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Abstract

This paper models banking panic transmission as an equilibrium phe-
nomenon in a dynamic bayesian setting. There are two banks with cohorts
of Diamond-Dybvig(1983) depositors, who sequentially receive noisy in-
formation of their bank�s idiosyncratic fundamentals. There is a macroe-
conomic fundamental (not publicly observed), to which both banks are
commonly exposed. The features of the banks�investment technology
impose a natural restriction on the coordination possibilities of deposi-
tors of each bank. Given the dynamic bayesian setting of the game, each
depositor must coordinate his actions with depositors of his own bank
(contemporaneous complementarities) as well as with depositors of the
other bank (dynamic complementarities). This affects the way depositors
in both banks respond to informational spillovers. We show that, for the
global games approach to work in this setting and a contagious informa-
tional channel to explain the spread of failures across banks, necessary
restrictions need to be placed on relative complementarities. Doing so
enables us to pin down the perfect bayesian equilibrium of this game as
a unique monotone equilibrium and examine the features of contagious
bank runs. Our results are insightful in that, in addition to being able
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to make probabilistic assessments of the likelihoods of contagious failures
and correlated failures, we can crucially distinguish between the two.

Contagion: 1.a. Disease transmission by direct or indirect contact; b. A
disease that is or may be transmitted by direct or indirect contact; a contagious
disease; c. The direct cause, such as a bacterium or virus, of a communicable
disease; 2. Psychology: The spread of a behaviour pattern, attitude, or emotion
from person to person or group to group through suggestion, propaganda, ru-
mor, or imitation; 3. A harmful, corrupting in! uence: �feared that violence on
television was a contagion affecting young viewers;�4. The tendency to spread
, as of a doctrine, in! uence , or emotional state.�
- American Heritage Dictionary

Quoted from Forbes and Rigobon (2002)

1 Introduction

Financial systems1 play a fourfold-role in the economy (Allen and Gale (2003)):
They channel savings from households and corporate sector to those in need;
they allow for intertemporal smoothing of consumption by households and ex-
penditure by &rms; they enable households and &rms share risks; they allow for
the efficient &nancing of pro&table investment projects. Ever since the special
critique of Fama (1980) about the specialness of banks or &nancial intermediaries
as to their relevance in an Arrow-Debreu setup, a huge body of the literature
has surged, validating the role of banks by stressing on their role in alleviating
different forms of market imperfections (Freixas and Rochet (2002))2. As deal-
ers in non-marketable &nancial contracts of different forms, the nature of a bank
�s activities3 exposes it to panics or runs, which occur mainly when depositors,
fearing that the bank will be unable to meet its contractual obligations, decide
to withdraw their funds from the bank. Bank runs remain an accute issue to-
day. While Europe and the United States have experienced a large number of
bank runs in the 19th century and beginning of the 20th, many emerging mar-
kets have experienced severe episodes of banking crisis in recent years. Latin
America seems to suffer from these episodes once every decade (Chile (1980s),
Argentina (mid 1980s, 2002), Mexico (mid 1980s). Other spectacular accounts of
banking crises include the South East Asian ! u (1997) and the banking distress
that plagued the Eastern European countries (Baltic countries (1992), Bulgaria
(1997)). As Gorton and Winton (2002) note in a recent survey on &nancial in-
termediaries, even countries that have never experienced bank runs strive hard
to pre-empt the likelihood of a banking crisis from developing by adopting tough

1Financial markets and &nancial intermediaries
2 See Freixas and Rochet, Microeconomics of Banking (chapter 2) for more details.
3Here, we have in mind qualitative features such as Asset-Liability maturity and liquid-

ity mismatch, high gearing (low capitalisation), inverse relationship between liquidity and
pro&tability on the asset side.
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lines on regulatory measures, the costs of banking crises in terms of loss output,
dis-intermediation and dismantling of the settlement system, being too high4.

In this paper, we are concerned with a wider issue surrounding bank runs:
the spread of a banking crisis from one bank to another or &nancial contagion5.
As widely documented in the literature, individual bank runs may be severe
enough to warrant the failure of other banks, making otherwise healthy banks
temporarily illiquid and insolvent. The theoretical literature considers a num-
ber of channels that may explain why and how a crisis may spill over to other
institutions. This literature may be divided into two categories: real contagion
models which stress direct channels connecting banks and pure contagion chan-
nels which stress on informational changes, as principal driving cause of multiple
bank collapse.

Real contagion models purport that banks are directly connected and that
contagious runs ! ow through these channels. Banks may be connected through
the interbank market, either through the exchange of interbank deposits or
through the exchange of interbank loans. Alternatively, banks may be connected
to a common macroeconomic fundamental. A nice example can illustrate the
latter example: two banks that accept deposits in one currency and give loans
in a different currency, may be exposed to the risk of exchange rate changes.
A natural conundrum that arises, when we consider the issue of a common
exposure, is the distinction between contagion and correlation. Did bank A fail
because of the failure of bank B or because their performance is commonly driven
by the deterioration of some common fundamental? The theoretical literature is
not clear about this distinction. Nonetheless, the models we review here, ignore
the issue of common exposure.

Allen and Gale (2000) focus on the network architecture connecting banks
as the main driver of &nancial contagion6. Banks cross-hold deposits as insur-
ance against regional liquidity shocks. While the interbank deposits provide
insurance, they also create a pattern of overlapping interbank claims that can
easily propagate a crisis from one bank to another. This is what happens in the

4The optimal level of bank regulation is subject to much debate though! A new &eld in
microeconomic theory of banks is that banking panics are viewed as a natural consequence
of a banking system ful&lling its fourfold allocational roles. Thus, any attempt to deal with
banking crises, will inevitably impinge on the ability of the &nancial system to perform its
four roles efficiently. Whether banking regulation is desirable or not, crucially depends on the
bene&ts of such regulation exceeding the cost of so-doing. Models that stress on this trade-off,
focus on the need to assess the legitimacy of regulation, from a welfare-theoretic point.

5The concept of &nancial contagion described here is a restricted version of a more general
issue surrounding �Systemic Risk�. Here, we are just concerned with banks and there is no
&nancial market. Another way of modelling �Systemic Risk�would be to show the interraction
between a bank and a &nancial market in an incomplete market setup, which leads to excess
price volatility for the asset the bank holds. This may mean that the bank is unable to meet
its contractual arrangements and fails, dragging the &nancial market down with it.

6Another paper that focuses on the network architecture is Freixas, Parigi and Rochet
(2000)
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presence of aggregate liquidity shocks. Allen and Gale (2000) stress that the
particular form of connectedness matters for the occurrence of &nancial conta-
gion. A complete network contains implicit mechanism for checking contagious
! ows whereas an incomplete network is susceptible to ! ow of crisis across the
system.

Dasgupta (2004) considers an identical model to Allen and Gale (2000),
but adopts the global games approach to characterise contagion and examine
its properties. The model does not rely on the presence of aggregate liquidity
shocks as trigger for a banking crisis. Rather, bad fundamentals on the bank�s
asset side are the initiators of a banking crisis, and the existence of an inter-
bank market for deposits, acts as propagator of the crisis across banks. Using
the global games approach has a number of appealling features: Financial con-
tagion occurs as a unique equilibrium phenomenon and there is an equilibrium
in which one bank fails only because the other bank has failed. Furthermore the
probability of contagion arises endogeneously and is positive. This feature bet-
ter places it at characterising the optimal level of interbank deposits, by trading
off the bene&ts of extra regional liquidity insurance with the costs of greater
contagious risk. As a result, the insurance is less than complete. Furthermore,
Dasgupta (2004) results are robust in that the occurrence of contagion does not
rely on network architecture connecting banks. Even under a complete network,
&nancial contagion arises with positive probabiity.

Rochet and Tirole (1996) consider the bene&ts of contagious risks as providers
of incentives for peer monitoring among banks, in a setup involving moral haz-
ard and lack of contractibility between debt holders and bank managers on
manager efforts. The model considers banking regulation as the interraction
between interbank lending and peer monitoring in the interbank market. It fo-
cuses on an optimal regulatory system as being one that can minimise the risks
of contagious risks ex-post, while being able to preserve the incentives for peer
monitoring ex-ante. Banks that have lent to others, should have their survival
tied to the performance of the borrowing banks, and should be closed if the bor-
rowing banks become insolvent/illiquid. Contagion should be allowed in order
to provide incentives for banks to monitor each other ex-ante. This nonetheless
limits the practical relevance of monitoring, since allowing too many banks to
fail, is not a credible policy for a fully committed central bank ex-post.

Models of pure contagion stress on the different uses of information, as pos-
sible channel explaining why a failure may propagate from one bank to another,
even though banks are not directly linked through fundamentals7. The basic
mechanism propagating shocks across banks is the same. Agents are assumed to

7Some papers focus on contagion between unrelated countries, mainly from the vantage
point of wealth effect from the investors. A failure of investment in one country reduces wealth
of investors and forces them to consider optimal portfolio reallocation. This leads to declines
in security prices in other countries and results in contagious effects.

4



be Bayesians and use Bayesian updating to reassess their own bank�s position,
in light of the occurrence of an event in another bank.

Chen (1999) considers the interplay between negative payoff externalities
(due to sequential service constraints) and informational externalities, as criti-
cal in affecting the way depositors use and react to information. In the paper,
uninformed depositors of bank A react to noisy information about bank B�s
performance. Knowing this, the informed agents of the bank A anticipate that,
thanks to the &rst-come-&rst-serve rule enshrined in the demand eposit contract,
it is optimal for them to withdraw as well, rather than having to wait for arrival
of precise information. Thus, contagious runs occur when uninformed deposi-
tors interpret liquidity withdrawal shocks as (pessimistic) informational shocks.
Panics occur in other banks because of the need for depositors to respond early
to noisy information, due to the presence of negative payoff externailities.

Acharya and Yorulmazer (2002) analyse the interraction between contagion
on the liability side of banks and the ex-ante correlation on the asset side of
banks. Contagion occurs ex-post when bad news in a bank raises the cost of
borrowing for depositors in another bank and makes the other bank illiquid.
Correlation arises endogeneously ex-ante, since banks have an incentive to in-
vest in common investment technologies, so as to maximise the likelihood of
joint common survival. The rationale for this ex-ante behaviour is that, for an
individual bank, individual bank failure is costlier than multiple bank failures.
Thus, for banks that are perceived to be linked, their degree of asset correlation
is high as well.

Vaugirard (2005) considers a case of multiple bank attacks in a setup similar
to Chang and Velasco (2000). The storyline is similar to Chen (1999). In his
paper, home depositors are assumed to have an informational advantage over
foreign lenders regarding the liquidation costs of assets. A bank run in one
country leads foreigners to reassess the liquidation yields in that country and in
other countries as well (the likelihood of bank failure increases with the liquida-
tion yield taking a low value.) As a result of the reassessment, banks in another
country becomes illiquid as well and more prone to bank runs. In Vaugirard
(2005), cross country correlation between yields and Bayesian reassessment of
liquidation yields are critical in explaining banking panic spreads.

Our paper is a hybrid of Dasgupta (2004) and informational channels of
contagion. The model is brie! y outlined as follows:

There are two banks in the economy, each of which spans a particular re-
gion of the economy. At t = 0, depositors in both regions invest their endow-
ment in the bank of their region8. These depositors face liquidity shocks of the

8For the sake of simplicity, the rationale for depositors investing speci&cally in the bank
of their region is ignored. We thus rule out arguments of the Hotelling�s or Salop�s type,
which would investigate the reason for depositors to deposit money in a nearby bank to
economise,say, on shoe-leather costs.
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Diamond-Dybvig (1983) type, and can consume early or late. There is no ag-
gregate uncertainty about liquidity shocks in the model. In return for accepting
deposits, banks offer depositors demand deposit contracts, allowing depositors
to withdraw either at t = 1 or t = 2, depending on the realisation of the liquid-
ity shock (which is only known at the beginning of period t = 1). Both banks
invest in the same investment technology at t = 0. The performance of the in-
vestment technology depends on each bank�s idiosyncratic fundamental (e.g the
quality of the bank�s management), a common macroeconomic fundamental to
which both banks are exposed, through some exogeneous correlation structure
(known at beginning of t = 1) and the proportion of depositors withdrawing
early in each bank. There is no correlation between each bank�s idiosyncratic
fundamental.

Each bank�s idiosyncratic fundamental and the common macroeconomic fun-
damental, are not common knowledge, although their probability distributions
are. Depositors in each bank noisily observe their bank�s idiosyncratic funda-
mental, through some private signal structure. Thus, for each depositor of a
given bank, this private information contains strategic information on the be-
haviour of other depositors of the same bank. For the sake of simplicity, we
shall denote this coordination game between depositors, as ΓA,t=1and ΓB,t=1,
for bank A and B respectively. Furthermore, in the spirit of dynamic Bayesian
games, nature picks up at random the &rst movers of the game. We shall
be assuming that depositors in bank A move &rst and depositors in bank B
move second. The latter cohort also observe a noisy public information about
the event in bank A. The precision of the public information is assumed to
vary monotonically with the exogenous correlation structure. For depositors
of a given bank, the public information contains strategic information about
behaviour of depositors of the other bank.

As such, depositors in each bank face two coordination failure problems.
Since the performance of the investment technology of each bank depends,
amongst other factors, on the proportion of depositors withdrawing prema-
turely in each bank, depositors are actually coordinating their decision with
other depositors of the same bank as well as with depositors of the other bank.
That part of the coordination which is with depositors of the same bank is
dubbed contemporaneous strategic complementarities. That part which is with
depositors of the other bank is dubbed dynamic strategic complementarities.
These complementarities mean that the incentive for a depositor to withdraw,
increases with the proportion of depositors in the same bank as well as those
in the other bank, taking the same action. Given a common level of exposure
to the macroeconomic fundamental, the relative importance of contemporane-
ous complementarities v/s dynamic complementarities in depositors�decision
sets may give rise to various theoretical equilibrium possibilities. Crucially, this
tradeoff between different forms of complementarities affect the way depositors
respond to informational spillovers. The reasoning is as follows: In equilibrium,
depositors of the second bank play a best response, after observing their private
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signals about their own bank�s fundamentals and the event in the &rst bank.The
event in the &rst bank actually leads them to update their beliefs about the state
of the common macroeconomic fundamental. Depositors of the &rst bank antic-
ipate that, upon observing their action (which has led to the event in the &rst
bank), those in the second bank will react in the way described above, and will,
in turn, play a best response. The crucial factor that makes the payoffs of de-
positors dependent on the actions of each other within and across banks, is the
investment technology whose returns depend on the actions of depositors in all
banks. The way the investment technology affects the payoffs, is through these
relative complementarities. In turn, relative complementarities affect the way
depositors in the second bank respond to information. Throughout the paper,
we will assume that depositors are bayesians and that the ! ow of information
across banks take the form of bayesian updating of beliefs about the state of
the common macroeconomic fundamental.

Our model differs from those in the theoretical literature in two main ways:

First, all informational contagion models highlighted above, consider a Diamond-
Dybvig (1983) environment, in which multiple equilibria is not precluded. The
presence of multiple equilibria represents a major impediment in the sound
theoretical foundation of a &nancial contagion model. Even though bank funda-
mentals may be sound, depositors�beliefs in one bank may follow a self-ful&lling
nature: actions follow beliefs and, in turn, validate the state of the world postu-
lated by those beliefs. Self-ful&lling beliefs of depositors are equally consistent
with a good outcome ( in which no bank run occurs) and a bad outcome ( in
which it occurs). Bank Runs occur when the completely unpredictable choice
among Pareto-ordered Nash equilibrium falls on the Pareto-dominated (bad)
outcome. However, there is nothing in the model that tells when and why these
runs occur in the &rst instance. There is thus indeterminacy in the model.
This lack of predictability as to which equilibrium will prevail makes it diffi-
cult to study how a bank failure may spread from one bank to another. Put
differently, if a model can predict that, depending on depositors�beliefs, any
outcome of Bank A can be an equilibrium but it remains silent about beliefs,
it is hardly able to predict how the outcome of bank A could affect Bank B.
Similar problems arise in any international &nancial crisis model with a strong
element of self-ful&lling beliefs. The existence of multiple equilibria makes it
very difficult to examine individual bank runs, which compounds the difficulty
involved in isolating contagious effects in a multi-bank setting. Quoting from
Vaugirard (2005), �....indeed the key sticking point when trying to display pure
contagion in models of &nancial crises with multiple equilibria and based solely
on self-ful&lling beliefs, is that the mechanism for jumps between equilibria, is
not articulated. Therefore, these models fail to rigorously capture contagious
effect, in which a crisis in one country (i.e the particular outcome among the
set of possible equilibria) affects the likelihood of a crisis in another country....�
There are two theoretical ways out of the conundrum: (a) identify a particular
channel pinning down the cause-effect relationship, out of the whole set of possi-
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ble multiple outcomes; (b) use global games methodology pioneered by Carlsson
and vanDamme (1993) , and reformulated by Morris and Shin (1998) to a model
of speculative currency attack; Theoretical models of informational contagion,
as highlighted above, use the &rst approach. We use the second approach, in
that it eliminates uncertainty regarding the cause-effect relationship.

Despite the appealling features of the global games paradigm, adopting it in
an informational model is not straightforward. In global games models such as
Dasgupta(2004), each bank has its own investment technology and the perfor-
mance of the investment technology does not depend on performance of other
banks. This simpli&es the analysis in that it rules out the need for depositors to
coordinate across banks. Furthermore, it facilitates the use of the global games
approach in that, it can be adapted to each bank independent of what happens
to other banks. Put in another way, the absence of a game between depositors of
the two banks means that the equilibrium threshold in each bank can be assessed
in a similar way as if only that bank existed. To quote from Dasgupta (2004),
�.....we adopt the global games approach of Goldstein and Pauzner(2003)..... but
we extend it to our more complicated payoff structure...� In our paper, the exis-
tence of a game between depositors within a bank and across banks, complicates
analysis. Given the different possible uses of public information and the dra-
matic impact that such information could have on the balance between strategic
and fundamental uncertainty, a number of unappealling equilibria features may
pop up. We nevetheless show that, by imposing certain restrictions on relative
complementarities for depositors in each bank, we can still adapt the global
games methodology in our setting.

Second, in Dasgupta (2004), the propagator of shocks across banks, is the
balance sheet connection that arises due to interbank cross holdings of deposits.
Absent this connection, &nancial contagion would not arise. This has a major
limitation: empirical evidence on contagious bank failures tend to unearth two
stylized facts9 : Firstly, it is widely documented that contagion sometimes occurs
even among banks that are not tied through explicit &nancial contracts. This
&nding seriously limits the rationale for using interbank market contract as
possible connection among banks and, thereby, lends credence to the validity of
the informational channel. Secondly, a bank failure is more likely to affect banks
that share the same fundamentals as the crisis catalyst bank. Thus, contagion
appears to be �clustered�among identical banks. Our model, by stressing on
the informational channel, helps to explain how a crisis spreads across banks,
even in the absence od some form of connection. Thus, we purport to build a
theoretical model that can, through the global games methodology, allow us to
examine the properties of contagion and, at the same token, satisfy the stylized
facts.

The rest of the paper is organised as follows: Section 2 introduces the model
in details. Section 3 explicates the underlying signal structure. Section 4 ex-

9For detailed explanation of these two facts, please see section 8.
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plains the strategy pro&les. Section 5 applies the global games methodology
and characterises the unique equilibrium. Section 6 describes &nancial conta-
gion and makes the fundamental distinction between contagion and correlation.
Section 7 discusses some practical relevance of our paper and throws some light
on policy recommendations. Section 8 concludes. All graphical analysis used
throughout this paper, can be found in the appendix.
.

2 The Model

The economy is divided into two ex-ante identical regions, A and B. The re-
gional structure can be a spatial metaphor. There are three periods, t = 0, 1, 2.
Each region contains one commercial bank which accepts deposits of money
from consumers and invest the proceedings in different technologies. There is a
continuum of risk-averse consumers, with each consumer i10 of measure 1, such
that i ∈M = [0, 1]i, having strictly concave and monotonic preference functions
that satisfy inada-style conditions, and, being depositors in the bank of their
region. Each agent lives for three periods only and is endowed with one unit
of a homogeneous good at t = 0 and deposits his endowment in the bank of
his region at t = 0. Formally, we model the initial set of endowments for each
agent as a non-empty singleton set $i,such that $i = {1} , with the set of all
endowments being ×i∈M$i ∈ {$ : M → <+} or $i∈M ∈

Z 1

0

$i di,for some

&nite Euclidean Space. We assume that there is no Central Bank and no &nan-
cial markets in the model and that only banks have a comparative advantage
in providing liquidity11.

2.0.1 Returns Stucture and Bank�s Investment Technologies

Each bank i ∈ (A,B) can either invest in a safe-and-liquid technology or in a
risky-and-illiquid technology. One unit deposited at t yields exactly one unit at
t + 1 under the safe-and-liquid technology. Interpret the technology as repre-
senting cash reserves that the banks keep to meet demand for early withdrawals.
The returns structure under the risky-and-illiquid technology is more extricate:
if the investment is liquidated in the interim period to meet, say, the demand for
early withdrawals, it yields a return of r(< 1) - meaning that there are costs to
early liquidation. Conversely, if the investment project is carried out till period

10Throughout this paper, we shall refer to customer/depositor i as being a typical depositor
of bank i.
11 In this sense, we rule out arguments of the Jacklin (1987) type, which compare the risk-

sharing arrangement provided by demand-deposit economies as opposed to that provided by
equity economies. Our purpose in the model is not to look at risk-sharing agreements.
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t = 2, then the returns will be contingent on a number of structural parameters
of the model. As mentioned in section 1.1, the risky investment technology
is common to both banks and the returns to this technology at time t = 2
depends on the idiosyncratic fundamental of each bank, the common macroe-
conomic fundamental and the proportions of early withdrawals from each bank.
In the latter case, the returns can be 0, Rmax,R̃(θi, θ−i,u

j
i , δi, δ−i) . This is nicely

summed up in table 1:

Table 1: Returns Structure of the Risky-and-illiquid Investment
Portfolio for Bank i r < 1 at time t = 1 if investment is liquidated
prematurely

(If investment is carried on till time t = 2)
Rmax if θi > u

j
i +ziδi

0 < R̃(θi, θ−i,u
j
i , δi, δ−i) < Rmax if θi = u

j
i +ziδi

0 if θi < u
j
i +ziδi

Interpretation:
Let j = {G,Bad} denote {Good State, Bad State} and i = {A,B} denote

{Bank A, Bank B} .
(a) We distinguish between two fundamentals that are relevant for our anal-

ysis: bank i�s idiosyncratic fundamental and a macroeconomic fundamental that
is common to both banks. Parameter θi simply denotes bank i�s idiosyncratic
fundamental. We assume that it is drawn randomly from some uniform density
on a unit interval. Each depositor in bank i can only noisily observe θi but the
underlying probability distribution supporting θi is common knowledge to all
depositors. We also make the important assumption that, once a value for θi
is realised at t = 0, it does not change throughout the whole experiment. We
return to a more formal analysis of each bank�s idiosyncratic fundamental in
section 3.1.

(b) Parameter uji ,where {j = {G,Bad} , i = {A,B}} ,represents the state of
some macroeconomic fundamental that affects each bank i ∈ {A,B} . It affects
bank i�s investment returns, but not bank i�s idiosyncratic fundamental, θi. The
two distinguishing features of uji are as follows:

(i) uji represents either a Good (G) or Bad (B) macroeconomic state that
affects bank i. The exact realisation of the state of the common macroeco-
nomic fundamental is not observed by depositors but the (prior) probability
distribution underlying the binary states is common knowledge. For simplicity,
we assume that P (uBadi ) = 1 − P (uGi ) = k, with uBadi > uGi i = {A,B} .
We denote the probability space containing all possible states of the common
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macroeconomic fundamental as ζ . ζ is assumed to follow a Bernoulli dis-
tribution, with ζ ∈ ©i = {A,B}; ∃ k s.t P (uBadi ) = 1− P (uGi ) = k; k ∈ [0, 1]

ª
.

The common macroeconomic fundamental is realised at t = 0 and we assume
that its realisation (which is never observed) remains stationary throughout the
experiment.

(ii) Conditional on the state of the common macroeconomic fundamental,
uji affects each bank i in a similar or dissimilar fashion, with varying strength
of exposure. The strength of exposure is captured by the correlation coefficient
parameter between ujA and u

j
B, Corr( u

j
A, u

j
B),where, conditional on a state i

being realised, −1 ≤ Corr( ujA, u
j
B) ≤ +1. Interpret the correlation space as

follows: As Corr( ujA, u
j
B)→ +1, the greater is the likelihood that both banks

are connected in a similar way and the stronger is their strength of exposure.
Conversely, as Corr( ujA, u

j
B) → −1, the more likely it is that the banks are

connected in a dissimilar way but the stronger is their common exposure. Sim-
ilar interpretations can be sought out for intermediate values of the correlation
coefficient. For the sake of tractability, we shall focus on a truncated part of the
correlation spaceonly - that which is non-negative. Also,interpret Corr( ujA, u

j
B)

henceforth as ρ where 0 ≤ ρ < +1.

(c) Parameter zidenotes the loss caused by early withdrawals of deposits
from the bank. The greater zi is, the greater the disruption caused and the
greater is the likelihood that θi is low relative to {uji + ziδ}. Note that, by
adopting the speci&cation as in Table 1, we are implicitly endogenising the
returns of the risky-and-illiquid project; for extreme values of the idiosyncratic
fundamental θi,the returns to the long asset depend exclusively on the value of
the idiosyncratic fundamental θi.Before moving further, we make the following
structural assumptions about parameter values: [1] uGi > 0, [2] u

Bad
i + zi < 1,

[3] uBadi < uGi + zi, [4] P (u
Bad
i ) = 1 − P (uGi ) = k, [5] P (uBadi ) > P (uGi ) with

uBadi > uGi . Consider the following scenarios:

2.0.2 Dominance Regions and the θi−space

De&ne a �worst case�scenario as one in which the state of the common macroeco-
nomic fundamental is bad (uBi ) and everybody withdraws money from the bank
(δi = 1); if θi is high enough that it exceeds {uBadi + δi}, then table 1 suggests
that the returns to the investment project should be Rmax. This suggests that
even in the worst case scenario, θi is strong enough to be dominant ( i.e deter-
mines long term returns.) In the �best case�scenario (i.e one in which the state
of the common fundamental is good (uGi ) and nobody withdraws, the project
may still fail if the value of θi is so low that it lies below uGi . These case scenar-
ios depict an important result for the returns structure of the risky-and-illiquid
technology: �Regions

©
θi : [θi > u

Bad
i + zi] ∪ [θi < uGi ]

ª ⊂ [0, 1] depict those
segments of the θ − space for which θi is strictly dominant i.e can always ruin
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or save the risky project and become the overriding determinant of the risky
technology. The intermediate region

©
θi : u

G
i ≤ θi ≤ uBadi + zi

ª ⊂ [0, 1] rules
out any possibility of θi dominance and an interraction between different model
parameters will determine the outcome of the project. This is represented by
&gure 2 and by the following de&nitions:

Figure 1: Segregation of the θi−space into Strict and Weak domi-
nance regions12

(Insert Figure 1 here from Appendix )

(In all cases, 0 ≤ θi < 1)

De&nition 1 (Strict Lower Dominance Region (SLDR)) (Fundamental-
Based Bank Failure)

©
θi : min{ [θi < uGi ], [θi < uBadi ]}ª ≡ ©θi : [0 ≤ θi < u

G
i ]
ª

⇒ Region of the θi − space, for which bank i fails with probability 1, no matter
what the state of the common macroeconomic fundamental is. Associated with
the idiosyncratic fundamental being �Too Low To Succeed�.

De&nition 2 (Weak Lower Dominance Region (WLDR))
©
θi : u

G
i ≤ θi < u

Bad
i ]

ª⇒
Region of the θi−space for which, contingent on the state of the common fun-
damental being bad, bank i fails irrespective of the behaviour of its patient de-
positors

De&nition 3 (Strict Upper Dominance Region (SUDR)) (Fundamental-
Based Bank Success)

©
θi : max

©
[θi > u

G
i + zi], [θi > u

Bad
i + zi]

ªª ≡ ©θi : [θi > uBadi + zi]
ª

⇒ Region of the θi − space, for which bank i fails with probability 0, no matter
what the state of the common macroeconomic fundamental is. Associated with
the idiosyncratic fundamental being �Too Large To Fail�.

De&nition 4 (Weak Upper Dominance Region (WUDR))
©
θi : u

G
i + zi ≤ θi < u

Bad
i + zi]

ª⇒
Region of the θi−space for which, contingent on the occurence of state of the
common fundamental being good, bank i succeeds, irrespective of the behaviour
of its patient depositors.

All four regions put powerful assumptions on the role of θi as a driver of
bank i�s performance. The only difference lies in the interpretation. For SLDR
and SUDR, the macroeconomic state variable does not matter. For SLDR (re-
spectively SUDR), θi is so low (respectively high) that the bank is guaranteed to

12Different papers in the literature have emphasised this tripartite classi&cation. See for
example, Morris and Shin (1998), Goldstein and Pauzner (2002), Dasgupta (2003), Boon-
prakaikawe and Ghosal (2000)
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fail (respectively to succeed). On the other hand side, with WLDR and WUDR,
the state of the common fundamental does matter. For example, suppose that
the state of the common fundamental is bad. Any θi ∈

£
uGi , u

Bad
i

¤
would be

classi&ed as part of the �lower dominance region�. If the state of the fundamen-
tal was good, θi ∈

£
uGi , u

Bad
i

¤
would be part of the segment of θi , for which

the bank�s behaviour would depend on the behaviour of patient depositors. On
the other hand side, any θi ∈

£
0, uGi

¤
would be classi&ed as part of the �lower

dominance region�, irrespective of the state of the common fundamental. Thus,
θi ∈

£
0, uGi

¤
is strictly lower dominant, because it does not depend on the state

of the common fundamental. A similar analysis can explain the rationale for
WUDR and SUDR.

Given assumptions [1] − [5] above, we summarise the following features of
R̃(θi, θ−i,u

j
i , δi, δ−i) for any bank i: [a] ∀θi < uGi , R̃(θi, θ−i,u

j
i , δi, δ−i) = 0, [b]

∀θi > uBi + zi, R̃(θi, θ−i,u
j
i , δi, δ−i) = Rmax, [c] ∀θi s.t

n
uji ≤ θi ≤ uji + zi

o
,

R̃(θi, θ−i,u
j
i , δi, δ−i)has the following properties: [c.1]

∂R̃(θi,θ−i,uji ,δi,δ−i)
∂uji

< 0 ,

[c.2]
∂R̃(θi,θ−i,u

j
i ,δi,δ−i)

∂θi
> 0 for a given j, [c.3]∂R̃(θi,θ−i,u

j
i ,δi,δ−i)

∂zi
< 0 for a given

state j, [c.4]∂R̃(θi,θ−i,u
j
i ,δi,δ−i)

∂δi
> 0; furthermore, for a given state j, as δi →

0, R̃(θi, θ−i,u
j
i , δi, δ−i)→ 0 iff θi → uji ; as δi → 1, R̃(θi, θ−i,u

j
i , δi, δ−i)→ Rmax

iff θi → uji + zi . The assumption that
∂R̃(θi,θ−i,u

j
i ,δi,δ−i)

∂uji
< 0 presents some

slight abuse of notation - what it is saying is that, for some bank i, moving from
a good state (uGi ) to a bad one (u

B
i ) will lower returns. The assumption that

∂R̃(θi,θ−i,u
j
i ,δi,δ−i)

∂zi
< 0 tells us that, for some bank i and given some speci&c

state j, R̃(θi, θ−i,u
j
i , δi, δ−i) will rotate downwards with a change in zi

13 . As-

sumptions ∂R̃(θi,θ−i,u
j
i ,δi,δ−i)

∂θi
> 0 and ∂R̃(θi,θ−i,u

j
i ,δi,δ−i)

∂δi
> 0 are intuitive and

hold true for some bank i and given some speci&c state j. Figure 2 shows the
relationship between the returns structure of bank i�s risky technology, bank i�s
idiosyncratic fundamental and the common macroeconomic fundamental.

Figure 2: the relationship between idiosyncratic fundamental, com-
mon macroeconomic fundamental and (risky) returns technology for
a typical bank

(Insert Figure 2 here from Appendix )

13Again, there is some slight abuse here: we present it this way for notational simplicity.
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2.1 Payoff structure to depositors in each bank

In return for investing depositors�money in different investment technologies,
each bank offers demand deposit contracts14 to depositors. These deposit con-
tracts simply convert deposits into cash at par on demand in period 1, con-
ditional on there being sufficient cash available in the reserves. If there is no
sufficient cash available, the bank is compelled to liquidate its risky asset pre-
maturely and to divide the proceeds of the liquidated asset equally among those
who have chosen to withdraw early15 . For those who remain, the bank pays
a stochastic amount which is dependent on the structural parameters of the
returns structure.

As in all models of bank runs, we assume that depositors in each bank i face
�Liquidity Preference Shocks�i.e each of the depositors can consume early ( i.e
at t = 1) with probability λ and late( i.e at t = 2) with probability 1−λ. There
is a privately observed uninsurable risk of being patient or impatient, with there
being no aggregate liquidity uncertainty in the economy. The probability dis-
tribution of liquidity preference shocks is assumed to be common knowledge.
Ex-ante, each depositor has an equal and independent chance of being of impa-
tient type. It is only at t = 1 that depositors learn their type.

While depositors face uncertainty ex-ante about their liquidity needs, banks
do not face such uncertainty. The liquidity needs for depositors are mutualised,
so that, by the law of large numbers, the banks can reasonably expect a fraction
λ of depositors to withdraw early and a fraction 1 − λ to withdraw late. Due
to absence of uncertainty about the proportion of early withdrawals, each bank
can earmark a fraction λ to its liquid asset and a fraction 1 − λ to its illiquid
asset.

We are now well equipped to characterise the payoff structure of depositors
in bank i. Since each bank is otherwise identical, the design of the payoff
structure to depositors applies equally to depositors of each bank. For notational
simplicity, we shall be assuming that we are dealing with the general case of bank
i, with no speci&c reference as to which region it belongs to.

Following the previous discussion, a proportion λ of depositors in bank i is
impatient. Suppose that a proportion δi of the remaining patient depositors
want to withdraw at t = 1. The total demand for liquidity that bank i faces is
thus {λ+ δi(1− λ)} .Where does the bank draw its supply of liquidity to meet
high early demand? It has λ in the liquid technology. It may also draw upon
its illiquid technology and use the resulting proceeds to meet high demand for
early withdrawals. The total supply of liquidity is thus {λ+ r(1− λ)} . If the
14We are simply taking the contracts as given in our paper.
15 Since there is no &nancial market in the setup ( and no interbank market), the price at

which the risky asset trades, is determined exogenously.
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total demand for early withdrawals exceed the available pool of assets that the
bank can make available, then the bank is technically bankrupt at t = 1. This
helps us characterise the bankruptcy threshold of the bank.

De&nition 5 (Bankruptcy Threshold) The threshold that separates the Bankruptcy
Condition (BC) from the No-Bankruptcy Condition (NBC). Bank i stops being a
going-concern at t = 1 if and only if {λ+ δi(1− λ)} > {λ+ r(1− λ)} i.e if δi >
r and carries on operations if δi ≤ r.
The importance of the bankruptcy threshold is that it determines the �al-

location rule�for depositors at t = 1 and t = 2. Suppose that δi > r (i.e
Bankruptcy condition). Depositors who choose to withdraw early appropri-
ate the whole proceeds that the bank can generate at t = 1. Each deposi-
tor gets an amount λ+r(1−λ)

λ+δi(1−λ) ,with utility U
h
λ+r(1−λ)
λ+δi(1−λ)

i
. Since δi > r, clearly,

λ+r(1−λ)
λ+δi(1−λ) < 1. Utility functions, being an increasing function of payoffs, this

implies U
h
λ+r(1−λ)
λ+δi(1−λ)

i
> U(1). The depositor is worse off than when he received

his full endowment back. Those patient depositors who do not choose to imitate
the impatient ones and who have chosen to withdraw at t = 2, get a payoff of
zero, with utility U(0).
Suppose now that δi < r (i.e No-Bankruptcy condition). The whole mea-

sure of depositors who claim early withdrawals get their whole endowment back,
with utility U(1). With this condition, to satisfy the demand for early with-
drawals, the proportion of illiquid assets that has to be liquidated is δi(1−λ)

r .
The leftover of illiquid assets that is carried on till t = 2 to &nance the with-
drawals of patient depositors is thus:

n
(1− λ)− δi(1−λ)

r

o
R̃(θi, θ−i,u

j
i , δi, δ−i).

Each of the patient depositors shares this leftover, appropriated by the exact
proportion of depositors who are claiming this leftover. Each depositor thus gets∙n

(1−λ)− δi(1−λ)
r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
,with utility U

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i)

(1−λ)(1−δi)

¸
.

To summarise, the payoff structure for each depositor i16 takes the form of
a mapping : Ui : {} ×A→ < where

• For impatient depositors and the proportion of depositors who choose to
withdraw early:

U(θi, δi, t = 1) =

(
U(1) δi ≤ r
U
h
λ+r(1−λ)
λ+δi(1−λ)

i
δi > r

)
(1)

• For the proportion of patient depositors who withdraw late:
16By depositor i, we mean a typical depositor of bank i. Ostensibly, put aside liquidity risk,

all depositors are otherwise homogeneous.
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U(θi, δi, t = 2) =

⎧⎨⎩ U

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

¸
δi ≤ r

U(0) δi > r

⎫⎬⎭
(2)

Table 2 summarises the relationship between the net payoff to staying for
depositor i as a function of the Bankruptcy and the No-Bankruptcy Threshold:

No-Bankruptcy Condition(NBC) Bankruptcy Condition(B
δi ≤ r δi > r

Payoff to Staying Ui

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
Ui(0)

Payoff to Withdrawing Ui(1) Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i
Net Payoff to Staying Ui

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
− Ui(1) Ui(0)− Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i

2.2 Structural Parameter Restrictions and qualitative fea-
tures of the Payoff Structure

(A.1) (Liquidity and Pro&tability) Given that the deposit contract is taken
as given in our set-up, there is a circularity between liquidity and pro&tability
of bank i: bank i is insolvent if and only if it is illiquid; it is illiquid if and only
if depositors expect it to be insolvent.

(A.2)Under theBankruptcy-Condition (BC) with δi > r, Ui
h
λ+r(1−λ)
λ+δi(1−λ)

i
>

Ui(0), i ∈ [0, 1]. This result holds sway because of the feature that 0 ≤ λ+r(1−λ)
λ+δi(1−λ) ≤

1. The net payoff to staying as opposed to withdrawing is therefore negative in
the BC threshold.
(A.3) Under the No-Bankruptcy-Condition (NBC) with δi ≤ r, the

relationship between Ui

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

¸
and Ui(1), i ∈ [0, 1],

depends on the location of δi in the NBC segment. More precisely, there exists

a δ#

⎛⎝equal to r

µ∼
R−1

¶
∼
R−r

⎞⎠ , at which Ui ∙n(1−λ)− δi(1−λ)
r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

¸
=

Ui(1). For 0 ≤ δ <
r

µ∼
R−1

¶
∼
R−r

, Ui

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
> Ui(1).

Thus, it is strictly preferable to stay. For
r

µ∼
R−1

¶
∼
R−r

≤ δ < 1, Ui

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
<
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Ui(1). Here, it is strictly preferable to withdraw17. The relationship between
the payoff to staying and payoff to withdrawing, can be shown as follows, in
&gure 4:

Figure 3: Depositor Payoff Structure: Payoff to staying v/s Payoff
to withdrawing

(Insert Figure 3 here from Appendix)

2.3 Taxonomy of the Dynamic Bayesian Game

Armed with the conceptual pillars we have developed in the previous section
and subsections, we are now ready to provide an illuminating synopsis of the
sequential game that is being played between depositors of the 2 banks. Some
additional assumptions are follow the discussion.

An important part of the sequential game with incomplete information is
who determines the &rst-mover of the game Since both banks are otherwise
completely identical to each other ans each stage payoffs are stationary, it makes
no difference as to which bank shall move &rst. In line with good economic
theory and not to abuse the literature of sequential move games with incomplete
information, we shall be assuming that nature chooses at random and, with
equal probability, the &rst mover of the game. This probability distribution
is common knowledge and the structure of th dynamic game is also common
knowledge. Lets assume that depositors in bank A are chosen to act &rst18 .

17Here is the proof: Since U [.] is concave and strictly increasing,

condition Ui

" n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

#
= Ui(1) implies that

n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi) = 1. Making δi subject of formula, will lead to

the following: δ# =
r

µ∼
R−1

¶
∼
R−r

. Since Ui

" n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

#
is decreasing

in δi, it follows that for δi < δ#, Ui

" n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

#
> Ui(1). A

similar analysis will show that Ui

" n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,uji ,δi,δ−i))

(1−λ)(1−δi)

#
< Ui(1) if δi > δ#

18Given the features of the payoff structure of each bank and the assumption of complete
homogeneity, it does not matter which cohort of depositors move &rst. For ease of exposition,
we simple label the &rst-mover bank as bank A and the second-mover bank as bank B. Issues
like �First-Mover Advantages�are not present in our set-up. They could be present, though, in
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The stage game that represents this is ΓA,t=1. Then depositors of bank B are
chosen to act in ΓB,t=1. Note that although each stage game is represented by
time 1, they actually take place at different points in time 1.

Table 3 - The Dynamic Bayesian Game

· Period 0
- Consumer i, ∀i ∈ [0, 1]i, invests in the bank of his region
- The Bank invests each unit of endowment, $i,in either a safe or risky-and-

illiquid technology
- Realisations of θi or u

j
i , i = {A,B} , j = {G,B} , occur. These fundamen-

tals are randonly drawn from commonly observed probability distributions but
the actual realisations are not observed. Also, these variables are stationary
throughout the experiment.
- Which group of depositors will be called upon to act &rst becomes publicly

known (say, Bank A)
· Period 1
- Impatient depositors have a dominant strategy of withdrawing early
- (ΓA,1) Patient depositor i , ∀i ∈ [0, 1]A,receives information about his

bank�s idiosyncratic fundamental, θA, in the form of private signals
- Those patient depositors who demand early payment are paid, contingent

on there being sufficient cash available to meet withdrawals demands.
- The event in bank A becomes Public Knowledge and is commonly observed

by depositors of bank B with some noise
- (ΓB,1) Patient depositor i of bank B, ∀i ∈ [0, 1]B, receives his private signal

about bank B�s idiosyncratic fundamental, θB. In addition, they noisily observe
an endogeneously derived Public Signal, encapsulating events in bank A
- Those patient depositors who demand early payment are paid, contingent

on there being sufficient cash available to meet withdrawals demands.
·Period 2

-Investment technology returns are realised
- Depositors who chose to stay rather than withdraw in bank i, i ∈ [A,B],

get their due back.

where ΓA,t=1 and ΓB,t=1 denote two coordination games that are also known

as �Games of Regime Change�19. Because we do not focus on how changes in
θi and u

j
i affect dynamic equilibria, we take their (unobserved) realisations as

being static throughout the experiment. This enables us focus on how, given the
private informational structure for depositors in each bank, the ! ow of Public

models in which the banks are directly connected to each other through the interbank market
( in deposits or loans). In this case, regional liquidity shocks would mean that one bank is a
debtor and the other bank is a creditor at a given period of time. See Dasgupta (2003) for
more.
19Angeletos, Hellwig, Pavan (2003)
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Information by itself can affect dynamics of coordination at each stage game,
Γi,t=1 and spread a &nancial crisis contagiously from one bank to another.

Assumptions (contd):
(A.4) (No �direct-link�&nancial contracts acting as intertemporal

linkages) Since each bank is homogeneous and faces the same operating envi-
ronment ex-ante with the same structural features, the only variable that links
the payoffs for each stage game is the common macroeconomic fundamental.
De&ne a stage game as Γi,t , where Γi,t represents a (coordination) game among
depositors of bank i , with i ∈ [A,B],at time t, with t ∈ [t1, t2]20 . We abstract
from any other form of (direct) intertemporal linkages in the payoff structure
of banks. In a richer model with regional liquidity shocks and the existence of
some sort of contingency plan provided by the interbank market ( in deposits
or in loans), there would have been this sort of intertemporal link in the payoff
structure. By assuming that payoffs in Γi,t are only tied by some perception
of the common fundamental and, by removing any overlapping network of &-
nancial contracts that would have connected the banks, we can focus on how
the dynamics of (public)information ! ow affect the dynamics of coordination in
each bank21.

(A.5) (Intertemporal Payoff Dependence) Whilst the computation of
the payoff has been derived from bank i�s balance sheet, it follows that there does
exist �indirect�linkages through depositors�payoff functions, due to (A.4). Each
depositor in bank i, conditional on δi ≤ r, has a payoff to staying, depicted as
U

∙n
(1−λ)− δi(1−λ)

r

o
R̃(θi,θ−i,u

j
i ,δi,δ−i))

(1−λ)(1−δi)

¸
. Following on from the earlier discussion

on returns to the risky technology, it follows that R̃(θi, θ−i,u
j
i , δi, δ−i) depends,

among other factors, on both, δi and δ−i. Subsequently, it becomes obvious that
(1) any action that a depositor in bank i takes, will affect, not only, other depos-
itors in the same bank but also depositors in the other bank; (2) any action that
depositors in the other bank take, even though it may be taken at a different
point of time, will affect the payoff of depositors in bank i. The rationale for this
intertemporal payoff dependence is the existence of a common risky technology
for both banks and the returns of that technology, being contingent on param-
eters affecting both banks. We shall see the implication of this intertemporal
payoff dependence for the Perfect Bayesian Equilibrium later on. This form of

dependence both, within and across different banks, has a twin implication for
payoff supermodularities: this is subsumed in (A.6) and (A.7):
(A.6)(Contemporaneous Strategic Complementarities/Supermodularities

in Γi,t=1) There exists (partial) supermodularities in the payoffs of depositors

20The reason why we focus on times 1 and 2 will become clear in the following section when
we give an expositional view of the whole dynamic bayesian game between depositors of the
two banks
21Angeletos, Hellwig and Pavan (2004) use the same approach but their model is not con-

&ned to the speci&city of the banking sector.
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of bank i. Consider table 2: if the banruptcy constraint is not violated (i.e
δi ≤ r),the incentive for each depositor i in Γi,t=1, ∀i ∈ [0, 1]i to withdraw in-
creases as more and more depositors withdraw. This NBC threshold is hence
characterised by supermodularities in payoffs - actions of depositors are �strate-
gic complements�. On the other hand side, if the bankruptcy constraint is
violated and the bank is insolvent (i.e δi > r),the incentive for depositor i in
Γi,t, ∀i ∈ [0, 1]i, to withdraw decreases as more and more depositors withdraw.
Actions of depositors are thus �strategic substitutes�in the BC threshold.22

(A.7) (Dynamic Strategic Complementarities between ΓA,t=1 and
ΓB,t=1)

Coming soon

3 Informational structure

3.1 Private Signal structure

As mentioned before, we assume that depositors cannot observe the idiosyn-
cratic fundamental of their bank and do not observe the actual realisation of
the common macroeconomic fundamental. While impatient depositors have a
dominant strategy of withdrawing in period t = 1, patient depositors are con-
fronted to a non-trivial problem: They face a coordination problem in period
t = 1 as regards their decision of whether to stay or withdraw. Their decision is
motivated by their informational endowment at the time of acting. We model
formally the action space available to depositors as follows: for each patient
depositor i, ai ∈ Ai = {W,S} , ∀i ∈ [0, 1]i , Ai ∈ A and A = ×i∈[0,1]iAi.

Each patient depositor i noisily observes the idiosyncratic fundamental of his
bank, θi. A depositor�s private signal can be viewed as his private heterogeneous
information available to him regarding his opinion about the long term viability
of the bank�s investment project. Each agent i receives a (bounded) signal
si ∈ S = [sL, sU ] ⊂ <, where sL denotes the lower bound of the signal space
and sU denotes the upper bound. Formally, let ξ denote the set of all �lower
bound� θ, where ξ =

©
uG, uB

ª ⊂ [0, 1]. Since uB > uG, the greatest lower

22 In the NBC threshold for Γi,t, as more and more depositors withdraw ( i.e as δi rises),
depositor i has a clear incentive to withdraw as well because if δi is growing sufficiently high
that it exceeds r, then the depositor reasons that he will get only λ+r(1−λ)

λ+δi(1−λ) if he stays as

opposed to 1 if he withdraws. Since λ+r(1−λ)
λ+δi(1−λ) < 1 when the BC holds, it is in depositor i�s

interest to imitate other depositors. Thus actions are strategic complements only in the BC
space.
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bound is the realisation of θ that corresponds to state uG. Let sL denote the
signal that relates to that state. Similarly, we de&ne ξ0 as the set of �upper
bound� θ, where ξ0 = ©

uG + z, uB + z
ª ⊂ [0, 1]. Since uB + z > uG + z,

the greatest upper bound is the realisation of θ relating to uB + z. We let sU
denote the signal that corresponds to that value of θ. Thus, formally, we could
represent sL and sU as: sL ≡ inf{s : Pr ob(θ < θL | s) < 1} where θL = uGand
sU ≡ inf{s : Pr ob(θ < θU | s) > 0} where θU = uB + z . The point behind
such formalisation is that it enables us highlight, which segment of θ−space the
behaviour of depositors can be anticipated for sure, irrespective of the realisation
of the common macroeconomic fundamental. Each agent�s signal si is assumed
to be independent and identically distributed, conditional on θi. We assume
that, for each depositor i, si is his type and is distributed according to some
continuous density function f(.) which satis&es the Monotone Likelihood Ratio
Property (MLRP). In particular, for ease of illustration, assume that, following
the uniform distribution of θi on [0, 1], there exists a threshold θ

∗ such that (θ∗, 1]
constitutes the upper segment of the idiosyncratic fundamental space and [0, θ∗)
constitutes the lower segment. For any θH ∈ (θ∗, 1] and θL ∈ [0, θ∗), the private
signal structure satis&es the property that f(si|θH)

f(si|θL) is strictly increasing in si.

Since si has bounded support, then the Monotone Likelihood Ratio
f(si|θH)
f(si|θL) is

also bounded23. To keep the analysis simple bearing in mind the above features,
we shall model the relationship between si and θi as follows:

si = θi + εi (3)

where εi denotes the noise technology. We assume that the noise technology
is common knowledge and is uniformly distributed on a closed interval [−ε,+ε].
Each εi is independent of θ and εm, ∀m 6= i. The existence of a bounded sup-
port for the distributions of θi and εi means that the lower and upper bounds
for the private signal are respectively: [uG − ε, uB + z + ε] 24. There ex-
ists a tripartite classi&cation of the s − space ( i.e the signal space) such that
s ∈ {s : suntable ∪ smod erate ∪ sstable} where suntable =

©
s : 0 < s < uG − ε

ª
,

smod erate = {s : uG − ε ≤ s ≤ uB + z + ε}, sstable =
©
uB + z + ε < s < 1

ª
.

The interpretation of that tripartite classi&cation is self-explanatory: suntable =©
s : 0 < s < uG − ε

ª
denotes the (unstable) region in which the depositors al-

ways withdraw, no matter what; sstable =
©
uB + z + ε < s < 1

ª
denotes the

(stable) region in which the depositors always stays. smod erate = {s : uG − ε ≤
s ≤ uB + z + ε} denotes the middle ground, at which the bank is sound but
23For proof, see Dasgupta(2000) �Social Learning with Payoff Complementarities�
24The Lower,Upper and Middle bounds on the Private Signal structure can be traced directly

from our earlier discussion on �best case�and �worst case�scenarios for depicting limits on the
idiosyncratic fundamental space (see section 1.1, pp )
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is vulnerable to a large attack that triggers a regime change. We make the
following remarks25 about the choice of s in the signal range:

Remark 6 (No-Dominance signal segment) Attention will be restricted
to the segment of the signal space in which there is strategic interraction (i.e
Dominance is ruled out.) This means that s lies in interval [sL,sU ] , where
sL ≡ inf{s : Pr ob(θ < θL | s) < 1} and sU ≡ inf{s : Pr ob(θ < θU | s) > 0}.
The arguments for ruling out dominance were enunciated in section 2.1.2

Remark 7 (Uniformity of prior and posterior distribution)While the
prior distribution of the idiosyncratic fundamental is common knowledge and
follows the uniform distribution law, the posterior distribution of the idiosyn-
cratic fundamental, through certain restrictions on the degree of precision of
the signals, will also follow the uniform districution law. The necessary and
sufficient condition for that restriction on the noise structure is: 2ε ≤ uG.

Proof. It only suffices to impose sufficient structure on the noise technology
in order to be assured of uniformity in the prior and posterior estimates of the
idiosyncratic fundamental. We know that the error technology is uniformly
distributed on [−ε,+ε], with density rate 1

2ε . In order to guarantee that the
posterior distribution of θi, conditional on observing the private signal si, is
uniform, we need to ensure that the support of θi, conditional on si, namely£
uG − ε, uB + z + ε

¤
, lies exactly within [0, 1] .

(1) Restriction
£
uG − ε

¤ ≥ 0 implies that ε ≤ uG. Furthermore, the assump-
tion that si > sL is implied by setting si > inf{s : Pr ob(θ < θL | s) < 1}. Also,
we require that min [si − ε, si + ε] ≥ 0. Thus, we are left with a restriction that
ε ≤ si. However, si > inf{si : Pr ob(θ < θL | si) < 1} ⇔ si ≥ uG − ε. The fact
that ε ≤ si ⇒ ε ≤ uG − ε. Thus, 2ε ≤ uG.
(2) Restriction

£
uB + z + ε

¤ ≤ 1 implies [si + ε] ≤ 1 ( ⇒ ε ≤ 1 − si).
Furthermore, the assumption that si < sU is implied by setting sU ≡ inf{si :
Pr ob(θ < θU | si) > 0}. However, sU ≡ inf{si : Pr ob(θ < θU | si) > 0} ⇔
si ≤ uB + z + ε. Since ε ≤ 1 − si, we can rewrite the whole expression as
ε ≤ 1− ¡uB + z + ε

¢⇒ 2ε ≤ 1− uB − z.
Thus, restriction

£
uG − ε

¤ ≥ 0 and restriction £uB + z + ε
¤ ≤ 1 imply that

2ε ≤ min[uG, 1− uB − z]. By assumptions [1] , [2] and [3] on Pp5 (section 2.11),
we know that 0 ≤ uG < uB + z ≤ 1, implying that uG < 1 − uB − z. Thus,
restriction 2ε < uG is a necessary and sufficient condition for the uniform law
to be applicable to posterior distribution
It is important to note that, in our framework, it is impossible for depositors

of bank i to meet, share their information and learn the true value of θi through
the Law of Large Numbers(LLN).

25These follow from Morris and Shin (1998). We adapt them in the context of our model
here
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3.2 Public Information Structure

For patient depositors acting in ΓB,t=1, in addition to their private signal sB
about their bank�s idiosyncratic fundamental θB, they observe a (non-empty) set
of (historical) events that took place in ΓA,t=1. Let ΩA be the space of events in
bank A. ΩA comprises a (non-empty)set of k events, where k = {1, .........., n},
with each event denoted as Φk , Φk ∈ {Φ1, .................,Φn} = ΩA. We as-
sume that the folllowing properties hold: P (∪nk=1Φk) = 1 and P (∩nk=1Φk) = 0
i.e the events are mutually exclusive and collectively exhaustive. In our set-
ting, the events spanning ΓA,t=1 can be either a Success (SA) or Failure (FA).
Thus, k = 2 and ΩA = {Φ1,Φ2}, with Φ1 = SA and Φ2 = FA.The event
ΩA = {SA, FA} ≡ {Success of Bank A,Failure of Bank A} is commonly
observed by all depositors who act in ΓB,t=1, and forms part of their informa-
tional endowment. Upon observing ΩA = {SA, FA}, depositors in ΓB,t=1 will
form a re-assessement of the probability distribution of the state of the com-
mon macroeconomic fundamental.In addition to their private signal about their
bank�s idiosyncratic fundamental, depositors in ΓB,t=1 (i.e the second-mover
bank) have a public signal as part of their informational endowment, when it is
their turn to act in ΓB,t=1 : the event that takes place in bank A, as a result of
ΓA,t=1. We formally model the public signal as follows:

(1) It is endogeneously derived. In particular, which event, SA or FA, in
ΩA occurs is not selected at random, but rather, is the result of solving the
model and characterising the Perfect Bayesian Equilibrium (PBE) of the dy-
namic game. We return to this characteristic more thoroughly in the next
section when we de&ne strategies for depositors in ΓA,t=1 and ΓB,t=1and dis-
cuss the properties of the PBE. The endogeneously derived Public Signal can
be used by depositors in ΓB,t=1in two main ways: (a) It can be used to update

beliefs about the state of the common macroeconomic fundamental (Bayesian
Updating role); (b) It can act as a coordinating device among depositors in
ΓB,t=1. We shall later show that the speci&c use of the Public Signal will be
vital in determining the nature of the equilibrium of the dynamic game.
(2)All depositors in ΓB,t=1observe the public signal independently of each

other. The public signal is identical for all depositors in bank B and confers
the same qualitative information about the event that took place in bank A.
Furthermore, all depositors in ΓB,t=1 are assumed to observe the public event
ΩA = {SA, FA} with some noise. The precision of the Public Signal varies
monotonically with the strength of correlation. More formally, if 0 ≤ Corr(
uiA, u

i
B) ≡ ρ ≤ +1 denote the strength of common exposure in the truncated cor-

relation space, then the precision of the Public Signal takes the form, z [ΩA (ρ)] .
The precision of the Public Signal varies as thus: As ρ → 0, z [ΩA (ρ)] → 0;
as ρ → +1, z [ΩA (ρ)] → ΩA. In other words, as correlation tends to 0, the
precision of the public signal shrinks to 0 ( i.e becomes totally uninformative).
As ρ → 1, z [ΩA (ρ)] → ΩA (meaning fulkl revelation of the event ΩA).In the
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extreme case when it is equal to 0, depositors in ΓB,t=1 do not observe the event
in ΓA,t=1 at all.

(3)The event space, ΩA = {SA, FA}, is a sufficient statistic for the actions of
depositors in ΓA,t=1. Since events in bank A are triggered essentially as a coor-
dinated response by depositors who act in ΓA,t=1, they are perfectly informative
of the (coordinated) actions of depositors in ΓA,t=1. Hence events perfectly com-
municate (coordinated) actions in our set-up. If bank A fails (FA is observed),
then it is clear to successors that all patient depositors in ΓA,t=1had chosen
to withdraw (W ) early rather than Stay (S). There thus exists a one-to-one
mapping from the space characterising the predecessors�event to action space of
predecessors.

(4)Even though events perfectly communicate actions of predecessors, they
do not tell anything about what caused such actions. Did bank A fail because
of low realisations of its idiosyncratic fundamental, θA,or because the state of
the common macroeconomic fundamental was bad? Depositors of bank B are
thus presented with a statistical inference problem at hand.

(5)Before taking an action, all depositors in ΓB,t=1update their beliefs in
the same way. We assume that all depositors in our model are Bayesians (or at
least, can perform some Bayesian Statistical Modelling) and can update their
beliefs about the state of the common macroeconomic fundamental in the same
way.

Subsequently, the private signals for each depositor in ΓA,t=1 and ΓB,t=1,characterise
the incompleteness of information within each coordination game, ΓA,t=1 and
ΓB,t=1 respectively. Beliefs that each depositor in Γi,t=1, i = {A,B} ,has about
his peers in Γi,t=1,are driven essentially by his private signal. The noisy public
signal characterises the incompleteness of information across the two coordina-
tion games, ΓA,t=1 and ΓB,t=1 respectively. It drives the beliefs of each depos-
itor in ΓA,t=1(respectively, ΓB,t=1) has on what others in ΓB,t=1(respectively,
ΓA,t=1) will do (respectively, have done). Thus, it is safe to say that there are
two parts to the dynamic game between ΓA,t=1 and ΓB,t=1 : (1) two static coun-
terparts with coordination and beliefs (about idiosyncratic fundamental) being
driven by depositors�private signals and (2) a dynamic counterpart with beliefs
(about common macroeconomic fundamental) being driven by the noisy public
signal. With assumptions (A.6) and (A.7) in mind, we can refer to Contempo-
raneous Strategic Complementarities, as characterising each static coordination
game ΓA,t=1 and ΓB,t=1, and Dynamic Strategic Complementarities, as charac-
terising the dynamic game between ΓA,t=1 and ΓB,t=1. The interraction between
Contemporaneous Strategic Complementarities and Dynamic Strategic Comple-
mentarities will determine the precise outcome of the game. We shall allow this
outcome to be a function of a varying exogeneous correlation structure at the
background.
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4 Informational endowments: Private Signals and
Dynamic Equilibrium characterisation

We start this sub-section with a proposition by modelling the strategy pro&les in
the coordination games, ΓA,t=1and ΓB,t=1. Here, we assume that depositor i in
ΓB,t=1 does not ignore any public signal26 that is available when he moves and
we obtain the unique characterisation of the equilibrium in Γi,t=1, i = {A,B}.
We proceed as follows: &rst, we represent the strategies available to depositors in
the monotone/switching form; the payoff structure for the �marginal depositor�
in each bank is then derived. The Perfect Bayesian Equilibrium (PBE) is then
de&ned and formally related to our model. One interesting result is that the
PBE satis&es the monotone equilibrium. That simpli&es the analysis greatly
and enables us to focus on monotone/switching equilibrium throughout. We
shall later show, how, by varying the informational assumptions, the concept
of a Perfect Bayesian Equilibrium as de&ned in this section, will change the
nature of equilibrium and we may get unique equilibrium, multiple equilibria
and Herding outcomes, depending on how strongly both banks are perceived to
be connected to the common macroeconomic fundamental.

4.1 Strategy Pro&les

.
In this section, we will characterise the strategy pro&les of depositors in

banks A and B. First-mover depositors ( i.e depositors in bank A ) do not ob-
serve a history of past events, when they are called upon (randomly by nature)
to move in ΓA,t=1. Their informational endowment when they act in ΓA,t=1,thus
consists of their private signal (which denotes their type), the common (prior)
probability distribution of the state of the macroeconomic fundamental and the
history set depicting the set of action pro&les by predecessors, which in this
case, is equal to the null set. Formally, let ΘAi,t=1denote the informational en-
dowment of a patient depositor i in bank A at ΓA,t=1. Then, conditional on
ΓA,t=1, Θ

A
i,t=1 = {sA, ζ, HΓA,t=1} where sA denotes the private signal of the

depositor about θA (with all the associated features of the private signal as dis-
cussed before), ζ ∈ ©∀i ∈ {A,B} ;∃ k s.t P (uBi ) = 1− P (uGi ) = k; k ∈ [0, 1]ª is
the prior probability distribution over the common macroeconomic states and
HΓA,t=1 = {φ} denotes the history of actions for depositors in ΓA,t=1. So, for
each depositor i acting in ΓA,t=1,the equilibrium strategy pro&le takes the fol-
lowing mapping: σi : Θ

A
i,t=1 → ai ∈ Ai = {W,S} ,∀i ∈ [0, 1]A. We will be

focusing on Monotone or Switching Strategies throughout the analysis, which
we de&ne as follows27:
26We shall explicitly model the public signal in the next section.
27This de&nition relates to the one used by Dasgupta(2000), (2001) and is now standard in

the modelling of strategies and action pro&les in coordination games with incomplete infor-
mation.
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De&nition 8 (Monotone Strategy for depositors in ΓA,t=1 ) Depositor i,
when acting in ΓA,t=1, is said to be following a Monotone or Trigger Strategy if
he changes his action pro&le, depending on whether the private signal he receives
is below or above a signal threshold, s∗. If σi : ΘAi,t=1 → ai ∈ Ai = {W,S} ,∀i ∈
[0, 1]A holds, then a Monotone Strategy will take the following form:

σi(Θ
A
i,t=1) =

½
W if si ≤ s∗
S if si ≥ s∗

¾

Upon observing ΩA = {SA, FA}, depositors in ΓB,t=1 know that the returns
to the long technology, E[R̃(θA, θB,u

j
i )] will be affected and that will directly

affect their payoffs. At the same time, they will form a re-assessement of the
probability distribution of the state of the common macroeconomic fundamental
. The updated (posterior) probability distribution spanning the state of the
common macroeconomic fundamental is denoted as ζ028. Thus, formally, if
ΘBi,t=1denotes the informational endowment of depositors who move in ΓB,t=1,
then ΘBi,t=1 = {sB , ζ0,HΓB,t=1} where sB denotes the private signal on θB,
ζ0 ∈ ©P (uBi ), P (uGi )ª 0,and HΓB,t=1 = {ΩA} = {SA, FA}. In a similar line of
reasoning as for depositors in ΓA,t=1, we argue that strategies for those acting in
ΓB,t=1take the following mapping: σi : ΘBi,t=1 → ai ∈ Ai = {W,S} ,∀i ∈ [0, 1]B
and that all depositors follow monotone strategies around some signal threshold.
Trigger Strategy for those acting in ΓB,t=1 are de&ned in an analoguous way to
that of de&nition 8, except that here, we should be augmenting the informational
attributes of depositors in order to account for updated re-assessment of common
probability distributions and inclusion of a non-empty historical set. Here is the
formal de&nition:

De&nition 9 (Monotone Strategy for depositors in ΓB,t=1) Depositor i,
when acting in ΓB,t=1, is said to follow a trigger strategy with the following map-
ping, σi : ΘBi,t=1 → ai ∈ Ai = {W,S} ,∀i ∈ [0, 1]B, if his behaviour is de&ned as

follows: σi(ΘBi,t=1) =

⎧⎪⎪⎨⎪⎪⎩
W if ( ΩA = {FA}) ∩ ( si ≤ s∗(uBad))
S if ( ΩA = {SA}) ∩ ( si ≥ s∗(uGood))
S or W if

½
either

¡
( ΩA = {SA}) ∩ ( si < s

∗(uGood))
¢

or
¡
( ΩA = {FA}) ∩ ( si > s∗(uBad))

¢ ¾
⎫⎪⎪⎬⎪⎪⎭

with s∗(uBad) > s∗(uGood)

This de&nition of monotone strategy for depositors in ΓB,t=1 provides a
straightforward characterisation of the behaviour of these depositors. Deposi-
tors stay if they observe the public information of the success of bank A (i.e
ΩA = {SA}) and their private signals exceed a certain threshold in their pri-
vate information space ( i.e si ≥ s∗(uGood)). With the reverse ordering, they
28 In a later subsection, we shall see that this re-assessment of the state of the common

macroeconomic fundamental is basically at the heart of the whole mechanics of the Bayesian
Learning process in the model
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will choose to withdraw. It is also important to note that, here, the public
event itself has an impact on the threshold of the private signal e.g cases of
ΩA = {SA} will always lead depositor in ΓB,t=1, to stochastically infer that
the state of the macroeconomic fundamental is good (u = uGood). The reverse
is true for cases involving failure of bank A. The behaviour of depositors in
ΓB,t=1, will be indeterminate if event

£
( ΩA = {FA}) ∩ (si ≤ s∗(uBad))

¤C ∩£
( ΩA = {SA}) ∩ ( si ≥ s∗(uGood))

¤C
holds i.e the events which constitute the

basis of their decision sets, form part of the complementary sets of the events
that trigger withdrawal or stay29. One of such possibility is the occurrence
of, say, event

¡
( ΩA = {FA}) ∩ ( si > s∗(uBad))

¢
. Here, observing the failure

of bank A is likely to bias the depositor�s decision towards withdrawing but
a strong private signal is likely to have the opposite effect. In this case, the
decision as to whether to stay or withdraw, will depend on comparison of the
payoff to staying with the payoff to withdrawing..

4.1.1 Perfect Bayesian Equilibrium

Upon observing HΓB,t=1 , no depositor in ΓB,t=1can detect out-of-equilibrium
play i.e all strategies in the continuation game can be reached with positive
probability in the equilibrium pro&le of the game. This occurs because HΓB,t=1

is compatible with any strategies in the equilibrium pro&le of the game30. In
addition, because we have abstracted from explicit institutional arrangements
that connect the banks through &nancial contracts ( i.e the interbank market),
it follows that the payoffs of depositors acting in ΓA,t=1, are only related to
the payoffs of depositors acting in ΓB,t=1, through an informational channel
(different perceptions of uji ) (payoffs in ΓA,t=1(ΓB,t=1) are directly related to
payoffs in ΓB,t=1(ΓA,t=1) through R̃(θA, θB,u

j
i )). Subsequently, in the presence

of such interdependent payoff structure, strategies for depositors in Γi,t=1, i =
{A,B} ,are sequentially rational if they maximise the payoffs in Γi,t=1, i =
{A,B} , given the strategies played by all other players in the game. Beliefs
about revised assessments of macroeconomic fundamentals, are pinned down by
Bayes rule throughout the whole pathway prescribed by the dynamic equilibrium
concept.

We &rst provide a formal de&nition of the Perfect Bayesian Equilibrium and
relate it to parameters of our model. For simplicity, we emphasise on the Perfect

29 It is obvious that event
£
( ΩA = {FA}) ∩ (si ≤ s∗(uBad))

¤C ∩£
( ΩA = {SA}) ∩ ( si ≥ s∗(uGood))

¤
is tantamount to the occurrence of event¡

( ΩA = {SA}) ∩ ( si < s∗(uGood))
¢
and of event

¡
( ΩA = {FA}) ∩ ( si > s∗(uBad))

¢
,which

we have shown in the de&nition
30Recall that bank A may fail due to coordinated attack by depositors in ΓA,t=1.But it

may also fail for extremely low realisations of θA,irrespective of the actions of depositors in
ΓA,t=1.
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Bayesian Equilibrium concept31 .

De&nition 10 ( Perfect Bayesian Equilibrium) A Perfect Bayesian Equi-
librium (PBE) in the dynamic game between ΓA,t=1 and ΓB,t=1, is an assess-
ment of strategy pro&les {σi : ΘAi,t=1 → ai ∈ Ai = {W,S} ,∀i ∈ [0, 1]A in ΓA,t=1
and σi : Θ

B
i,t=1 → ai ∈ Ai = {W,S} ,∀i ∈ [0, 1]B in ΓB,1} and beliefs system

{{ζ, ζ0} = {i = {A,B} ; {P (uBi ), P (uGi )} , {P (uBi | ΩA), P (uGi | ΩA)} such that:
(1) Given the beliefs system {ζ, ζ0} = {i = {A,B} ; {P (uBi ), P (uGi )}, {P (uBi |

ΩA), P (u
G
i | ΩA)}, and after every possible history HΓi ,t=1, each depositor strat-

egy is rational (i.e is a best-response to any possible moves by all depositors of
the same bank as well as to all depositors of the other bank);
(2) If HΓi ,t=1occurs with positive probability, then the beliefs system {ζ, ζ0} =

{i = {A,B} ; {P (uBi ), P (uGi )} , {P (uBi | ΩA), P (uGi | ΩA)} should be optimal
given σi(Θ

A
i,t=1),∀i ∈ [0, 1]A and given σi(Θ

B
i,t=1),∀i ∈ [0, 1]B. This means

that ζ0 = {i = {A,B};P (uBi | ΩA), P (uGi | ΩA)} is derived from ζ = {i =
{A,B} ;P (uBi ), P (uGi )} using Bayes Rule.

In our model, the above formal de&nition of the PBE in the game between
ΓA,t=1and ΓB,t=1translates into the following criteria/requirements32:

Criterion 11 (Beliefs Formation)At each information set, the depositor

with the move must have a belief (represented by some probability distribution)
over which node of his information set has been reached.

Since it is never common knowledge as to which state of the common macroe-
conomic fundamental has been realised, each cohort of depositors in Γi,t=1, i =
{A,B}, has some prior beliefs about the state of the common fundamental. The
beliefs-formation mechanism is represented as {ζ, ζ0} = {i = {A,B} ; {P (uBi ), P (uGi )}
, {P (uBi | ΩA), P (uGi | ΩA)}, where ζ = {i = {A,B} ; {P (uBi ), P (uGi )} rep-
resents the prior beliefs and ζ0 = {P (uBi | ΩA), P (uGi | ΩA)} represent the
posterior beliefs, after observing ΩA = {FA, SA}.

Criterion 12 (Sequential Rationality) At each of the possible nodes(characterising

his prior beliefs) in his information set, each depositor�s strategy must maximise
his payoffs, given his beliefs about what depositors of his own bank and those of
the other bank will do.
31That avoids the need of modelling any out-of-equilibrium beliefs since they do not arise

in the model.
32 See Gibbons, �A primer of Game Theory�for more details. We have adopted their de&ni-

tion within the context of our model.
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This idea of rationality needs more elaboration, given the complex nature
of our payoff function and given that, unlike most sequential move games with
incomplete information, we do not have one individual moving at a time, but a
continuum of individuals doing so. The analysis will also provide us with a way
of characterising Perfect Bayesian Equilibrium in sequential games with cohorts
of individuals moving at different times.
Suppose bank A fails. The failure of bank A conveys negative information

about the state of the common macroeconomic fundamental to depositors play-
ing in ΓB,t=1. Given this information, depositors playing in ΓB,t=1, will update
their beliefs33 about the state of the common macroeconomic fundamental, and
this posterior change in beliefs will adversely affect returns from the investment
portfolio. Thus, given perceived bad news about macroeconomic fundamental,
each depositor in ΓB,t=1,lowers his perceptions of the expected returns on the

investment portfolio, E
h
R̃(θA, θB,u

j
i )
i
, and chooses to withdraw. Bank B is

almost likely to share the same fate as bank A, merely from an informational
channel. Because R̃(θA, θB,u

j
i ) depends on a parameter that commonly links

both banks, uji and is realised after a decision has been made in both banks,
any event in bank B triggering a change in R̃(θA, θB,u

j
i ) will also affect the

payoff of depositors playing in ΓA,t=1. Each depositor in ΓA,t=1, must antic-
ipate that, conditional upon observing him (and other depositors in ΓA,t=1)
withdraw, bank B will fail. Due to lower expected returns on the investment

portfolio, E
h
R̃(θA, θB,u

j
i )
i
, that the failure of bank B will bring, each depositor

in ΓA,t=1, will have an incentive to withdraw. He is also aware that all other
depositors playing in ΓA,t=1, are also aware of this. As a result, by anticipating
the lower returns that will result due to the effects of their own actions on de-
positors of bank B, all depositors playing in ΓA,t=1 withdraw and bank A fails.
This circularity between event triggered in bank A and event triggered in bank
B, shows that each depositor playing in Γi,t=1, i = {A,B} , must coordinate
his decision with depositors of the same bank, as well as with depositors of the
other bank. His decision as to whether to stay or withdraw, stems from the en-
tirely rational decision of accounting for what his action will have on depositors
across banks and the feedback effect resulting from these depositors�actions, on
depositors of his own bank.
This characterisation enables us capture the importance of contemporaneous

complementarities and dynamic complementarities in depositors�decision sets.

Each depositor i in Γi,t=1faces a uniform posterior belief over θi, conditional
on observing his private signal si. Thus, we can model that posterior belief
formally as : θi | si ∼ Uniform[si − ε, si + ε], ε ≤ si ≤ 1 − ε. Assuming that
all other depositors in Γi,t=1 play the game around the threshold θ∗, then the
proportion of early withdrawals can be modelled as:

33The speci&c form of the change in (posterior) beliefs, will be spelt out later
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δi[θ, θ
∗] =

⎧⎨⎩
1 θ < θ∗ − ε
1
2 +

(θ∗−θ)
2ε θ∗ − ε ≤ θ < θ∗ + ε

0 θ ≥ θ∗ + ε

⎫⎬⎭
Given that dynamics in the model are driven by reassessments of beliefs

about uji , we can represent the payoff structure in simple algebraic terms.

In particular, the �net payoff to staying�for depositor i in Γi,t=1:
½
Ui

∙n
(1−λ)− δi(1−λ)

r

o
E[R̃(θA,θB,u

j
i )]

(1−λ)(1−δi)

¸
− Ui

can be represented as: Πi(si, θ
∗) =

Z si+ε

si−ε
π(θ, δi[θ, θ

∗]) dθ, where π(θ, δi[θ, θ∗])

tells us how the net payoff varies with δi[θ, θ
∗]. First, we move with the char-

acterisation of the Perfect Bayesian Equilibrium (PBE) of the dynamic game
between ΓA,t=1 and ΓB,t=1,by starting with the decision problem of depositor

i in ΓB,t=1, i ∈ [0, 1]B. With the payoff structure denoted as ΠB(sB, s∗) =Z sBi +ε

sBi −ε
πB(θB, δB(s

∗, θB)) dθBand ΘBi,t=1 = {sB, ζ0,HΓB,t=1}, depositor i in
ΓB,t=1, i ∈ [0, 1]B observes the actions of his predecessors ( i.e depositors in
ΓA,t=1) through parameter HΓB,t=1 and he adjusts his beliefs of the proba-
bility of the common macroeconomic fundamental from ζ to ζ0. As a result,
he plays a best response to the strategies of his predecessors, whilst updat-
ing his beliefs about the state of the common fundamental. His expected
utility to staying as opposed to withdrawing would depend on this posterior
belief ζ0, his private signal sB and the strategy of successors in the continu-
ation game. Since the withdrawal game ends after ΓB,t=1, there are no suc-
cessors in this game and the strategy set for successors is the null set. For-
mally, the expected utility to staying as opposed to withdrawing is modelled

as: EUi∈[0,1]B [sB, ζ0 =
©
P (uBi ), P (u

G
i )
ª 0] = Pi Z sBi +ε

θ∗
πB(θB , δB(s

∗, θB))dθB +

(1− Pi)
Z θ∗

sBi −ε
πB(θB, δB(s

∗, θB))dθB

where, Pi denotes the probability that bank B succeeds, given the strategies
pursued by depositors in bank A, or formally, Pr(δB(s∗, θB) < r | ΨA

i∈[0,1]A
(.)),

0 < Pr(δB(s
∗, θB) < r | ΨA

i∈[0,1]A
(.)) ≤ 1, and as before,

Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))

dθB denotes the positive part of the net payoff to staying and
Z θ∗

sBi −ε
πB(θB, δB(s

∗, θB))

dθB denotes the negative part. Since
Z sBi +ε

θ∗
πB(θB , δB(s

∗, θB)) dθB = −
Z θ∗

sBi −ε
πB(θB , δB(s

∗, θB))

dθB ,then EUi∈[0,1]B [sB , ζ0] can be re-written as :
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EUi∈[0,1]B [sB , ζ0] = [2Pi − 1]
sBi +εZ
θ∗

πB(θB , δB(s
∗, θB))dθB (4)

The expression we give for EUi∈[0,1]B [sB , ζ0] is very intuitive. The expected
utility to staying for any depositor playing in ΓB,t=1, does not depend on his
own action but the actions of other depositors in ΓB,t=1, as well as on the ac-
tions of depositors in ΓA,t=1, in the circularity spirit outlined earlier. Whether
bank B survives or fails, does not depend on the action of only one depositor
but on the collective action of all depositors playing in ΓB,t=1. The parameter
Pr(δB(s

∗, θB) < r | ΨA
i∈[0,1]A

(.)) encapsulates the action of other depositors of
other depositors in ΓB,t=1 on the expected utility of a typical depositor play-
ing in ΓB,t=1. To be more speci&c, P (reduced version of Pr(δB(s∗, θB) < r |
ΨA

i∈[0,1]A
(.)) ) denotes the probability of bank B surviving due to joint propor-

tion of other depositors withdrawing, δB(s∗, θB), being less than the critical
bankruptcy threshold, r. Similarly, 1 − P denotes the probability of bank B
failing due to δB(s

∗, θB) being above the bankruptcy threshold. The associ-

ated payoffs
Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))dθB and
Z θ∗

sBi −ε
πB(θB, δB(s

∗, θB))dθB,

respectively depict the ex-post payoffs to the depositor in ΓB,t=1, when bank B
survives and fails respectively. Thus, one can see that δB(s∗, θB) affects not only

P, but also expected payoffs Πi(si, θ
∗) (=

Z si+ε

si−ε
π(θ, δi[θ, θ

∗]) dθ). For example,

when δB(s∗, θB) is sufficiently strong, the payoff to staying for a depositor with a

monotone strategy, will be given by
Z θ∗

sBi −ε
πB(θB , δB(s

∗, θB))dθB (< 0). Con-

versely, for low proportion of early withdrawals, δB(s∗, θB), the ex-post payoff

to staying is positive i.e
Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))dθB > 0. Thus, each deposi-

tor i in in ΓB,t=1, i ∈ [0, 1]B, maximises EUi∈[0,1]B [sB, ζ0], given his endowment
ΘBi,t=1 = {sB , ζ0,HΓB,t=1}. Taking into account the beliefs updating process
as well as the best reponse of his predecessors, we de&ne the Best-Response
function for depositor i in ΓB,t=1as:.

ΨB
i∈[0,1]B

(.) = max
ai ∈ Ai

[2Pi[Ψ
A

i∈[0,1]A
(.)]− 1]

sBi +εZ
θ∗

πB(θB, δB(s
∗, θB))μ(ujB | ΘBi,t=1)dθB

(5)
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Each depositor in ΓB,t=1is assumed to have the same best-response function,
as de&ned in ΨB

i∈[0,1]B
(.).

Each depositor i in ΓA,t=1, i ∈ [0, 1]A, will anticipate that, no matter what
action he takes, his successors (i.e depositor i in ΓB,t=1, i ∈ [0, 1]B) will always
be playing a best-response, as dictated by ΨB

i∈[0,1]B
(.). Since the whole structure

of the game, as seen in section 1.3, table 3, is common knowledge, each depositor
i in ΓA,t=1, i ∈ [0, 1]A, will take ΨB

i∈[0,1]B
(.) into consideration when tracing out

his best-response.

Thus, with ΘAi,t=1 = {sA, ζ, HΓA,1} and the payoff structure expressible as

ΠA(sA, s∗) =
Z sAi +ε

sAi −ε
πA(θA, δA(s

∗, θA)) dθA, depositor i in ΓA,t=1, i ∈ [0, 1]A,
has an expected utility which is dependent on his private signal sA, his prior
belief ζ (with an empty history set HΓA,t=1 = {0}) and strategy of successors
in the continuation game (i.e depositors in ΓB,t=1), as captured by the best
response function ΨB

i∈[0,1]B
(.). Each depositor in ΓA,t=1knows that, upon any

decision he takes, depositors in ΓB,t=1, will observe the event generted and will
attempt to play a best response to it. In a way analoguous to the analysis
carried out for depositors in ΓB,t=1, we de&ne the best response function for
those in ΓA,t=1 as:

ΨA
i∈[0,1]A

(.) = max
ai ∈ Ai

[2Pi(Ψ
B

i∈[0,1]B
(.))− 1]

sAi +εZ
θ∗

πA(θA, δA(s
∗, θA))μ(ujA | ΘAi,t=1)dθA

(6)

where Pi simply denotes Pr
³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
, 0 < Pr

³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
≤

1.

Criterion 13 (Bayes Updating Process) At an information set which lies

on the equilibrium path (i.e can be reached with positive probability given the
equilibrium strategy of the game), the beliefs updating process is undertaken
through Bayes rule.

Denote μ(ujB | ΘBi,t=1) as the process of of updating beliefs about ujB from
their prior state ζ = {i = {A,B} ; {P (uBadB ), P (uGB)} to the posterior state ζ0 =
{P (uBadB | ΩA), P (uGB | ΩA)}, for depositors in ΓB,t=1. Similarly, for depositors
in ΓA,t=1, μ(u

j
A | ΘAi,t=1) denotes that updating process. Since depositors in
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ΓA,t=1 move &rst and their information set, ΘAi,t=1,contains an empty historical
set, it is not hard to realise that μ(ujA | ΘAi,t=1) would be the same as μ(ujA), the
prior probability over states denoted as ζ = {i = {A,B} ; {P (uBi ), P (uGi )} . We
focus on the exact mechanics of the updating process in the next subsection.
For the moment, it just suffices to believe that, with no information set being off
the equilibrium path given the equilibrium strategies of the game, any updating
process that conforms with Bayes rule will still keep us along the trajectory
pathway as prescribed by the Perfect Bayesian Equilibrium concept.
This mutual best-response functional relationship for strategies of depositors

in ΓA,t=1 and ΓB,t=1 is in conformity with the circularity that exists between
strategies and beliefs formation in a Perfect Bayesian Equilibrium - that strate-
gies are optimally derived from beliefs and that beliefs are consistent with those
strategies. In models of dynamic coordination games where the Perfect Bayesian
Equilibrium is modelled, it is not uncommon to restrict attention to a speci&c
class of equilibria that greatly simplify the analysis. Such modelling also en-
ables us to capture the idea of complementarities in games ΓA,t=1 and ΓB,t=1
respectively. In bank B, for instance, Pr(δB(s∗, θB) < r | ΨA

i∈[0,1]A
(.)) is de-

creasing in δB(s
∗, θB). Similarly, in bank A, Pr

³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
is

decreasing in δA(s
∗, θA). The idea is quite intuitive: as proportion of depos-

itors who withdraw early rises, the probability of bank surviving such a run
decreases. This has important implications for the ex-post payoff to depositors
in the bank. We can thus, without loss of generality, deduce that, for a depos-
itor playing in ΓB,t=1, as δB(s∗, θB) → 1, Pr(δB(s

∗, θB) < r | ΨA
i∈[0,1]A

(.)) → 0

and EUi∈[0,1]B [.] →
Z θ∗

sBi −ε
πB(θB , δB(s

∗, θB))dθB (< 0). A similar conclusion

will be drawn for depositors in ΓA,t=1. Interpret it as follows: as proportion
of depositors running on the bank increases, the probability that the bank will
resist that run (or �survive�) decreases and the expected utility for a depositor
of staying in the bank becomes negative. Thus, the depositor has less incen-
tive to stay in the bank and, instead, chooses to run. This is what we dubbed
contemporaneous strategic complementarities. We have just shown
that, by coordinating each depositor�s action with the action of other depos-
itors of the same , the payoff of each individual depositor is characterised by
contemporaneous complementarities.

In a similar way, it can be shown that each depositor�s action is increas-
ing in action of depositors in the other bank. This is what we dub dynamic
strategic complementarities. In particular, we want to show that, for each
depositor in ΓA,t=1, as δB(s∗, θB) → 1, Pr

³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
→ 0

and EUi∈[0,1]B [.] →
Z θ∗

sAi −ε
πA(θA, δA(s

∗, θA))dθA (< 0). Similarly, for depos-

itor in ΓB,t=1, as δA(s∗, θA) → 1, Pr
³
δB(s

∗, θB) < r | ΨB
i∈[0,1]B

(.)
´
→ 0 and
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EUi∈[0,1]B [.] →
Z θ∗

sBi −ε
πB(θB , δB(s

∗, θB))dθB (< 0). In other words, each

individual depositor�s incentive to withdraw increases as more and more de-
positors across the bank withdraw. It is not hard to prove dynamic strategic
complementarities. The existence of the returns to the investment technology,

E
h
R̃(θA, θB,u

j
i )
i
, and most importantly, its timing, acts as the common link

between δA(s
∗, θA) and δB(s

∗, θB).

We next turn to that speci&cation: in particular, we want to show that all
equilibrium pro&les that satisfy the PBE concept must also satisfy the Trigger
Equilibrium concept34 . This will enable us simplify the analysis of the dynamic
equilibrium pathway considerably and to focus attention on trigger equilibria
throughout the whole experiment

Proposition 14 If the Public Signal is used for Bayesian Updating only, then
any Perfect Bayesian Equilibrium of the dynamic game between ΓA,t=1 and
ΓB,t=1 is a Monotone Equilibrium. This holds true irrespective of the correlation
structure characterising the link between the two banks. On the other hand, if
the Public Signal is used for purposes other than Bayesian Updating (e.g acting
as possible coordination device), then the set of equilibrium traced by the Perfect
Bayesian Concept, is much wider than the class that just includes Monotone
Equilibrium

Proof. (use of Intermediate Value Theorem)
Let assessments { σi(Θ

A
i,t=1),∀i ∈ [0, 1]A,σi(ΘBi,t=1),∀i ∈ [0, 1]B, ζ = [i =

{A,B} ; {P (uBi ), P (uGi )], ζ0 = [P (uBi | ΩA), P (uGi | ΩA)] } denote the Perfect
Bayesian Equilibrium of the game between ΓA,t=1 and ΓB,t=1 . Any depositor in
Γi,t=1 , i = {A,B},will play a best-response to actions of predecessors and suc-
cessors (where applicable), with the best response function de&ned byΨA

i∈[0,1]A
(.)

= max[2Pi(Ψ
B
i∈[0,1]B

(.)) − 1]
Z sAi +ε

θ∗
πA(θA, δA(s

∗, θA))μ(ujA | ΘAi,t=1)dθA and

ΨB
i∈[0,1]B

(.) = maxai ∈ Ai [2Pi[Ψ
A
i∈[0,1]A

(.)] − 1]
Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))μ(ujB |
ΘBi,t=1)dθ

B, depending on whether he plays in ΓA,t=1 or in ΓB,t=1 .
For a depositor in ΓA,t=1, for example, the expected utility, EUi∈[0,1]A [sA, ζ0] =

[2Pi − 1]
Z sAi +ε

θ∗
πA(θA, δA(s

∗, θA))dθA,varies continuously and monotonically

with sA. High values of sA are associated with low value of proportion of
early withdrawals, δA(s∗, θA). Thus, payoff to staying, πA(θA, δA(s∗, θA)) is
high and probability of staying, Pr

³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
, takes a high

34The same trick was used by Dasgupta (2001) in his study of herding in investment portfolio
choices
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value as well. These explain why, for high values of sA, EUi∈[0,1]A [sA, ζ0] > 0.
For low realisations of sA,we have a reverse ordering: δA(s

∗, θA) is high and
πA(θA, δA(s

∗, θA) and Pr
³
δA(s

∗, θA) < r | ΨB
i∈[0,1]B

(.)
´
take low realisations.

Thus, EUi∈[0,1]A [sA, ζ0] ≤ 0 for low realisations of sA. Thus, generalising the ar-
gument to any depositor i (no matter to which game he belongs to), we can argue
that he will stay if EUi∈[0,1]A [sA, ζ0] ≥ 0 and withdraw if EUi∈[0,1]A [sA, ζ0] < 0
(as per proposition 3). Since EUi∈[0,1]A [sA, ζ0] is continuous and monotoni-
cally increasing in si, then by the intermediate value theorem, ∃ s∗ such that
∀sA > s∗, EUi∈[0,1]A [sA, ζ0] ≥ 0 and ∀si < s∗, EUi∈[0,1]A [sA, ζ0] < 0. In line
with the existence of ΨA

i∈[0,1]A
(.), ∃ σA(ΘA,t=1) such that:

σA(ΘA,t=1) =

½
W if sA ≤ s∗
S if sA > s

∗

¾
which corresponds exactly to the notion of Monotone Equilibrium that we

stated in proposition 2.
For depositor in ΓB,t=1 , the expected utility is given by expression: EUi∈[0,1]B [sB , ζ0] =

[2Pi−1]
Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))dθB. When bank A survives , Ω = {SA} ,and
sB is high (> s∗), δB(s∗, θB) is low by the logic inherent in analysis in pp 35.
Thus, Pr(δB(s∗, θB) < r | ΨA

i∈[0,1]A
(.)) becomes high and EUi∈[0,1]B [sB, ζ0] has

relatively more of the
Z sBi +ε

θ∗
πB(θB , δB(s

∗, θB))dθB (> 0) component and rel-

atively less of the
Z θ∗

sBi −ε
πB(θB, δB(s

∗, θB))dθB(< 0). Thus, EUi∈[0,1]B [sB , ζ0]
> 0 when sB > s∗ and Ω = {SA} .
When Ω = {FA} and sB is low (< s∗), δB(s∗, θB) is high, Pr(δB(s∗, θB) <

r | ΨA
i∈[0,1]A

(.)) is low andEUi∈[0,1]B [sB , ζ0] has relatively less of the
Z sBi +ε

θ∗
πB(θB, δB(s

∗, θB))dθB

(> 0) component and relatively more of the
Z θ∗

sBi −ε
πB(θB, δB(s

∗, θB))dθB(< 0).

Thus, EUi∈[0,1]B [sB, ζ0] < 0 when sB < s∗and Ω = {FA} . Thus, the perfect
bayesian equilibrium concept, as de&ned above, will lead depositors in ΓB,t=1,
to follow a strategy along the following lines:

σi(Θ
B
i,t=1) =

⎧⎪⎪⎨⎪⎪⎩
W if ( ΩA = {FA}) ∩ ( si ≤ s∗)
S if ( ΩA = {SA}) ∩ ( si ≥ s∗)
S or W if

½
either

¡
( ΩA = {SA}) ∩ ( si < s

∗)
¢

or
¡
( ΩA = {FA}) ∩ ( si > s∗))

¢ ¾
⎫⎪⎪⎬⎪⎪⎭

which is exactly the trigger equilibrium we de&ned above.

An interesting extension of our result would be to see how the result would
vary as we tighten the informational assumptions of the model. In the most
extreme case in which depositors only consider their private signals and nothing
else, there is a θ∗35 for each game Γi,t=1, i = {A,B} , and θ∗ would consti-
35 Since each bank starts with the same endowment ex-ante, then the same value for θ∗
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tute the unique Bayesian-Nash equilibrium for each Γi,t=1, i = {A,B} . This is
summarised in the following corollary:

Corollary 15 If the event ΩA = {SA, FA} is completely ignored by depositors
in ΓB,t=1 (e.g when ρ → 0 or more precisely, z (ΩA (ρ)→ 0) and is not used
for Bayesian updating about the state of uji , the resulting parametric restrictions
break the dynamic game between ΓA,t=1 and ΓB,t=1 into two static-coordination
games. uji becomes a payoff-irrelevant variable. The same realisation of θ

∗ would
characterise the equilibrium of each static game, ΓA,t=1 and ΓB,t=1. Provided
that depositors in ΓA,t=1 and ΓB,t=1 are playing according to their monotone
strategies as de&ned in section 4.1, θ∗ is also the unique Bayesian-Nash equilib-
rium of each static game, with no dynamic elements linking the θ∗ of each bank
.

.
This result is quite intuitive. If depositor i in Γi,t=1, i = {A,B} uses only his

private signal and he completely ignores the whole process of Bayesian updating
about state uji , the vital link that drives the dynamics of beliefs in the game
between ΓA,t=1 and ΓB,t=1 gets severed. Depositor i in ΓA,t=1, would simply be
maximising his payoffs given his type and given his beliefs about other deposi-
tors�types (all in ΓA,t=1). Actions of depositors in the continuation game will
be ignored. Similarly, each depositor in ΓB,t=1 will be playing a best response
to other depositors�actions in ΓB,t=1, while ignoring the past history of events.
The major weakness about such informational restrictions is that it pre-empts
the major purpose for which this paper has been set: to explain how dynamics
of information ! ows affect dynamics of coordination in Γi,t=1, i = {A,B} . In
addition, contagion cannot be modelled in this set-up because the unique θ∗ is
static and does not vary at all with parameters of the model.

5 Strict Private Informational Dominance and
the Perfect Bayesian Equilibrium

Claim 16 For sufficiently �low�36 degree of exposure to the common macroeco-
nomic fundamental, 0 ≤ ρ < ρ́, the Private Signals stochastically dominate the
Public Signal in depositors�decision set. Three observations can be made:
(1) There exists an equilibrium trigger in Γi,t=1, i = {A,B}
(2) The equilibrium trigger is Unique (Non-Monotone equilibria are pre-

cluded)

would apply to each bank.
36How �low�this refers to, will become clear in a later section when we reconcile the notion

of signal ordering, with the notion of strategic complementarities
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(3) The equilibrium trigger in each bank is dependent on the common macroe-
conomic fundamental and varies inversely with each other.

It is to an analysis of this that we now turn to:

Proposition 17 (Existence of a Trigger Equilibrium in Γi,t=1 ) There
exists a threshold θ∗in the idiosyncratic fundamental space and s∗in the private
signal space, such that the bank fails if θ < θ∗ (i.e everybody withdraws with
s < s∗) and succeeds if θ > θ∗(i.e everybody stays with s > s∗)

Proof. 37 Each depositor i in Γi,1faces a uniform posterior belief over θi,

conditional on observing his private signal si. Thus, we can model that posterior
belief formally as : θi | si ∼ Uniform[si − ε, si + ε], ε ≤ si ≤ 1− ε. Assuming
that all other depositors in Γi,1 play the game aroung the threshold θ

∗, then the
proportion of early withdrawals can be modelled as:

δi[θ, θ
∗] =

⎧⎨⎩
1 θ < θ∗ − ε
1
2 +

(θ∗−θ)
2ε θ∗ − ε ≤ θ < θ∗ + ε

0 θ ≥ θ∗ + ε

⎫⎬⎭
Considering table 2 (section 1.2), the net payoff to staying as opposed to

withdrawing for each depositor i in Γi,1can be re-parameterised in terms of θ
and θ∗as follows:

Πi(si, θ
∗) =

Z si+ε

si−ε
π(θ, δi[θ, θ

∗]) dθ

In the Bankruptcy Condition Space, δi[θ, θ
∗] > r =⇒ {[ 12+ (θ∗−θ)

2ε ] > r} =⇒
{θ < θ∗ + ε(1− 2r)}
In the No-Bankruptcy Condition Space, δi[θ, θ

∗] < r =⇒ {[ 12 + (θ∗−θ)
2ε ] <

r} =⇒ {θ < θ∗ + ε(1− 2r)}
Thus, we may partitionΠi(si, θ

∗) =
Z si+ε

si−ε
π(θ, δi[θ, θ

∗]) dθ into the Bankruptcy

Condition Space and the No-Bankruptcy Condition Space as follows:

Πi(si, θ
∗) =

Z θ∗+ε

θ∗+ε(1−2r)
{Ui

∙n
(1−λ)− δi(1−λ)

r

o
R(.)

(1−λ)(1−δi)

¸
−Ui(1)} dθ+

Z θ∗+ε(1−2r)

θ∗−ε
{Ui(0)−

Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i
} dθ

=

Z θ∗+ε

θ∗+ε(1−2r)
Ui

∙n
(1−λ)− δi(1−λ)

r

o
R(.)

(1−λ)(1−δi)

¸
dθ−

Z θ∗+ε(1−2r)

θ∗−ε
Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i
dθ + {Ui(0)[2ε(1− r)]− Ui(1)[2εr].
Now, let Ui

∙n
(1−λ)− δi(1−λ)

r

o
R(.)

(1−λ)(1−δi)

¸
be denoted as η(θ, θ∗), let Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i
be denoted as λ(θ, θ∗), let {Ui(0)[2ε(1 − r)] − Ui(1)[2εr] be a constant, χ. A
much simpler expression for Πi(si, θ

∗) would be as follows:
37The proof for existence of equilibrium in coordination games can be found in Goldstein

and Pauzner (2003) and Dasgupta (2003). We follow Dasgupta (2003) version here.
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Πi(si, θ
∗) =

Z θ∗+ε

θ∗+ε(1−2r)
η(θ, θ∗) dθ+

Z θ∗+ε(1−2r)

θ∗−ε
λ(θ, θ∗) dθ + χ

An important feature that arises is that, since δi[θ, θ
∗] is monotonic in θ∗, and

π(θ, δi[θ, θ
∗]) itself, is monotonic in θ∗, then Πi(si, θ∗) is necessarily monotonic

in θ∗. We are interested in establishing how Πi(si, θ∗) varies with θ∗. Take
derivatives with respect to θ∗ throughout:

∂
∂θ∗Πi(si, θ

∗) = ∂
∂θ∗

Z θ∗+ε

θ∗+ε(1−2r)
η(θ, θ∗) dθ + ∂

∂θ∗

Z θ∗+ε(1−2r)

θ∗−ε
λ(θ, θ∗) dθ

∂
∂θ∗

Z θ∗+ε

θ∗+ε(1−2r)
η(θ, θ∗) dθ = [η(θ, θ∗)]θ

∗+ε
θ∗+ε(1−2r)+

Z θ∗+ε

θ∗+ε(1−2r)
∂
∂θ∗ [η(θ, θ

∗)]

dθ

∂
∂θ∗

Z θ∗+ε(1−2r)

θ∗−ε
λ(θ, θ∗) dθ =[λ(θ, θ∗)]θ

∗+ε(1−2r)
θ∗−ε +

Z θ∗+ε(1−2r)

θ∗−ε
∂
∂θ∗ [λ(θ, θ

∗)]

dθ
The following properties hold for η(θ, θ∗) and λ(θ, θ∗) : (1)∂η(θ,θ

∗)
∂δi

< 0,

(2)∂λ(θ,θ
∗)

∂δi
< 0, (3) ∂δi(θ,θ

∗)
∂θ∗ > 0, (4) ∂δi(θ,θ

∗)
∂θ < 0, (5)

¯̄̄
∂δi(θ,θ

∗)
∂θ∗

¯̄̄
=
¯̄̄
∂δi(θ,θ

∗)
∂θ

¯̄̄
.

By (1) and (3), ∂η(θ,θ∗)
∂θ∗ < 0. By (1) and (4), ∂η(θ,θ∗)

∂θ > 0. This gives rise

to the important property that:
Z θ∗+ε

θ∗+ε(1−2r
∂
∂θ [η(θ, θ

∗)]dθ ,as represented by

[η(θ, θ∗)]θ
∗+ε
θ∗+ε(1−2r) , exceeds

Z θ∗+ε

θ∗+ε(1−2r)
∂
∂θ∗ [η(θ, θ

∗)] dθ . This implies that

∂
∂θ∗

Z θ∗+ε

θ∗+ε(1−2r)
η(θ, θ∗) dθ > 0.

Repeating the same exercise for η(θ, θ∗), we can see that by (6) ∂λ(θ,θ∗)
∂θ∗ < 0,

(7) ∂λ(θ,θ
∗)

∂θ > 0.Given (5),(6) and (7), it can be established that
Z θ∗+ε(1−2r)

θ∗−ε
∂
∂θ∗ [λ(θ, θ

∗)]

dθ = −
Z θ∗+ε(1−2r)

θ∗−ε
∂
∂θ [λ(θ, θ

∗)] dθ. Thus, ∂
∂θ∗

Z θ∗+ε(1−2r)

θ∗−ε
λ(θ, θ∗) dθ = 0.

Through the values of ∂
∂θ∗

Z θ∗+ε

θ∗+ε(1−2r)
η(θ, θ∗) dθ and ∂

∂θ∗

Z θ∗+ε(1−2r)

θ∗−ε
λ(θ, θ∗)

dθ , we can establish that ∂
∂θ∗Πi(si, θ

∗) > 0. Thus, there exists a value of θ∗

that solves the model for any Πi(si, θ
∗) = k.

Given the existence of a value of θ∗that solves the model for any Πi(si, θ∗) =
k, we can now turn to the existence of θ∗ that supports the Monotone Strategy as
in de&nition 2. In particular, since notice that when si = θ∗,Πi(θ∗, θ∗) = 0. This
exactly partitions Πi(θ

∗, θ∗) into two separate spaces spanning the Bankruptcy
and No-Bankruptcy conditions. We summarise the arguments in the following
proposition:

Proposition 18 (Single-crossing property of Payoff structure) The as-
sumption of monotonicity in the payoff structure of depositors and the subse-
quent existence of a trigger equilibrium θ∗ in Γi,t=1, i = {A,B} , mean that the
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payoff structure of each bank satis&es the single-crossing property with the fol-

lowing properties: (1) For θ > θ∗, Πi(si, s∗) =
Z si+ε

si−ε
πi(θi, δi(s

∗, θi)) dθi > 0

(No-Bankruptcy condition); (2) For θ < θ∗, Πi(si, s∗) =
Z si+ε

si−ε
πi(θi, δi(s

∗, θi))

dθi < 0 (Bankruptcy condition); (3)The existence of (1) and (2) means that

there should be a point at which Πi(si, s∗) =
Z si+ε

si−ε
πi(θi, δi(s

∗, θi)) dθi = 0.

This point is at θ∗. The existence of θ∗and the single-crossing property imply

that
Z si+ε

θ∗
πi(θi, δi(s

∗, θi)) dθi = −
Z θ∗

si−ε
πi(θi, δi(s

∗, θi)) dθi.

This leads us to another important result which we relate to parameters of
the model:

Proposition 19 (Uniqueness of θ∗i and no non-monotone equilibria) If
θ∗i exists, then it is the unique Bayesian-Nash equilibrium (Monotone equilib-
rium) of Γi,t=1, i = {A,B}. Furthermore, there exists no non-monotone equilib-
ria in the model.

38

We show this proof by establishing 3 lemmas &rst, each with sub-proofs:

Lemma 20 For each depositor i, whenever δi > r, Ui

h
λ+r(1−λ)
λ+δi(1−λ)

i
> Ui [0] .

Thus, if δi (.) > δ0i (.) , then
Z si+ε

si−ε
π(θi, δi[θi, θ

∗]) dθi ≥
Z si+ε

si−ε
π(θi, δ

0
i[θi, θ

∗])

dθi. Similarly, whenever δi < r, Ui

∙n
(1−λ)− δi(1−λ)

r

o
R(.)

(1−λ)(1−δi)

¸
> Ui [1] . If δi (.) >

δ0i (.) ,then it implies that
Z si+ε

si−ε
π(θi, δi[θi, θ

∗]) dθi ≤
Z si+ε

si−ε
π(θi, δ

0
i[θi, θ

∗]) dθi

The above Lemma is simply asserting that the absence of global supermod-
ularities in the depositors�withdrawal game. We know (from the discussion
of section 2.3) that whenever δi > r, the bankruptcy threshold is met and in-
centives (for any one depositor) to withdraw are decreasing proportions of the
proportion of other depositors withdrawing. The No-Bankruptcy threshold (i.e
when δi < r) is one with the exact opposite effect39.

38 See also Goldstein and Pauzner (2002), Dasgupta(2003) and Vaugirard (2004) for other
illustrations of this proof

39Given that
Z si+ε

si−ε
π(θi, δi[θi, θ

∗]) dθi denotes the net payoff to staying for depositors and
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Lemma 21 If all depositors are following a switching / monotone strategy

around s∗, then the expected net payoff to staying, given by
Z si+ε

si−ε
π(θi, δi[θi, θ

∗])

dθi, is continuous, monotonic and strictly increasing in s∗ and satis&es the
single-crossing property.

Proof. See propositions 8 and 9 of the main text

Lemma 22 If there exists a threshold for s∗, then, it is unique

Proof. We use the �Intermediate Value Theorem�to prove this result. See

Appendix, section B, pp
Here, we are concerned with a particular application of the Intermediate

Value Theorem to our setting. What we need to show is that since
Z si+ε

si−ε
π(θi, δi[θi, θ

∗])

dθi is continuous in θ
∗, then for

n
θi : θ

inf ≡
o
and {θi : θsup ≡} , where

Z si+ε

si−ε
π(θsup, δi[θ, θ

∗])

dθi >

Z si+ε

si−ε
π(θinf , δi[θ, θ

∗]) dθi, then there exists a particular value of θ∗ such

that
Z si+ε

si−ε
π(θi, δi[θ, θ

∗]) dθi ≡ k. Clearly,
Z si+ε

si−ε
π(θinf , δi[θ, θ

∗]) dθi < k <Z si+ε

si−ε
π(θsup, δi[θ, θ

∗]) dθi.

From the discussion in section 2.1.2, we know that uG < uB < uG+z < uB+
z. Let the Weak Lower Dominance Region (WLDR) constitute the lower bound-
ary on the threshold space and the Weak Upper Dominance Region (WUDR)

constitute the upper boundary on the space. De&ne α =
Z si+ε

si−ε
π(θWLDR, δi[θ, θ

∗])

dθi (where θ
WLDR ≡ ©θi ≤ uGª) and β = Z si+ε

si−ε
π(θWUDR, δi[θ, θ

∗]) dθi (where

θWUDR ≡ ©θi > uB + zª). It is obvious that Z si+ε

si−ε
π(θWUDR, δi[θ, θ

∗]) dθi >

that π(θi, δi[θi, θ∗]) is the payoff to staying for any particular depositor, let −π(θi, δi[θi, θ∗])
≡ Λ(θi, δi[θi, θ

∗]) denote the payoff to withdrawing for any depositor. Thus, for the case

when δi > r, if δi [.] > δ0i [.] ,
Z si+ε

si−ε
Λ(θi, δi[θi, θ

∗]) dθi <
Z si+ε

si−ε
Λ(θi, δ

0
i[θi, θ

∗]) dθi ⇔Z si+ε

si−ε
π(θi, δi[θi, θ

∗]) dθi >
Z si+ε

si−ε
π(θi, δ

0
i[θi, θ

∗]) dθi. Similarly, whenever δi < r, if δi [.] >

δ0i [.] ,
Z si+ε

si−ε
Λ(θi, δi[θi, θ

∗]) dθi >
Z si+ε

si−ε
Λ(θi, δ

0
i[θi, θ

∗]) ⇔
Z si+ε

si−ε
π(θi, δi[θi, θ

∗]) dθi <Z si+ε

si−ε
π(θi, δ

0
i[θi, θ

∗]) dθi.
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Z si+ε

si−ε
π(θWLDR, δi[θ, θ

∗]) dθi . Since
Z si+ε

si−ε
π(θsup, δi[θ, θ

∗]) dθi ≥
Z si+ε

si−ε
π(θWUDR, δi[θ, θ

∗])

dθi and
Z si+ε

si−ε
π(θinf , δi[θ, θ

∗]) dθi ≤
Z si+ε

si−ε
π(θWLDR, δi[θ, θ

∗]) dθi, it follows

that
Z si+ε

si−ε
π(θWLDR, δi[θ, θ

∗]) dθi ≤ k ≤
Z si+ε

si−ε
π(θWUDR, δi[θ, θ

∗]) dθi . Fol-

low Morris and Shin (1998), if we relax the de&nition of θinf and θsup and
give the following de&nition: let θinf be the least value of idiosyncratic fun-
damental of bank i for which at least one depositor stays and let θsup be
the maximum value of the fundamental for which at least one depositor with-

draws, then we have the following condition:
Z si+ε

si−ε
π(θinf , δi[θ, θ

∗]) dθi ≥ k ≥Z si+ε

si−ε
π(θsup, δi[θ, θ

∗]) dθi. This contradicts what we just observed about the im-

plication of θinf , θsup and θ∗ for the relationship between
Z si+ε

si−ε
π(θinf , δi[θ, θ

∗])

dθi, k and
Z si+ε

si−ε
π(θsup, δi[θ, θ

∗]) dθi. Thus, the only way to reconcile this ap-

parently contrasting result is to posit that θinf = θ∗ = θsup

The above proposition helps in characterising the set of monotone equilibria
that de&ne the Perfect Bayesian Equilibrium of the model. Without loss of gen-
erality, we can argue that there exists a threshold θ∗i in Γi,t=1, i = {A,B}, such
that bank i fails for θi < θ∗i and survives if θi ≥ θ∗i . But the above derivations
did not speci&cally explicate how θ∗ varies with structural changes in parame-
ters that characterise the returns structure of the illiquid-and-risky technology.
We summarise these qualitative features as follows:0

Proposition 23 (Features of θ∗i ) By Propositions (17) and (19), there exists
a threshold θ∗i in Γi,t=1, i = {A,B}. Given the features of each bank�s illiquid-
and-risky investment returns structure, the location of θ∗i in the uniformly dis-
tributed θ−space varies with uji as follows: θ∗i (uBadi ) > θ∗i (uGi ) with u

Bad
i > uGi ,

i = {A,B}
Proof. The analysis is for a marginal depositor in Γi,t=1,who observes si =

s∗ and who believes that all other depositors in Γi,t=1, will follow a monotone
strategy around s∗. For any particular realisations of the state of the common
macroeconomic fundamental, uji , j = {G,B}, i = {A,B}, there exists a critical
value of θ that ensures that, from the returns technology in table 1 :

θcriti = uji+zδi[θ, θ
∗], where δi[θ, θ∗] =

⎧⎨⎩
1 s∗ > θ + ε
1
2 +

(s∗−θ)
2ε θ − ε ≤ s∗ ≤ θ + ε

0 s∗ < θ − ε

⎫⎬⎭
This ensures that the returns structure of bank i, i = {A,B},takes a random

realisation, R̃(θi, θ−i,u
j
i , δi, δ−i), which is dependent on realisations of u

j
i , δ, z.

It can be observed that if θ > θcriti (⇒ θi > uji + zδi[θ, θ
∗]), then the bank�s
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project succeeds whereas if θ < θcriti (⇒ θi < uji + zδi[θ, θ
∗]), then the bank�s

project fails. Generalising the argument for any bank i, we have the following:
Using the expression for δi[θ, θ

∗] and bearing in mind that, for bank i, u ∈
{uGi , uBi }, θ can be expressed as:

θ =

⎧⎨⎩
uji + z s∗ > θ + ε

uji +
z
2ε{(θ∗ − θ) + ε} θ − ε ≤ s∗ ≤ θ + ε

uji s∗ < θ − ε

⎫⎬⎭
The above expression applies for general values of θ. For θcriti (.), following

on θ, we characterise θcriti (.) in terms of parameters that in! uence the bank�s
illiquid-and-risky technology:

θcriti ( uji ) =

⎧⎪⎨⎪⎩
uji + z s∗ > uji +z + ε
z(s∗+ε)+2εuji

z+2ε uji − ε ≤ s∗ ≤ uji +z + ε

uji s∗ ≤ uji - ε

⎫⎪⎬⎪⎭
With the above expression for θcriti ( uji ) and given that θ | si ∼ Uniform

[si − ε, si + ε], ε ≤ si ≤ 1 − ε, we can express the decision of depositor i in
Γi,t=1 to stay or withdraw in probabilistic terms. Let P (s∗, δi, u

j
i ) = Prob(θ >

θcriti ( uji ) | si = s∗) denote the probability for any depositor i in Γi,t=1 staying
as opposed to withdrawing. P (s∗, δi, u

j
i ) = Prob(θ > θcriti ( uji ) | si = s∗) can

be expressed as thus:

P (s∗, δi, u
j
i ) =

⎧⎪⎨⎪⎩
1 s∗ > uji +z + ε
(s∗− uji + ε)

2ε+z uji - ε < s
∗ ≤ uji +z + ε

0 s∗ ≤ uji - ε

⎫⎪⎬⎪⎭
with P (s∗, δi, u

j
i ) being strictly monotonically increasing in s

∗ in [ uji − ε,

uji+z+ε] and having the property that, as s
∗ −→ uji+z+ε, P (s

∗, δi, u
j
i ) −→ +1

and as s∗ −→ uji −ε, P (s∗, δi, uji ) −→ 0. Notice that, with parameters s∗, ε and
z, P (s∗, δi, uBi ) < P (θ∗, δi, uGi ), u

B
i > uGi . This is simply saying that, with a

bad realisation of the common macroeconomic fundamental, the probability that
depositor i in Γi,t=1 will choose to stay as opposed to withdrawing decreases.
But the exact probability value from the probability function P (s∗, δi, u

j
i ) char-

acterising this decision cannot be known ex-ante because it depends on variable
uji , the actual value of which is not common knowledge. Since we are inter-
ested in the {uji - ε < s

∗ ≤ uji +z + ε} space with probability function being
(s∗− uji + ε)

2ε+z , it can be seen that, for any given realisation of δi and of u
j
i which

gives rise to probability P ∗ ⊂ P (θ∗, δi, u
j
i ) =

(θ∗− uji + ε)
2ε+z , θ∗ is higher with

uBadi rather than with uGi .
In particular, for the good and bad states, we have the following:

P (s∗, δi, uBadi )=

⎧⎪⎨⎪⎩
1 s∗ > uBadi +z + ε
(s∗− uBadi + ε)

2ε+z uBadi - ε ≤ s∗ ≤ uBadi +z + ε

0 s∗ > uBadi - ε

⎫⎪⎬⎪⎭
for bad state
and
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P (s∗, δi, uGi )=

⎧⎨⎩
1 s∗ > uGi +z + ε
(s∗− uGi + ε)

2ε+z uGi - ε ≤ s∗ ≤ uGi +z + ε

0 s∗ > uGi - ε

⎫⎬⎭
for the Good state
Let P (s∗, δi) = kP (s∗, δi, uBadi ) + (1− k)P (s∗, δi, uGi ). Then, for particular

values of s∗,we have the following corresponding values for P (s∗, δi) :
uGi - ε ≤ s∗ < uBadi - ε , P (s∗, δi) = (1− k)

h
(s∗− uGi + ε)

2ε+z

i
+ k [0]

= (1− k)
h
(s∗− uGi + ε)

2ε+z

i
uBadi - ε ≤ s∗ < uGi +z + ε , P (s∗, δi) = (1− k)

h
(s∗− uGi + ε)

2ε+z

i
+

k
h
(s∗− uBadi + ε)

2ε+z

i
=

s∗+e+(k(uG−uBad)−uG)
2ε+z

uGi +z + ε ≤ s∗ < uBadi +z + ε, P (s∗, δi) = (1− k) [1]+k
h
(s∗− uBadi + ε)

2ε+z

i
= k

h
(s∗− uBadi + ε)

2ε+z

i
+(1− k)

It is easy to verify that, for any particular realisation of s∗ in interval£
uGi − ε, uBadi + z + ε

¤
, ∂P (s

∗,δi)
∂s∗ > 0. In particular,

uGi - ε ≤ s∗ < uBadi - ε , ∂P (s∗,δi)
∂s∗ = 1−k

2ε+z > 0

uBadi - ε ≤ s∗ < uGi +z + ε , ∂P (s∗,δi)
∂s∗ = 1

2ε+z > 0

uGi +z + ε ≤ s∗ < uBadi +z + ε, ∂P (s∗,δi)
∂s∗ = k

2ε+z > 0
Thus, the location of s∗i , in the uniformly-distributed θ − space, is in! u-

enced the the state of the common macroeconomic fundamental. For a bad
realisation of the common fundamental, s∗i moves closer to 1 in the [0, 1] space -
meaning that a greater section of the tail of s∗i in [0, 1] space is exposed - bank
i has a greater probability of failing, for a given realisation of its idiosyncratic
fundamental, θi . This completes the proof.

Theorem 24 (Unique characterisation of {x∗A (.) , θ∗A (.)} in ΓA,t=1 and of
{x∗B (.) , θ∗B (.)}in ΓB,t=1)
Given σi(Θ

A
i,t=1) → ai ² Ai = {W,S} and σi(Θ

B
i,t=1) → ai ² Ai = {W,S}

for depositors in ΓA,t=1and in ΓB,t=1 respectively, and, given the de&nition of
perfect bayesian equilibrium we adopt as above, we can summarise the algorithm
that traces the equilibrium values of {x∗A (.) , θ∗A (.)} and of {x∗B (.) , θ∗B (.)} as
follows:

Algorithm tracing equilibrium values of x∗A (.) , θ
∗
A (.) , x

∗
B (.) , θ

∗
B (.) :

For depositors in ΓA,t=1, σi(ΘAi,t=1) =
½

W if si < s∗

S if si ≥ s∗
¾

and θ∗A (.) solves

⎧⎪⎪⎨⎪⎪⎩
ΠA(θ

∗
A (.) , θ

∗
B (.) , ...) = 0

and δi[θ, θ
∗] =

⎧⎨⎩
1 θ < θ∗ − ε
1
2 +

(θ∗−θ)
2ε θ∗ − ε ≤ θ < θ∗ + ε

0 θ ≥ θ∗ + ε

⎫⎬⎭
⎫⎪⎪⎬⎪⎪⎭

where ΠA(θ
∗
A (.) , θ

∗
B (.) , ...) = 0 is the expected utility for staying and is given

by: ΠA(θ
∗
A (.) , θ

∗
B (.) , ...) =
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For depositors in ΓB,t=1, σi(ΘBi,t=1) =

⎧⎪⎪⎨⎪⎪⎩
W if ( ΩA = {FA}) ∩ ( si ≤ s∗)
S if ( ΩA = {SA}) ∩ ( si ≥ s∗)
S or W if

½
either

¡
( ΩA = {SA}) ∩ ( si < s

∗)
¢

or
¡
( ΩA = {FA}) ∩ ( si > s∗))

¢ ¾
⎫⎪⎪⎬⎪⎪⎭

and θ∗B (.) solves

⎧⎪⎪⎨⎪⎪⎩
ΠB(θ

∗
A (.) , θ

∗
B (.) , ...) = 0

and δB [θ, θ
∗] =

⎧⎨⎩
1 θ < θ∗ − ε
1
2 +

(θ∗−θ)
2ε θ∗ − ε ≤ θ < θ∗ + ε

0 θ ≥ θ∗ + ε

⎫⎬⎭
⎫⎪⎪⎬⎪⎪⎭

where ΠB(θ
∗
A (.) , θ

∗
B (.) , ...) = 0 is given by

The derivation of the unique threshold for each bank can also be found in
other models in the literature. Dasgupta(2003) obtains similar results, albeit
with a more complex payoff structure. The existence of the overlapping net-
works structure of &nancial contracts that tie the banks together ( through the
interbank market in deposits) can explain contagion as a unique phenomenon.
The failure of bank A means that depositors in ΓB,t=1,suffer a loss of claims
due to them. As a result, their behaviour changes. Other papers in the liter-
ature do get the uniqueness result: Goldstein and Pauzner (2003) endogenise
the probability of bank runs and relate that probability to the features of the
demand-deposit contract. In their paper, as second-best solution, the optimal
contract is featured by a trade-off between risk-sharing (efficiency) and the (en-
dogeneous) probability of bank runs (instability).

The novelty of these papers is that they rationalise the case for unique
equilibrium in the coordination game facing depositors, even in the absence of
global strategic complementarities. The uniqueness result of Carlsson and Van-
Damme(1993) and Morris and Shin (1998),(1999), necessarily rely on the exis-
tence of (global) strategic complementarities/supermodularities in coordination
games. As we have seen in section 2.3, assumption (A.5), banking models are not
featured by supermodularities in the payoff structure - above some threshold,
decisions become strategic substitutes. Nonetheless, the innovative approach
of Dasgupta(2003) and of Goldstein-Pauzner(2003) models is that they show
that through the existence of (1) single-crossing property in the payoff struc-
ture and (2) an error technology that satis&es the Monotone-Likelihood Ratio
Property(MLRP), a unque result can exist even in the absence of strategic com-
plementarities. We have formalised their approach and adopted it within the
speci&c con&nes of our model. Others...

5.1 Mechanics of Beliefs updating

The re-assessment of the beliefs system from the prior distribution ζ =
©
i = {A,B} ;P (uBadi ), P (uGi )

ª
to the posterior distribution ζ0= ©i = {A,B} ;P (uBadi | ΩA), P (uGi | ΩA)

ª
takes
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place along the equilibrium pathway depicted by the Perfect Bayesian Equilib-
rium that we formally explicated in section 4.3. The analysis was however
constrained to some general form of Bayesian updating process, without ex-
plicit reference to the intrinsic stochastic properties of the updating process. In
this section, we will add statistical structure to the updating process, elaborate
on the stochastic properties of the resulting informational generating process.
We focus on the Bayesian Learning process between ΓA,t=1 and ΓB,t=1 as the
! ow of public information that leads to a revised assessment of the state of the
common macroeconomic fundamental. The learning process does not focus on
depositors�private signals because each depositor i in Γi,t=1 receives his private
signal only once in Γi,t=1and there is no evolution of private signals over time40.
Furthermore, by the assumption that 2ε ≤ min [uG, 1− uG − z], each depositor
i has a private signal which is of minimal precision.

The updating mechanism thus concerns only parameter uji , i = {A,B}, j =
{G,B}. The actual realisation of uji is not apriori known to depositors in ΓA,t=1
and ΓB,t=1 . But upon observing ΩA = {SA, FA}, depositors in ΓB,t=1 have an
extra information on uji . Since they do not observe what is triggering the event
in the space ΩA, they face a statistical inference problem. Any revised version of
the state uji , conditional upon observing the event in the space ΩA, constitutes
the learning process in our set-up.

To keep the model analytically tractable41, we shall place a few restrictions
on the apriori distribution, ζ =

©
i = {A,B} ;P (uBi ), P (uGi )

ª
: Let P (uBadi ) = k

and P (uGi ) = 1−k. The other properties of ζ =
©
i = {A,B} ;P (uBadi ), P (uGi )

ª
still hold, as elaborated in section 3.2. De&ne the partitioned space events, SA
and FA as follows: SA : {(θA, u) : θA ≥ θ∗A(u)} and FA : {(θA, u) : θA < θ∗A(u)}
with the qualitative features of {SA, FA} being as in section 3.2. Since θA is
uniformly distributed on [0, 1], it follows that Prob(θA > θ∗A(u)) = 1 − θ∗A(u)
and that Prob(θA ≤ θ∗A(u)) = θ∗A(u) . With the property that, if uBadi > uGi ,
then θ∗i (uBadi ) > θ∗i (uGi ), i = {A,B}, we can argue that Prob(θA ≤ θ∗A(uB)) =
θ∗A(uBad) > Prob(θA ≤ θ∗A(uG)) = θ∗A(uG). The following probability assess-
ments subsequently hold:

Pr ob(FA | u = uB) = θ∗A(u
Bad)

Pr ob(FA | u = uG) = θ∗A(u
G)

Pr ob(SA | u = uB) = 1− θ∗A(u
Bad)

Pr ob(SA | u = uG) = 1− θ∗A(u
G)

40 In this sense, the learning process embodied in our model differs from that of Angeletos,
Hellwig and Pavan (2002) in that they focus on how the evolution of both, the private and
the public signal, will affect the relative precisions of the signals.
41Note that, throughout the analysis, we will be focusing on the equilibrium path traced

out by the Perfect Bayesian Equilibrium concept.
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with θ∗A(uBad) > θ∗A(uG) and 1 − θ∗A(uBad) < 1 − θ∗A(uG). What is the
updating process for each depositor i in ΓB,t=1 ? Using Bayes rule, we have the
following revision estimates conditional upon observing an event in ΩA :

Pr ob(u = uBad | FA) = P (FA | u = uBad)P (u = uBad)
P (FA | u = uBad)P (u = uBad) + P (FA | u = uG)P (u = uG)

(7)

=
k.θ∗A(uBad)

k.θ∗A(uBad) + (1− k)θ∗A(uG)

Similarly,

Pr ob(u = uBad | SA) = P (SA | u = uBad)P (u = uBad)
P (SA | u = uBad)P (u = uBad) + P (SA | u = uG)P (u = uG)

(8)

=
k.(1− θ∗A(u

Bad))

k.(1− θ∗A(uBad)) + (1− k)(1− θ∗A(uG))

Analoguously, Prob(u = uG | SA) = 1−Pr ob(u = uBad | SA) = (1−k)(1−θ∗A(uBad))
(1−k)(1−θ∗A(uBad)) + k(1−θ∗A(uG))

and Prob(u = uG | FA) = 1− Pr ob(u = uBad | FA) = (1−k)θ∗A(uG)
(1−k)θ∗A(uG) + kθ∗A(u

Bad)
.

The unconditional probability of bad state is given as: Pr ob(u = uBad) = k =
1− Pr ob(u = uG). This yields a proposition:

Proposition 25 Upon observing the failure of bank A, the probability that the
common macroeconomic fundamental was in its bad state is more likely than un-
conditionally. Thus, (1) Pr ob(u = uBad | FA) > Pr ob(u = uBad) > Pr ob(u =
uBad | SA) Similarly, conditional on observing the success of bank A, the proba-
bility that the common macroeconomic fundamental was in its good state is more
likely than unconditionally. Thus, (2) Pr ob(u = uG | SA) > Pr ob(u = uG) >
Pr ob(u = uG | FA)

Proof. (1)With the all-important property that, if uBad > uG, then θ∗A(uBad) >

θ∗A(uG), it can be inferred that θ∗A(uBad) > k.θ∗A(uBad) + (1 − k).θ∗A(uG),
0 ≤ k < 1. Thus, θ∗A(u

Bad)
k.θ∗A(uBad)+(1−k).θ∗A(uG) > 1 ⇒ k.θ∗A(u

Bad)
k.θ∗A(uBad)+(1−k).θ∗A(uG) > k.
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This implies that: Pr ob(u = uBad | FA) = k.θ∗A(u
Bad)

k.θ∗A(uBad)+(1−k).θ∗A(uG) > k. Subse-

quently, Pr ob(u = uBad | FA) > Pr ob(u = uBad) where Pr ob(u = uBad) = k.
Similarly, if uBad > uG, then 1 − θ∗A(uBad) < 1 − θ∗A(uG). Thus, it must be
the case that 1 − θ∗A(uBad) < k.[1 − θ∗A(uBad)] + (1 − k).[1 − θ∗A(uG)]. Thus,

1−θ∗A(uBad)
k.[1−θ∗A(uBad)]+(1−k).[1−θ∗A(uG)] < 1 =⇒

k.[1−θ∗A(uBad)]
k.[1−θ∗A(uBad)]+(1−k).[1−θ∗A(uG)] < k. Sub-

sequently, Pr ob(u = uBad | SA) < Pr ob(u = uBad) where Pr ob(u = uBad) = k.
This establishes the general result that: Pr ob(u = uBad | FA) > Pr ob(u =
uBad) > Pr ob(u = uBad | SA)
(2) can be proved in a similar way. With θ∗A(uG) < θ∗A(uBad) ⇒ (1 −

k)θ∗A(uG) < (1 − k)θ∗A(uBad). We can express θ∗A(uG) as a linear function:
θ∗A(u

G) < kθ∗A(u
G) + (1 − k)θ∗A(uBad). This implies that θ∗A(u

G)
kθ∗A(uG)+(1−k)θ∗A(uB)

< 1. Multiply both sides by (1 − k) yields: (1−k)θ∗A(uG)
kθ∗A(uG)+(1−k)θ∗A(uBad) < (1 − k).

But (1−k)θ∗A(uG)
kθ∗A(u

G)+(1−k)θ∗A(uBad) = Pr ob(u = uG | FA) and (1 − k) = Pr ob(u =

uG). This therefore suggests that Pr ob(u = uG | FA) < Pr ob(u = uG). With
θ∗A(uG) < θ∗A(uBad)⇒ 1−θ∗A(uG) > 1−θ∗A(uBad)⇒ (1−k)[1−θ∗A(uG)] > (1−
k)[1−θ∗A(uBad)]. In turn, [1−θ∗A(uG)] > k

£
1− θ∗A(u

G)
¤
+(1−k)[1−θ∗A(uBad)],

which implies that [1−θ∗A(uG)]
k[1−θ∗A(uG)]+(1−k)[1−θ∗A(uBad)]

> 1. Multiplying both sides

by (1− k) yields (1−k)[1−θ∗A(uG)]
k[1−θ∗A(uG)]+(1−k)[1−θ∗A(uBad)]

> (1 − k). As derived above,
(1−k)[1−θ∗A(uG)]

k[1−θ∗A(uG)]+(1−k)[1−θ∗A(uBad)]
= Pr ob(u = uG | SA) and (1−k) = Pr ob(u = uG).

This suggests that Pr ob(u = uG | SA) > Pr ob(u = uG). We have therefore
proved the general result for (2), that, Pr ob(u = uG | SA) > Pr ob(u = uG) >
Pr ob(u = uG | FA)

This means that, conditional on observing the success of bank A, rational
depositors in ΓB,t=1 infer that the state of the common fundamental is more
likely to be in its good state than unconditionally. Thus, upon observing the
performance of bank A, depositors in ΓB,t=1 adjust their expectations of the
likelihood of the state of the common macroeconomic fundamental, such that
the good state is more likely to be associated with the good event. The above
proposition gives way to a yet more important proposition - one that con-
tains the stochastic attributes of the informational system and that will be used
throughout the rest of this paper for analysing the different forms in which
dynamic equilibria may manifest themselves into:

Corollary 26 (Stochastic Properties of Beliefs Updating Mechanism)
Since Pr ob(u = uBad | FA) > Pr ob(u = uBad) > Pr ob(u = uBad | SA), it can be

seen that Pr ob(u=u
Bad|SA)

Pr ob(u=uBad|FA) < 1. Let L
B(uBad,ΩA) =

Pr ob(u=uBad|SA)
Pr ob(u=uBad|FA) . It follows

that LB(uBad,ΩA) =
Pr ob(u=uBad|SA)
Pr ob(u=uBad|FA) follows the Monotone Likelihood Ratio
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Property (MLRP), since it is decreasing in u. This implies that an event in space
ΩA has some important stochastic informational content - the event is partially
informative of the state of the common macroeconomic fundamental. Depositors
in ΓB,t=1 can learn on the state of the common macroeconomic fundamental,
upon observing an event in space ΩA. A similar property can be derived for
the case in which u = uG. Here, LG(uG,ΩA) =

Pr ob(u=uG|FA)
Pr ob(u=uG|SA) ,would be strictly

decreasing in u. The MLRP is also satis&ed with u = uG.

5.2 An analytically-solvable version of the model

The &ndings of the previous sections can describe the Perfect Bayesian Equi-
librium of the game between ΓA,t=1 and ΓB,t=1as a set of monotone equilibria

such that (1) Each depositor i &nds it optimal to withdraw in Γi,t=1, i = {A,B}
if si < s∗ and stays if si ≥ s∗, (2) bank i fails in Γi,t=1, i = {A,B} if θ < θ∗(u)
and does not fail if θ ≥ θ∗(u).

We can easily see, from the above, that the different possibilities of an event
in bank A being associated with an event in bank B can be represented by a set
of set of equations that characterise the probability of the events taking place . If
we represent {FA,FB , SA, SB,ΘBi,t=1} analoguously to what we have done before
in the previous section, then we may represent the probability of a failure in bank
A being associated with a failure in bank B as follows: Pr(FB | ΘBi,t=1, FA,) =
Pr(θB < θ∗B(u) | ΘBi,t=1, θA ≥ θ∗A(u)), where Pr(FB | ΘBi,t=1, FA,) denotes the
probability of bank B failing, given the informational endowment of depositors
in ΓB,t=1 and given the observed public event in bank A. This can be repre-
sented as follows: Pr(FB | ΘBi,t=1, FA,) = Pr(FB | {u = uBad} ∩ FA) Pr({u =
uBad} | FA)+ Pr(FB | {u = uG} ∩ FA) Pr({u = uG} | FA). Since we know the
values of Pr({u = uBad} | FA) and Pr({u = uG} | FA), we can replace these
values in the above expression and get a much simpli&ed version of Pr(FB |
ΘBi,t=1, FA,) : Pr(FB | ΘBi,t=1, FA,) =

n
kθ∗A(u

Bad)θ∗B(u
Bad) + (1−k)θ∗A(uG)θ∗B(uG)

kθ∗A(u
Bad) + (1−k)θ∗A(uG)

o
.

Similarly, Pr(FB | ΘBi,t=1, SA,) = Pr(θB < θ∗B(u) | ΘBi,t=1, θA < θ∗A(u)), where
Pr(FB | ΘBi,t=1, SA,) denotes the probability that bank B fails, given that it
is observed that bank A has survived an attack before. Similarly, Pr(FB |
ΘBi,t=1, SA,) = Pr(FB | {u = uBad} ∩ SA) Pr({u = uBad} | SA)+ Pr(FB | {u =
uG} ∩ SA) Pr({u = uG} | SA). We can thus represent it as follows: Pr(FB |
ΘBi,t=1, SA,) =

n
k(1−θ∗A(uBad))θ∗B(uBad)+(1−k)(1−θ∗A(uG))θ∗B(uG)

1−kθ∗A(uBad)−(1−k)θ∗A(uG)
o
. Events Pr(SB |

ΘBi,t=1, FA,) and Pr(SB | ΘBi,t=1, SA,) can be derived analoguously in terms of
parameters of our model. For simplicity, Pr(SB | ΘBi,t=1, FA,) = 1 − Pr(FB |
ΘBi,t=1, FA,) = 1 −

n
kθ∗A(u

Bad)θ∗B(u
Bad) + (1−k)θ∗A(uG)θ∗B(uG)

kθ∗A(uBad) + (1−k)θ∗A(uG)
o
. Likewise, Pr(SB |
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ΘBi,t=1, SA,) = 1−Pr(FB | ΘBi,t=1, SA,) = 1−
n
k(1−θ∗A(uBad))θ∗B(uBad)+(1−k)(1−θ∗A(uG))θ∗B(uG)

1−kθ∗A(uBad)−(1−k)θ∗A(uG)
o
.

To arrive at equilibrium values of s∗ and θ∗, we need to relate the probability
of events (as described above) with the critical mass of depositors needed to
trigger an attack in Γi,t=1, i = {A,B}, where the critical mass was previously
de&ned as the point in the idiosyncratic fundamental space where θ∗i = δ(θ∗i ).
We summarise the set of equilibrium conditions and relate them to the events
happening in banks A and B as follows:

Claim 27 42For events taking place in ΓA,t=1 and ΓB,t=1, the respective sets

of equilibrium for {s∗A, s∗B} and {θ∗A, θ∗B} can be traced out as a function of the
probability of these events taking place. In each case, the equilibrium is found
by solving either of the following events:

(1) Pr(FB | ΘBi,t=1, FA,) =
n
kθ∗A(u

Bad)θ∗B(u
Bad) + (1−k)θ∗A(uG)θ∗B(uG)

kθ∗A(uBad) + (1−k)θ∗A(uG)
o

(2) Pr(FB | ΘBi,t=1, SA,) =
n
k(1−θ∗A(uBad))θ∗B(uBad)+(1−k)(1−θ∗A(uG))θ∗B(uG)

1−kθ∗A(uBad)−(1−k)θ∗A(uG)
o

(3) Pr(SB | ΘBi,t=1, FA,) = 1−
n
kθ∗A(u

Bad)θ∗B(u
Bad) + (1−k)θ∗A(uG)θ∗B(uG)

kθ∗A(u
Bad) + (1−k)θ∗A(uG)

o
(4) Pr(SB | ΘBi,t=1, SA,) = 1−

n
k(1−θ∗A(uBad))θ∗B(uBad)+(1−k)(1−θ∗A(uG))θ∗B(uG)

1−kθ∗A(uBad)−(1−k)θ∗A(uG)
o

with the critical mass of depositors, θ∗i = δ(θ∗i ), i = {A,B}, in ΓA,t=1 and
ΓB,t=1

6 Financial Contagion

There is no �one-size-&ts-all�de&nition of &nancial contagion given by the lit-
erature. The existence of a common macroeconomic fundamental in our model,
nonetheless, complicates matters. There may be multiple bank failures due to
adverse macroeconomic fundamental, to which both banks are commonly ex-
posed to. But that does not necessarily mean that one bank failure is actually
causing the other. For instance, if the two banks have assets denominated in
one currency and liabilities denominated in another currency, a currency change
will affect both banks together in a similar way. This common failure is merely
due to common exposure to the exchange rate, and is not what we are primarily
concerned here.

To be able to de&ne &nancial contagion appropriately within the setup we
have adopted, it is important to stress on the cause-effect relationship that
42The unconditional probabilities are as follows: P (FA) = P (FA | u = uBad)P (u =

uBad) + P (FA | u = uG)P (u = uG)

P (FB) = P (FB | FA)P (FA) + P (FB | SA)P (SA)
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underpins the concept. Heuristically, we could view &nancial contagion as �an
event that occurs when the failure of bank A causes bank B to fail, when bank B
would not have failed otherwise�. Note the importance of the second part of the
statement �....when bank B would not have failed otherwise......�. This implies
that, in our de&nition, without bank A, bank B could fail for other reasons
(e.g its idiosyncratic fundamental is too low) or it could possibly not fail at
all. What the statement is really saying, is that, the performance of bank A, by
itself, will increase the likelihood of failure of bank B over what could possibly
have happened, without its presence. Before moving on further, we must &rst
elicit the conditions under which this would hold true. Then we shall formalise
the concept of contagion, through appropriate use of diagrams. Consider Figure
4:

Figure 4 - Idiosyncratic thresholds of Banks A and B

(Insert Figure 4 here from Appendix)

Figure 4 highlights the unique threshold in each bank. For the moment, let
us forget about the dynamics that would cause θ∗A and θ

∗
B( )to vary and, attempt

to situate what we have learned in the previous topic, in the above diagram.
Thus, initially, we set θ∗A = θ∗B( ) and, with slight abuse of the language, shall
refer to this as the autarky situation43 .

Quadrants 3 and 2 show similar results in both banks. Quadrant 3 depicts
the phenomenon of both banks failing (i.e θA < θ∗A , θB < θ∗B ( )) while quadrant
2 shows both banks succeeding or �not failing�( i.e θA ≥ θ∗A , θB ≥ θ∗B ( )).
Quadrants 1 and 4 show mixed result. The former depicts the success of bank
B but failure of bank A ( i.e θA < θ∗A , θB ≥ θ∗B ( )) while the latter shows the
reverse effects ( i.e θA ≥ θ∗A , θB < θ∗B ( )).

How would our concept of &nancial contagion &t into the diagram? Could
we possibly argue that contagion is an event that occurs in quadrant 3? Doing
so would merely show the joint occurrence of failures of bank A and B, but there
is nothing to tell us about the causation of the crises. Any permutation would
be possible in that quadrant. Bank B could fail for reasons other than failure
of bank A and vice versa. To get a proper representation of &nancial conta-
gion, we abstract from what may commonly be driving the performance of both
banks. This is done by controlling for the level of the common macroeconomic

43Autarky typically refers to absence of trade but here, it means that there is no interraction
among the banks. Depositors of each bank behave as if the other bank did not exist. Due to
identical endowments and similar returns structure, it is obvious that θ∗A = θ∗B( ).
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fundamental. The aim is to assess, mathematically, how the failure of bank
A, by itself, can cause the failure of bank B, after controlling for the common
fundamental. Thus, we must show that, whenever bank A fails ( i.e θA < θ∗A
), the probability of bank B failing, for a given level of macroeconomic funda-
mental, would be higher than θ∗B ( ). For each of the possible two realisations
of the common macroeconomic fundamental, this probability can be assessed.
What extra feature does the failure of bank A has on bank B�s threshold ? It

was previously shown that, upon failure of bank A, the trigger of bank B is ad-
justed in such a way that depositors in bank B are most likely to share a similar
fate to those of bank A, with the position of the threshold being dependent on
the realisation of the common macroeconomic fundamental. Taking the level of
the common macroeconomic fundamental as given, the cause-effect relationship
between failure of bank A and failure of bank B can be represented as events
Pr (θB ≤ θ∗B (.) | θA ≤ θ∗A ∩ u = uBad) and Pr (θB ≤ θ∗B ( ) | θA ≤ θ∗A ∩

u = uG) for the bad state and the good state of the common macroeconomic
fundamental respectively. More speci&cally, recall that Pr(θB ≤ θ∗B( ) | θA ≤ θ∗A
∩ u = uBad) ≡ θFAB,uBad .We referred to this as the threshold for bank B but com-
puted with conditional probability, Pr(u = uBad | FA), which we gave earlier as

k θ∗A(uBad)
k θ∗A(uBad) + (1−k)θ∗A(uBad) . Clearly, θ

FA
B,uBad

> θ∗B ( ), where θ
∗
B ( ) is computed as

in the autarky case. Similarly, we computed the event that bank B fails, condi-
tional on success of bank A and the state of the common fundamental being bad
as Pr(θB ≤ θ∗B( ) | θA > θ∗A ∩ u = uBad) ≡ θSAB,uBad . This refers to the threshold

of bank B, computed with conditional probability Pr(u = uBad | SA),which we
gave earlier as k (1−θ∗A(uBad))

k (1−θ∗A(uBad)) + (1−k)(1−θ∗A(uG)) . Clearly, θ
SA
B,uBad

≤ θ∗B ( ), where
θ∗B ( ) is computed as in the autarky case. We present the autarky thresholds
θ∗A, θ

∗
B ( ), θ

SA
B,uBad

and θFAB,uBad in the following diagram:

Figure 5 - thresholds θ∗A, θ
∗
B ( ), θ

SA
B,uBad

, θFAB,uBad and &nancial
contagion

(Insert Figure 5 here from Appendix)

Figure 6 in the Appendix gives us the analoguous representation for &nan-
cial contagion in case the state of the common macroeconomic fundamental is
good.The representation in the diagram enables us formalise the de&nition of
&nancial contagion as follows:
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De&nition 28 (Financial Contagion) For the part of the game between
ΓA,t=1 and ΓB,t=1 characterised by Strict Private Informational Dominance
(SPID) and the existence of a unique threshold in the depositors�game, &nancial
contagion is said to occur when:

Either (1) event
½
θA ∈

∙
θ− ,
−
θ

¸
, θB ∈

∙
θ− ,
−
θ

¸
: { θA ≤ θ∗A} ∩ { θ∗B(.) ≤ θB ≤ θFAB,uj}

¾
for a given macroeconomic state, uj

The probability of contagion is a weighted average of the above event, with
each weight corresponding to a particular state of the macroeconomic fundamen-
tal and is given as:

P (Contagion) = k
³
θFAB,uBad − θ∗B(uBad)

´µ
θ∗A − θ−

¶
+(1− k)

³
θFAB,uBad − θ∗B(uG)

´µ
θ∗A − θ−

¶
Or (2) event

½
θA ∈

∙
θ− ,
−
θ

¸
, θB ∈

∙
θ− ,
−
θ

¸
: { θA > θ∗A } ∩ {θSAB,uj ≤ θB ≤ θ∗B(.)}

¾
for

a given macroeconomic state, uj

The probability of contagion is a weighted average of the above event, with
each weight corresponding to a particular state of the macroeconomic fundamen-
tal and is given as:

P (Contagion) = k
³
θ∗B(uBad)− θSA

B,uBad

´µ−
θ − θ∗A

¶
+(1− k)

³
θ∗B(uG)− θSA

B,uG

´µ−
θ − θ∗A

¶

Notice that, in &gures 5 and 6, &nancial contagion can be represented as
the two shaded segments of the graphs. It is only in these two segments that
we can reasonably have a cause-effect relationship. For instance, assume that
the state of the common macroeconomic fundamental is bad. We have argued
that, when bank A fails, the trigger of bank B is revised upwards, taking into
account the fact that bad news have raised the trigger from θ∗B( ) to θFAB,uBad .
This extra increase in the trigger due to the event in bank A is what the shaded
segment on the left of &gure 5 is all about. Here, bad news about bank A,
have altered the behaviour of depositors in bank B, such that, given the level of
the common macroeconomic fundamental, bank B fails for a wider range of its
own fundamentals. The difference θFAB,uBad − θ∗B(uBad) represents this cause-
effect relationship. Point M in &gure 5, shows a case where failure of bank A
can cause bank B to fail. Notice that points below the horizontal (dotted) line
θ∗B(.),represent failure of bank B, even though bank A does not exist. Point N,
thus cannot represent &nancial contagion, because, even though both banks A
and B fail, bank B would have failed anyway, even without bank A�s presence.
A�s presence (and in particular, the event that befalls it e.g failure) have raised
the threshold of bank B, given that the common macroeconomic fundamental
is assumed to be in bad state, to θFAB,uBad . Any realisation of the fundamental,

lying between θ∗B(.) and θ
FA
B,uBad

, represent contagion. In the same token, success

of bank A will lower the trigger of bank B from θ∗B( ) to θSAB,uBad . That extra

fall in the trigger of bank B due to the event of bank A, also depicts &nancial
contagion (shown as the right hand shaded segment of &gure 5). All arguments
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we have put forward, so far in this section, concern the case when the state of
the common macroeconomic fundamental is in the bad state ( i.e u = uB ).
Ostensibly, the arguments also run through if the common fundamental was in
the good state ( i.e u = uG ). It simply suffices to compute thresholds θ

FA
B,uG

and

θSAB,uG with probabilities Pr(u = uG | FA) and Pr(u = uG | SA) 44 respectively
and all arguments will run through.

7 Practical Relevance and applications

Though the model of banking panic transmission highlighted in this paper is,
admittedly highly theoretical and has been drawn up with no particular real-
world example in mind, the model nonetheless has practical relevance and can
(hopefully) cast light into new ways that Central Banks and international in-
stitutions such as the International Monetary Fund (IMF), should design the
regulatory structure. We present the applicability of this paper with respect
to the following: demystifying important puzzles in the literature and policy
implications to improve on the regulatory setting of banks�activities.

7.1 Demystifying important puzzles

Surveying the empirical literature on &nancial contagion helps unearth two puz-
zles about &nancial contagion, which are inextricably linked to one another:

Puzzle 1: (Zero-Link issue) Why does the failure of one &nancial inter-
mediary sometimes lead to the failure of another intermediary when there is no
apparent physical or direct link between them?

Puzzle 2: (Clustering issue) Why does &nancial contagion not arbitrar-
ily spread from one institution to another, but rather seems to affect identical
institutions only?

Models of &nancial contagion that focus on direct link ( Allen and Gale
(2000) and Dasgupta (2004) ) do not explain the zero-link issue.The impor-
tance of that issue cannot be understated though. The essence of these models
of contagion is the existence of a direct link itself that lies at the heart of
spreading a crisis from one bank to another. For example,in Allen and Gale
(2000), the existence of a network of overlapping interbank claims provides the
key propagator channel, such that a bank failure means that another bank will

44We computed Pr(u = uG | FA) as k θ∗A(uG)
k θ∗

A
(uG) + (1−k)θ∗

A
(uG)

and Pr(u = uG | SA) as
k (1−θ∗A(uG))

k (1−θ∗
A
(uG)) + (1−k)(1−θ∗

A
(uG))
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surely suffer a loss of interbank claims. Hence, it is more likely to suffer from
the same fate as the &rst bank. If there were no &nancial contracts provided by
the interbank market for deposits as a way of insuring against regional liquidity
shocks, then there would no banking panic transmission. Dasgupta (2004) also
has the interbank market as the direct link between banks, although he also
allows sequential moves across banks. Nonetheless, the global games paradigm
he adopts, endogenises the probability of bank runs by showing the existence of
a unique equilibrium in the banks�idiosyncratic fundamental. Hence, absent
the direct link, then contagion cannot be de&ned. These weaknesses provided
by the �direct link�theories are not present in our model. We have showed that,
even though, there is no apparent direct link between banks, contagion may still
occur in equilibrium. Our model, which comes closer to the �pure contagion
theories�hence represent a Pareto improvement over the �Direct Link theories�,
as far as explanation of the zero-link issue is concerned.

Puzzle 2 has been widely documented by Aharony and Swary (1996), who
conducted a study of 33 US banks in the mid 1990s and found that the ex-
tent of negative impact of contagion is greater for banks that are similar to the
failed bank. Likewise, Ahluwalia(2000) shows that, for a sample of 19 countries
and three episodes of crises, a country�s vulnerability to contagious crises de-
pends on the visible similarities between this country and the country actually
experiencing the crisis. The models of Allen and Gale (2000) and Dasgupta
(2004) cannot explain the clustering issue: they both focus on identical banks
(though heterogeneous because of liquidity shocks) and the strength of connec-
tion provided by the direct link is same for all banks. In our model, identical
banks are those that are exposed to some common macroeconomic fundamental.
Thus,because of this common exposure, the dynamics of informational spillover
! ow is such that, depositors of the second bank rationally update their beliefs
about the state of the common macroeconomic fundamental - meaning that the
second bank is more likely to suffer the same fate as the &rst. If banks were not
linked to the common fundamental ( i .e were not identical), depositors of the
second bank would not have adjusted their beliefs in that way. We are thus,
able to capture that, only identical banks are likely to suffer the same fate. For
non-identical banks, the relationship between events happening at banks is not
that straightforward.

7.2 Regulatory Mechanism Design - Microprudential v/s
Macroprudential regulations

A great part of the literature on banking regulation ( or the design of optimal
regulatory framework for banking) tends to focus on the speci&c means to pre-
empt the likelihood of &nancial contagion. Whilst microprudential regulation
has received much attention and theoretical support, macroprudential regula-
tion has often been ignored in debates over what the appropriate regulatory
framework should be.
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Microprudential regulation concerns all the preventive measures taken at in-
dividual bank level, designed to ward off the possibility of a bank failure bieing
transmitted to the whole banking and &nancial system. It consists mainly of
�one-sided�policy measures45 either intended to protect the depositors of the
bank or as a general safety net designed to maintain the con&dence of all
stakeholders in the banking system. Deposit Insurance schemes characterise
the former set. Suspension-Of-Convertibility (SOC) and Lender-Of-Last-Resort
(LOLR) characterise the latter set. In �direct link�models of contagion, micro-
prudential regulatory means would work in pre-empting the spread of a banking
panic. The commonly help syndrome �Help one, Save all�works. For example,
if due to excess regional liquidity shocks, a bank faces a higher than normal
proportion of early withdrawals, the Central Bank, through the LOLR agency,
will intervene and earmark some emergency fund to help bridge the bank�s tem-
porary illiquidity problem46. By preventing the loss of claims in the other bank,
these one-sided measures help to ward off the possibility of a systemic risk. The
intuition is simple: if the interbank market is the main propagator of &nancial
crises, then it is the channel through which the crisis is prevented, when the
&rst bank receives funding through LOLR. However, note the following points:
(1) For the interbank market to work, it is necessary for the regional liquidity
shock to be negatively correlated across regions. If the regional liquidity shock
is positively correlated ( i.e all banks face high premature early withdrawals
at the same time), then LOLR does not work; (2) Microprudential measures
do not work effectively if the main reason for bank failure is some commonly
based fundamental that links both banks. For example, suppose two banks have
received &nancial contracts (lent) in dollars and have issued &nancial contracts
(borrowed from depositors) in euros. A depreciation of the dollar against the
euro, could negatively affect the balance sheet of both banks and lead to prema-
ture withdrawals by depositors in each bank. In this case, the interbank market
is to no avail; one-sided measures will also not likely work. What is needed is
some policy measures to target the common macroeconomic fundamental that
is commonly driving both banks�performance e.g limit the ! uctuation of the
dollar against the euro by designing some form of explicit exchange rate arrange-
ment that will achieve this goal of currency stability. In the South East Asian
crisis of 1997, the banking panic throughout the region occured because of the
banks�exposure to extreme exchange rate changes, which softened their balance
sheets and made them much more vulnerable and prone to bank runs. In in-
stances such as these, macroprudential regulation should be given the overriding
concern..
45We use the term �One-Sided�measure because we shall be assuming that the policy applies

only to the bank facing the crisis. There is no randomisation among the banks ( i.e good banks
or bad banks) and no economy-wide safety net
46Technically, a LOLR agency would intervene if (1) it reckons that the bank�s problem

is just temporary illiquidity but otherwise, is solvent in the long term; (2) it fears that the
failure of the bank could lead to the collapse of the whole banking and &nancial system. This
has prompted debate in the literature about whether the size of the bank matters for LOLR.
Rochet and Tirole (1996) argue that it is the amplitute of &nancial connections that matter,
not the bank size.
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In our paper, there is no initial unhedged liquidity shock as trigger of orig-
inal crisis in a bank. Rather, we focus on adverse information on bank�s port-
folio of returns as being prime catalyst, prompting a change in depositors�be-
haviour. As in models of &nancial crisis using the global games methodology,
increased transparency could help. Since beliefs of depositors are driven by the
idiosyncratic fundamentals of each bank, conditional on the state of the com-
mon macroeconomic fundamental, regulators should focus on what is driving
the triggers of the two banks: the common macroeconomic fundamental in or-
der to ward off a crisis or to minimise the probability of contagion. The second
bank will suffer the same fate as the &rst bank, with bayesian updating agents.
The main driver of this tale of common fates is the extra-stong exposure of
the banks to the common fundamental. In this case, controlling the common
macroeconomic variable would be helpful in minimising the possibility of mul-
tiple bank failure. If information is not available about the state of common
macroeconomic fundamental, regulators or the central bank should disclose this
information readily for more informed judgements.

The novel approach of our paper is that, by allowing for informational
spillovers in a sequential move game and by imposing restrictions on under-
lying coordination problems, we can see implications of the new structure for
regulatory measures used in the literature of bank runs. As in the global games
approach, bank runs are still caused by depositors withdrawing for fear of other
depositors withdrawing early. What is coordinating depositors�beliefs is their
bank�s fundamental. Microprudential regulatory measures still seem best at
pre-empting the likelihood of a crisis from existing in the &rst instance, by ef-
fectively acting as a mechanism that coordinates the beliefs of depositors on
the right equilibrium. However, because of the feedback mechanism implicit
in the informational spillover channel, we conjecture something much stronger:
microprudential measures (e.g LOLR) work best if they send a positive signal
on coordination possibilities to depositors of the second bank (i.e if they contain
an informational element that enables depositors of the second bank coordinate
on an outcome that prevents bank failure from happening at the second bank.)
In turn, a favourable outcome at the second bank, will make depositors of the
&rst bank less willing to withdraw. As a result, the coordinating behaviour of
depositors of the &rst bank, actually complements the institution of micropru-
dential measure, in favouring a good outcome at the &rst bank and, at the same
token, a good outcome at the second bank.

Contrast between the following two banking economies: one in which Suspension-
Of-Convertibility (SOC) is adopted by the &rst bank and another in which LOLR
is the prime external funding source. We conjecture that these one-sided mea-
sures play a vital signalling role that may radically alter the behaviour of depos-
itors in the second bank. A LOLR banking economy does better at eliminating
&nancial contagion because the measure may send a positive or negative signal
to depositors of the second bank47. On the other side, a SOC banking economy
47The signal could be described as thus: if depositors of the second bank observe the &rst
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may always send the wrong signals to second mover depositors48. Thus, even
though it prevents a failure at the bank that was initially facing a crisis, it ac-
tually creates a channel of contagion of its own. Thus , we may conclude the
following as far as microprudential measures : Microprudential measures may
work as a pivotal mechanism that coordinates the expectations of depositors on
the right outcome if and only if they send the right signals to depositors of the
second mover bank. In case they send the wrong signals, then the �Help one,
Save all�syndrome is broken: they may, on their own, help create an additional
channel of &nancial contagion.

This new implication for microprudential policy design is important, because
it tells us that, in sequential games with informational spillovers, there are
different ways of interpreting the implementation of that measure: instead of
acting as a coordination mechanism for depositors of the same bank, these
measures need to coordinate the expectations and beliefs of depositors across
different banks on the correct equilibrium. For that, it is imperative that positive
signals are sent.

8 Conclusion

In this paper, we have attempted to build a theoretical model of contagious
bank runs, which uses the informational spillover channel to explain the spread
of failures from one bank to another. The nature of the investment technology
complicates the coordination problem that depositors in each bank face. Fo-
cusing on informational spillover channel, endogeneously introduces two forms
of coordination in each bank: each depositor must coordinate his action with
other depositors of the same bank (contemporaneous complementarities) but
also, with depositors of the other bank (dynamic complementarities). In this
case, the interplay between fundamental uncertainty and strategic uncertainty,
which is crucial for global games approach to work in a coordination problem,
is seriously affected and leads to structural complications and obvious method-
ological problems. Nonetheless, we show that, by using the theoretical argument

bank receiving &nancial aid in the form of LOLR, they may interpret the information in two
ways: (1) Something is wrong about the &rst bank: Since the two banks are perceived to be
connected to the macro fundamental in varying degrees of connection strength, the second
bank may meet the same fate. So, they decide to withdraw now (Negative Signal)
(2) Con&dence is being maintained in the &rst bank through LOLR and its temporary

illiquidity problem is being solved. Therefore, nothing is going wrong (Positive Signal).
Notice that, in the case of the negative signal, the LOLR, being one-sided, has actually

created a channel of contagion of its own
48The Negative Signal associated with SOC comes from the fact that depositors of the

second bank may interpret the information in the following way: if something is wrong in the
&rst bank and depositors wishing to withdraw are not getting their dues, they may also not
get their dues, if their bank meets the same fate tomorrow. Thus, their best response is to
withdraw now. Just by suspending convertibility in one bank to try to limit multiple banking
failure, has led to a run on the second bank!
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centered around putting restrictions on relative complementarities, we can use
the global games methodology to analyse contagious bank runs with informa-
tional spillovers.Along the path dictated by the perfect bayesian equilibrium
concept, depositors need to coordinate their actions within their own bank and
across banks. Doing so enables us capture how the ! ow of information from one
bank to another affects the possibility of a coordinated attack in each bank and
contagiously spread a crisis across banks. Our analysis shows that Dasgupta
(2004)�s results are robust and intuitively very appealling: the probability of
occurrence of contagion is positive and contagious failures manifest themselves
as a unique equilibrium of a dynamic game with incomplete information. The
institutional setup we have adopted also enables us to go further: the intrinsic
features of contagious probabilities enable us to distinguish between contagious
bank failures and correlated bank failures in equilibrium. Doing so also has
the appealling features of explaining stylized facts of contagious bank failures,
which former papers in the literature seemed to sideline.
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                            APPENDIX 
 
 
 
 
 
 
Figure 1 : Segregation of  the θi - space into Strict and Weak 
dominance regions 
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Figure 2  : The relationship between idiosyncratic fundamental, 
common macroeconomic fundamentals and (risky) returns 
technology for a bank 
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                   Figure 3 (a) : Payoff to Staying  v/s  Payoff to withdrawing         
                                          for a depositor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
               Figure 3 (b) : Net Payoff to Staying for a patient depositor 
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Figure  4: Idiosyncratic fundamentals  ( ‘Autarky’ case) 
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Figure  5 : Idiosyncratic fundamentals for  θA

*, θB
*(.), θ B(FA , uBad),    

θ B(SA , uBad) 
 
‘Financial Contagion’ as a unique equilibrium - Case when 
macroeconomic fundamental is in Bad state 
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Figure  6 : Idiosyncratic fundamentals for θA

*, θB
*(.), θ B(FA , uG),       

θ B(SA , uG) 
  
‘Financial Contagion’ as a unique equilibrium - Case when 
macroeconomic fundamental is in Good state 
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