Faculty of Engineering
   
   
  
 

Image of Nicola Everitt

Nicola Everitt

Associate Professor (Materials Engineering) & Taught Postgraduate Senior Admissions Tutor, Faculty of Engineering

Contact

Expertise Summary

Structure/property relationships for high performance materials, and use of Waste to make sustainable products

My fields of expertise lie in structure/property relationships for high performance materials. My main focus is on mechanical property evaluation of small samples, from plant tissues (e.g. roots, seeds) and biomedical materials (e.g. degradable polymer scaffolds and bone), to thin hard films and additive manufactured microstructures. I have a broad knowledge of materials analysis techniques including optical and electron microscopy, spectroscopic techniques and many types of mechanical testing.

Recently I have focused on manufacturing and characterising materials made from waste products. Degradable packaging made from Chitosan recovered from shrimp shell, and green corrosion inhibitors from agricultural waste are two examples.

I have particular interest and expertise in the testing techniques mentioned below.

Microhardness testing

I have considerable experience in microhardness testing and using this technique to gain valuable information on material behaviour. Examples of previous work include high temperature indentation creep of ceramic single crystals, relating structure and thickness to the hardness of diamond and diamond-like carbon films, and investigating the structure of retrieved polymer acetabular cups using hardness maps.

Nanoindentation

I am the academic champion for a recently acquired NanoTester - a state of the art nanoindentation machine with added capabilities for indentation high temperature testing. This enables detailed investigation of materials performance under extreme conditions.

Dynamic Mechanical Analysis

Dynamic mechanical analysis allows the investigation of both the elastic and the viscoelastic properties. This is particularly useful in the polymer field where I have experience in characterising and understanding the dynamic mechanical behaviour of biomedical polymers at a range of temperatures.

Teaching Summary

My teaching reflects my research interests i.e. linking microstructure and mechanical performance. I convene and lecture a level 3 module "Making Metals Perform". I also supervise final year UG and… read more

Research Summary

My research interests lie in structure/property relationships for high performance materials, focussing on small scale mechanical property testing. At Nottingham I am a member of the Bioengineering… read more

My teaching reflects my research interests i.e. linking microstructure and mechanical performance. I convene and lecture a level 3 module "Making Metals Perform". I also supervise final year UG and MSc projects.

Current Research

My research interests lie in structure/property relationships for high performance materials, focussing on small scale mechanical property testing. At Nottingham I am a member of the Bioengineering Research Gropup. Part of my work is concentrated on medical scaffolds and implants. However I have a strong interest also in interdisciplinary work within the plant sciences, from helping to realistically model root growth to manufacturing green corrision inhibitors from plant material. I am the academic champion for a NanoTester - a state of the art nanoindentation machine with added capabilities for indenting under liquid o at high temperatures. This complements analysis I can carry out using other facilities within the Faculty such as the new dynamic mechanical analysis suite. Much of my work is multi-disciplinary, involving collaboration with other groups and Schools within the University, as well as industry.

Past Research

Growth of diamond thin films.

Polycrystalline diamond for mechanical / tribological purposes.

Microhardness testing of bone.

High temperature indentation creep of single crystal Ge and MgO.

Future Research

Mechanical performance of small samples under extreme conditions using higher temperature nanoindentation.

Elastic, viscoelastic and plastic behaviour of viscous gels and biodegradable polymers.

Sustainability of materials is a growing theme of my research. Newton funding has recently allowed me to start a project looking to produce packaging from shrimp shell.

Faculty of Engineering

The University of Nottingham
University Park
Nottingham, NG7 2RD



Contacts: Please see our 'Contact us' page