New Challenges for the Oldest Science

Bruno Leibundgut European Southern Observatory

Questions for the $21^{\text {st }}$ Century

- How do planets form and how does life develop on them?
- How does the solar system work?
- What is the universe made of? Have we found all its constituents?
- Do we understand the physical laws that govern the universe?
- How did the universe originate?

How do planets form?

- Complementarity of optical, infrared and mm observations

Direct imaging of planets

- Around 150 planets 2MASSWJ1207334-393254 known outside the solar system

How does the solar system work?

- New members of the solar system have recently been detected
- moons of Pluto

What is the universe made of?
-What is Dark Matter?

- answers come from cosmology, e.g neutrino mass, mass of the lightest (stable) supersymmetric particle

What is the universe made of?

- What is Dark Energy?
- Was Einstein correct with the cosmological constant?
- How does the standard model of particle physics need to be extended to accommodate Dark Energy?

Do we understand the physical laws that govern the universe?

- Do we have the correct theory of gravity?
- Are there other forces out there?

How did the universe originate?

- Did inflation happen?
-What was before the Big Bang?
- How did the universe evolve?

Current facilities

- Optical 8 to 10 m telescopes
- Very Large Telescope, Gemini, Large Binocular Telescope, Gran Telescopio de Gran Canarias
- Radio telescopes
- Atacama Large Millimeter Array (2008+)
- Space missions
- Hubble Space Telescope (optical/UV)
- Integral (ү-rays)
- XMM/Newton (X-rays)
- Herschel (mm-rays; launch 2007)
- Planck (micro-waves; launch 2007)

49

$-$

Development path

- 8 m telescope \rightarrow extremely large telescopes (30 to $40 \mathrm{~m}+$)

- Hubble Space Telescope \rightarrow James Webb Space Telescope
- ESA Cosmic Vision Programme

- X-ray telescope

Extremely Large Telescopes

- Complement ALMA and JWST
- Require ELT with $>30 \mathrm{~m}$ diameters
- spatial resolution and sensitivity
- need adaptive optics
- Science Drivers
- characterise planetary systems
- find the first luminous objects
- follow the evolution of galaxies over time
- probe the evolution of stars in other galaxies

The Scientific Opportunities

 $\frac{20200}{12002}$
Lelescopes

Multipurpose Facilities

- Telescopes can be used for many scientific applications
- same instruments observe the solar
system and the most distant objects
- applications range from the hottest to the coldest, the densest to the least bound material
- detection and characterisation of particles

The Future

- 2009 marks 400 years since the invention of the telescope and Galileo's first use to discover the moon around Jupiter
- Extremely large telescopes will open up new frontiers in sensitivity and resolution
- Complement other planned facilities
- JWST, ALMA
- Data will be shared by everybody through the Virtual Observatory

