+φ1=1 0.0428 [0.8360] H0: θ1+φ1=1 0.2204 [0.6887]
H0: θ1+φ2=1 0.1437 [0.7046] H0: θ1+φ2=1 2.9817 [0.0842]
H0: θ1+φ3=1 3.4330 [0.0639] H0: θ1+φ3=1 11.888 [0.0006]
H0: θ1+φ4=1 2.9959 [0.0835] H0: θ1+φ4=1 0.6460 [0.4216]
H0: θ1+φ5=1 0.0541 [0.8161] H0: θ1+φ5=1 0.9823 [0.3216]

Table 4D SOYBEANS - sample period: Mar 1980-Nov 1996 - forecast horizon 56 days

SOYBEANS st-st-56 ft-ft-56 ft-56-st-56 st-ft-56

θ0 Constant 0.005 (0.252) -0.012 (-0.570) 0.019 (4.403) -0.054 (-3.286)
λ1 lag 1 -0.042 (-0.398) -0.141 (-1.255) 0.389 (3.713) -0.315 (-3.283)
λ2 lag 2 0.052 (0.500) 0.021 (0.181) 0.227 (2.200) -0.051 (-0.569)
λ3 lag 3 0.100 (0.967) 0.194 (1.706) 0.055 (0.629)
λ4 lag 4 0.184 (1.775) 0.168 (1.455) 0.134 (1.564)
λ5 lag 5 -0.138 (-1.302) -0.077 (-0.662) -0.080 (-0.960)
λ6 lag 6 -0.340 (-3.161) -0.532 (-4.610) -0.231 (-2.719)
λ7 lag 7 -0.152 (-1.483) -0.145 (-1.288) -0.112 (-1.286)
λ8 lag 8 -0.028 (-0.270) 0.020 (0.177)
λ9 lag 9 0.019 (0.195) 0.023 (0.215)
λ1

0

lag 10 0.009 (0.092) 0.013 (0.128)

λ1

1

lag 11 0.006 (0.068) 0.005 (0.047)

λ1

2

lag 12 -0.217 (-2.307) -0.294 (-2.941)

d223 0.234 (4.381)
d22 0.345 (5.445)

δ1 JAN 0.009 (0.336) 0.031 (1.088) -0.010 (-1.647) 0.024 (1.116)
δ2 MAR 0.037 (0.028) 0.063 (2.126) -0.10 (-1.931) 0.048 (2.198)
δ3 MAY 0.046 (1.579) 0.069 (2.307) -0.011 (-1.998) 0.059 (2.699)
δ4 JUL -0.031 (-1.058) -0.041 (-1.349) -0.10 (-1.828) 0.007 (0.327)
δ5 SEP -0.055 (-2.017) -0.013 (-0.475) -0.021 (-3.852) -0.022 (-1.025)

Obs. 89 89 99 94
Var. 19 18 8 14
RSS 0.318187 0.346822 0.020908 0.280402

H0: no seas. dummies 3.5823 [0.0061] 4.3393 [0.0017] 3.0163 [0.0145] 3.7056 [0.0046]

t-statistics are reported in parenthesis
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Table 1E ORANGE JUICE - forecast horizon 56 days

ORANGE JUICE ft-ft-56 ft-ft-56

θ0 Constant -0.012 (-1.011) 0.020 (0.705)
λ1 lag 1 -0.035 (-0.336) -0.026 (-0.247)
λ2 lag 2 0.057 (0.551) 0.074 (0.693)
λ3 lag 3 -0.027 (-0.259) -0.040 (-0.374)
λ4 lag 4 0.046 (0.446) 0.060 (0.561)
λ5 lag 5 -0.013 (-0.126) -0.004 (-0.040)
λ6 lag 6 -0.175 (-1.755) 0.206 (-2.024)
λ7 lag 7 -0.190 (-1.920) -0.184 (-1.820)
λ8 lag 8 0.056 (0.557) 0.077 (0.749)
λ9 lag 9 0.135 (1.339) 0.126 (1.223)
λ1

0

lag 10 -0.040 (-0.390) -0.034 (-0.331)

λ1

1

lag 11 -0.040 (-0.390) -0.032 (-0.314)

λ1

2

lag 12 -0.192 (-1.876) -0.211 (-2.035)

δ1 JAN -0.041 (-1.014)
δ2 MAR -0.02 (-0.448)
δ3 MAY -0.020 (-0.510)
δ4 JUL -0.072 (-1.775)
δ5 SEP -0.040 (-0.988)

Obs. 103 103
Var. 13 18
RSS 1.187589 1.137484

H0: no seas. dummies 0.7488 [0.5892]

t-statistics are reported in parenthesis


