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Abstract

This paper develops a dynamic monopolistic competition model with het-

erogenous firms to analyze the effects of uncertainty on international trade. We

characterize a stationary equilibrium, with N symmetric countries, where firms’

productivities evolve stochastically over time. Our model retains the main re-

sults of previous recent papers like Melitz (2003) and Bernard, Eaton, Jensen

and Kortum (2003) and provides additional new predictions. Reentry export

costs generate hysteresis in export participation creating a band of coexistence

within the stationary distribution of firms’ productivities. The decision to export

becomes history-dependent and new entrants and incumbent firms might sustain

temporary negative profits before becoming profitable. Most importantly, the

model is very amenable to estimation and simulation, therefore representing a

useful tool for analyzing the effects of trade policies. Several moments, like aver-

age age, size and productivity of different categories of firms (exporters, entrants,

exiters, incumbents), the hazard rate of exiting or of becoming an exporter as a

function of age and others have closed-form solutions that are crucial for matching

static and dynamic features of the data.
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1 Introduction

Recent empirical studies, like Bernard and Jensen (1995), Clerides et al. (1998) and

Anderson (2005) suggest that successful theoretical frameworks for studying firms and

the decision to export should incorporate intraindustry heterogeneity in size and pro-

ductivity and take into account international trade costs. Firms are heterogeneous

in many respects: firms’ productivities differ widely even within narrowly defined

industries; exporting firms are, on average, more productive and bigger than nonex-

porting counterparts. International trade costs are large, even between apparently

highly integrated economies. Some costs are increasing in the amount shipped while

other costs are fixed and occur every time the firm tries to enter in a foreign market.

In the past couple of years, the literature on international trade has successfully

addressed some of these issues: Bernard, Eaton, Jensen and Kortum (2003)1 develop a

Ricardian model of plant-level export behavior while Melitz (2003) provides a model

based on monopolistic competition. These models represent an important step in

reconciling macro- and micro-level trade data but they are mainly static in nature.

Therefore, they don’t address dynamic features of the data like the fact that firm

productivity, size and exporting status change over time; firms’ decisions to export do

not depend only on current productivity; exporting firms coexist with nonexporting

firms even if they are observationally equivalent in terms of productivity, size or

other characteristics. Moreover, they do not explain other facts like the existence

of a measure of exporters that are less productive than nonexporters or the fact

that entrants or even incumbents might sustain temporary negative profits before

becoming profitable.

On the other side, the literature on firm dynamics has developed closed economy

models which allow for heterogeneity in the characteristics of firms. A recent contri-

bution in this respect is the work by Luttmer (2004) who proposes an analytically

tractable model of balanced growth that allows for extensive heterogeneity in the

technologies used by firms.

1BEJK from here on.
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In this paper, we propose a new model of international trade that, reconciling

the approaches from these two strands of literature, represents a natural evolution of

the first wave of new trade models and is consistent with more features of the data.

Building upon Melitz (2003) and Luttmer (2004), we construct a dynamic general

equilibrium model of trade among multiple countries that combines the following

four key ingredients: 1) firms compete globally to sell their differentiated product;

2) firms have heterogeneous productivity; 3) for each firm, productivity evolves over

time stochastically; 4) entry (or reentry) into the export market requires the firm to

sustain a sunk cost.

In this world, an entrepreneur makes an initial investment to set up a firm and

draws a productivity level from a common distribution. Production for the domestic

market starts even if (unlike in Melitz (2003)) initial profits are negative (as long

as they are not too negative) and continues until the sum of current profits and the

value of the option to exit are high enough. If firm productivity exceeds a cutoff level

it becomes profitable to sell the goods on foreign markets. In order to do that, the

firm must sustain a sunk cost which can be interpreted as the cost of establishing

distribution channels, learning about the foreign markets preferences and standards

and adapting to them, updating old export products. If, later on, productivity falls

under the level at which the firm started exporting, the entrepreneur prefers to keep

exporting until the value of current exporting profits plus the value of the option to

stop exporting is bigger than the value of the option of reentering the export market.

The equilibrium in an open economy is therefore characterized by the following:

in every country, 1) consumers maximize their intertemporal utility by choosing a

sequence of dynastic consumption of a composite good, made of available domestic

and foreign varieties, subject to the intertemporal budget constraint 2) there is a

closed-form stationary distribution of firms’ productivities and within it a band of

inaction; 3) while the distribution is stationary, new firms enter, incumbent firms

become more or less productive, export or stop exporting, eventually exit; 4) labor

and goods markets clear.
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An important aspect of the model provided in this paper is that it is easily

amenable to estimation and effectively exploits the advantages of panel dataset at

the firm or plant level. Closed-form solutions allow the derivation of several static

and dynamic moments that are useful for matching the model to the data: average

size, productivity and age of incumbents, entrants, exiters, exporters or nonexporters,

the hazard function for exiting or for becoming an exporter represent some examples.2

In this model, like in Melitz (2003) and BEJK (2003), firms that are more produc-

tive are bigger, both in terms of output and revenue, and are more likely to export.

However, participation into the export market is characterized by hysteresis. Hys-

teresis is defined as "a retardation of the effect when the forces acting upon a body

are changed (as if from viscosity or internal friction)"3 and in our context means

that export participation is history-dependent. The presence of hysteresis has been

documented by, among others, Roberts and Tybout (1997) and is important in un-

derstanding why trade policies might have different effects in different countries or in

the same country at different stages of its evolution and why even temporary policies

might have permanent effects. The presence of hysteresis implies also that, as we

observe in the data4, despite being more productive on average, some exporters are

less productive than some nonexporters. Our model departs from Melitz (2003) also

in predicting that new firms might sustain initial negative profits and, only later on,

become profitable. As observed in the data, the stationary productivity distribution

follows a Pareto density in the upper tail but it’s increasing in the lower tail, implying

that there are fewer small firms than would be the case if Zipf’s law was satisfied.5

The structure of the paper is as follows. In the next section, we discuss some facts

2Calibration and simulation of the model with Chilean and Colombian data are the subject of

ongoing research.
3Quote from Webster’s Seventh New Collegiate Dictionary.
4See Irrarazabal and Opromolla (2005) for Chile, BEJK (2003) for the USA.
5 In terms of the distribution, this means that the probability that the size (that in our model

is directly connected to productivity) of a firm is greater than some z∗ is proportional to 1/z∗:

P (z > z∗) = α/ (z∗)θ, with θ ≃ 1. See Simon and Bonini (1958), Gabaix (1999), Axtell (2001) and

Cabral and Mata (2003) for discussions of firm size distribution, Zipf’s law and its empirical evidence.
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Table 1: Export Status Transition Matrix, Average 1990-96

export in t+ 1 do not export in t+ 1 exit in t+ 1
export in t .84 .12 .04
do not export in t .04 .89 .07

about firm productivity, profitability, entry and export participation using Chilean

data. In section 3, we describe the building blocks of the economy under autarky.

In section 4, we describe a multi-country trade model under two alternative cost

assumptions. First, we solve for the trade equilibrium assuming that a firm can

costlessly entry and exit into the export market. Then, we introduce entry (and

reentry) costs and show how hysteresis arises in the context of international trade with

heterogeneous producers. Finally section 5, concludes and proposes some extensions

to the present framework.

2 Facts

We begin by presenting some empirical evidence to which we are going to refer to while

developing the theoretical model. We use data from the "Encuesta Nacional Industrial

Anual" (ENIA) conducted annually by Instituto Nacional de Estadistica (INE), the

Chilean government statistical office. ENIA is an unbalanced panel dataset covering

all Chilean manufacturing plants with ten or more workers. The dataset extends from

1979 to 1996, includes information on approximately 11,000 plants altogether, with

about 4,800 plants per year. It contains detailed information on production, value

added, sales, employment and wages (both white-collar and blue-collar), exports,

investment, depreciation, energy consumption, balance sheet information and other

plant characteristics. Data on plant-level exports were only collected after 1990.

We start by looking at persistence in export participation: Table 1 shows the

average 1-year transition matrix between export and nonexport status for the period

1990-1996.
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Figure 1: Ratio of Plant Labor Productivity to Overall Mean: Exporters vs. Nonex-

porters, 1992

Table 1 suggests the presence of a high degree of persistence in export status. Out

of 100 plants that export in year t, 84 plants keep exporting the next year, 12 plants

stop exporting but keep producing for the domestic market and 4 plants becomes

inactive. If plants were not exporting to start with, 4 plants start exporting in t+1,

89 plants keep selling their product on the domestic market only and 7 plants shut

down. We use this matrix to perform a simple test to check if the data are consistent

with ergodicity and find that the average ratio between the number of exporters and

the number of nonexporters is about 3.8, it’s declining over time and is quite close to

the ergodic ratio of 2.8.

A recurrent feature of the data is that exporters are on average more productive

than nonexporters. Figure (1), from Irrarazabal and Opromolla (2005), shows the

histogram of productivity by export status. Productivity is measured as value added

per worker and is normalized using the same overall (exporters and nonexporters)

mean productivity. The distribution of exporters productivity is shifted to the right

with respect to the productivity distribution of non-exporting plants. Value added

per worker at the average exporting Chilean plant is 85 percent higher than at the
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Table 2: Productivity Difference When Plants Start and Stop Exporting

Year Ln Productivity
When Start
Exporting

When Stop
Exporting

Productivity

Ratio(2)
p-value(1)

(Ha: diff = 0)
p-value(1)

(Ha: diff > 0)
1991 8.54 8.39 1.16 .28 .14
1992 8.70 8.61 1.09 .51 .26
1993 8.94 8.64 1.35 .04 .02
1994 8.97 8.71 1.30 .05 .02
1995 9.14 9.00 1.15 .34 .17
1996 9.32 9.23 1.09 .50 .25
Note: (1) Two-sample t test with equal variances; H0 : the difference between ln(productivity) when start

exporting and ln(productivity) when stop exporting is equal to zero; (2) exp(ln prodstart-ln prodstop);

average plant that does not export.

This result surpasses previous findings for U.S. and French data: BEJK show that

the productivity advantage of U.S. plants is about 33 percent overall while Eaton et al.

(2004) find that the French exporting firms’ value added per worker is 12.5 percent

higher than nonexporting counterparts. It’s interesting to note that even though

average productivity is higher for exporters there is a consistent measure of exporters

that are less productive than nonexporters.

The third fact that we present is related to entry and exit from the export market.

Tables (2) and (3) compare the average productivity and size of new exporters and

old exporters, that is, of plants that just started exporting and of plants that just

stopped exporting. We find some evidence in support of the hypothesis that plants

decision to enter the export market and to exit the export market does not rely on the

same reference productivity level. Average productivity of new exporters is always

higher than average productivity of old exporters, even though the difference passes

a two-sample t-test only during part of the sample period.

Figure (2) shows the size distribution of plants, measured in terms of employment,

in 1992. The size distribution follows a Power Law with exponent equal to one (Zipfs’

Law) if the plot of the natural logarithm of the number of plants above some size

level s against the natural logarithm of plants labor force results in a straight line
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Table 3: Size Difference When Plants Start and Stop Exporting

Year Ln Sales
When Start
Exporting

When Stop
Exporting

Sales

Ratio(2)
p-value(1)

(Ha: diff = 0)
p-value(1)

(Ha: diff > 0)
1991 13.90 13.55 1.42 .09 .05
1992 13.77 13.71 1.06 .80 .40
1993 14.00 13.36 1.90 .01 .00
1994 14.06 13.32 2.10 .00 .00
1995 14.28 14.12 1.17 .49 .25
1996 14.23 14.01 1.25 .27 .14
Note: (1) Two-sample t test with equal variances; H0 : the difference between ln(sales) when start

exporting and ln(sales) when stop exporting is equal to zero; (2) exp(ln salesstart-ln salesstop);

with slope equal to minus one.6 The data follow Zipfs’ law quite closely for most of

the size range with two exceptions: there are fewer very small and very big firms than

what would be consistent with Zipf’s law. Keeping in mind these and other features

of the data, we now proceed to outline the model.
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Figure 2: Firm Size Distribution, 1992

6The size s of a plant is distributed as a power law with exponent α and minimum size s0 if the

density of s is f(s) = αsα0 s
−α−1 (s ≥ s0, α > 0). Suppose that N is the number of plants. The rank

of all firms in the sample is r(s) = N
(
s0
s

)α
where the rank is decreasing in the size of the plant.

Taking natural logs leads to ln r(s) = c− α ln(s) where c = lnN + α ln(s0).
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3 Set Up of the Model

3.1 Preferences

Time is continuous. Let Ωh be the set, of measure L, of infinitely-lived consumers. The

economy consists of one sector that produces differentiated products. Each consumer

is endowed with one unit of labor at every point in time that is supplied inelastically.

The wage is normalized to one. Goods are perishable and hence can only be used for

consumption. The representative consumer has preferences over sequences {Ct}t≥0 of

a composite goods given by:

E

[∫ ∞

0
e−ρtU(Ct)dt

]
(1)

where ρ is the time-discounting rate.

In the equilibrium to be defined later there will be a measure Ωt of differentiated

goods available at time t and indexed by u. The composite goods is defined as

Ct =

(∫
ct(u)

σ−1
σ du

) σ
σ−1

where σ > 1 is the elasticity of substitution between any two differentiated goods.

The representative consumer chooses ct to minimize the cost of acquiring Ct given

a standard present-value budget constraint. Wealth consists of claims to firms and

labor income. As a result,

ct(u) = Ct

[
pt(u)

Pt

]−σ

(2)

with the corresponding consumption-based price index

Pt =

[∫
pt(u)

1−σdu

] 1
1−σ

(3)
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3.2 Production

There is a continuum of firms, of measure M , each choosing to produce a distinct

variety of the goods using labor as input.7 At age a, a firm employs la units of labor to

produce eza la units of the goods. For simplicity, we will refer to za as the productivity

of the firm.

All firms share the same overhead per period fixed cost fd > 0, constant over

time and age. A firm must exit if this fixed cost is not paid and exit is irreversible.

Productivity evolves, independently across firms, according to a Brownian motion

with drift α and diffusion coefficient ξ,

za = z̄ + αa+ ξBa (4)

where {Ba}a≥0 is a Wiener process and z̄ is the initial productivity of a firm. The

initial productivity z̄ is drawn from a time-invariant probability density g(z̄). After

entry, the trend of log productivity is determined by α.

A monopolistic competitive producer, with productivity z, offers the product ac-

cording to the following pricing rule

p(za) =
m̄

ez
(5)

where m̄ = σ/(σ − 1) is the fixed markup. Firm revenue is

r(za) = R

(
p(z)

P

)1−σ

(6)

where R is aggregate expenditure on the composite good. Firm profits are then

π(z) = r(z)− l(z)− fd =
r(z)

σ
− fd

where r(z)
σ represents variable profits. Using (5) and (6) we can see that profits depend

also on aggregate price and revenue:

π(z) =
R

σ

(
m̄−1Pez

)σ−1 − fd (7)

7Since we will consider a stationary equilibrium where all aggregate variables are constant, from

now on we drop the time subscript in order to simplify the notation.

10



A more productive firm charges a lower price (since marginal costs are lower and

the markup is constant), is bigger both in terms of output and revenue (since lower

price means higher demand and demand is elastic), and earns higher profits than a

less productive firm (since variable profits are a constant fraction of firm’s revenue).

Note that the productivity cutoff z0 at which current profits are zero is

ez0 =
m̄

P

(
σfd

R

) 1
σ−1

This cutoff is decreasing in the price level P (since wage and the markup are the same

for every firm, the price index is really a measure of the degree of competition that

the firm has to face in order to sell its product) and in the level of expenditure on

differentiated goods R. It is increasing in the fixed cost fd and in the elasticity of

substitution σ (provided that R > σfd, when goods become more substitutable, price

deviations from the general price have bigger effects).

Using the price rule (5), the demand equation (2) and the production function we

can find the labor demand of a firm,

l(z) = C(ez)σ−1m̄−σPσ (8)

which turns out to be a fraction 1
m̄ of the firm revenue

l(z) =
1

m̄
r(z)

3.3 Entry, Exit and the Stationary Distribution

In this section we derive the stationary distribution of firms’ productivities. We depart

from previous models used in international trade (see Melitz (2003), Chaney (2005),

and Eaton and Kortum (2002)) by using a model of industry equilibrium with dynamic

stochastic productivities similar to the one of Luttmer (2004). Contrary to Melitz

(2003), firms are subject to both ex-ante and ex-post uncertainty. Entry requires the

entrepreneur to sustain a sunk cost before being able to know the initial productivity

level. If the initial productivity is high enough the firm starts producing. After that,

productivity evolves over time according to (4) and the firm remains active until its
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value, given by the solution of an ordinary differential equation, is positive. A positive

drift coupled with a positive diffusion coefficient in (4) makes it worthwile to keep

producing even if current profits are negative. However, if profits become too negative

or if the firm receives a bad shock uncorrelated to productivity, exit takes place. We

begin by deriving the value of a firm as a function of its productivity level and we

then proceed by deriving the ergodic productivity distribution.

3.3.1 Entry and Exit

Incumbent firms, indexed by i ∈ ΩI , exit the industry when their productivity falls

below some threshold.8 Exit is irreversible. Firms exit because of productivity reasons

or because of bad shocks uncorrelated with productivity: these occur each period

with an exogenous probability δ. This allows the model to capture exit uncorrelated

to productivity and better match the data. A positive δ, in absence of population

growth, also allows for a stationary productivity distribution compatible with either

a positive or a negative drift in the stochastic process for productivity. The present

value of revenues, and therefore of variable profits, is finite if the combined discount

factor, given by the sum of the interest rate and the exogenous probability of exit δ,

is bigger than the drift of variable profits. The following assumption guarantees that

this is the case (see the Appendix).

Assumption 1: The preferences and productivity parameter satisfy

ρ+ δ > α(σ − 1) + ξ2(σ − 1)2/2

The value function of a firm with productivity z can be expressed as the sum of

operating profits over the interval (t, t+dt) and the continuation value beyond t+dt.

The value for a firm that discount flows at the interest rate r is

Vd(z) =
{
π(z)dt+ e−(r+δ)dtE [Vd(z + dz|z)]

}

8Recall that firms must sustain a positive fixed operating cost fd.
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Using Ito’s lemma and equation (7) for firm’s profits, we obtain an ordinary differential

equation in the range of z where a firm is not shut down:

(r + δ)Vd(z) =

(
R

σ

(
m̄−1Pez

)σ−1 − fd

)
+ αV ′d(z) +

1

2
ξ2V ′′d (z)

Since a firm has to pay a positive fixed operating cost, it is optimal to shut down

when productivity falls below some threshold zd. The value of a firm must be zero at

that point implying the following value matching and smooth-pasting conditions

Vd(zd) = 0

V ′d(zd) = 0

These conditions provide a complete characterization of the optimal policy of an active

firm, the associated value function and the critical value zd.
9 With these boundary

conditions, the value of a firm with productivity z is (see the Appendix)

Vd(z) =
fd

(r + δ)

β2
β2 − (σ − 1)

[
e(σ−1)(z−zd) − β2 − (σ − 1)

β2
− σ − 1

β2
eβ2(z−zd)

]
(9)

for z > zd, where β2 is the negative root of the characteristic polynomial (see the

Appendix). The value of the firm is increasing in z and can be nicely interpreted

as the sum of two components: the first two terms in Vd(z) reflect the expected

discounted present value of the profits flow while the third term represents the value

of the option to suspend the operation when the productivity falls below zd (see the

Appendix).

The exit productivity threshold zd is

ezd =
m̄

P

(
σfd

R

) 1
(σ−1)

γd (10)

where γd =
[
−β2
r+δ

1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)

β2−(σ−1)

] 1
(σ−1)

is less than one when the productivity

drift α is positive (see the Appendix). This implies that zd < z0, that is, incumbents

and new entrants remain active even if profits are currently negative, as long as they

9See Stokey (2005) "Brownian Models in Economics" lectures notes for more details.
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are not too negative. The intuition is that when z ∈ (zd, z0) the value of the firm

is still positive because the stochastic process for profits has a positive drift and

because of the option value to exit. By inspecting the above expression we see that

the barrier is inversely related to the aggregate price level. This will result critical

when we open the economy to international trade. A multilateral trade opening will

decrease the aggregate price level, therefore pushing the lower threshold zd up. This

will be interpreted as a selection effect associated with international competition.

Prior to entry firms are identical. To enter, they must make an initial investment

fe > 0 (measured in units of labor) which is thereafter sunk. Firms then draw their

productivity from a common distribution g(z̄) with continuous cdf G(z̄). Upon entry

a firm may decide to exit immediately and not produce (and not pay the fixed cost

fd). New firms will keep trying to enter the industry until the expected value of a firm

net of entry cost is zero, that is until the following free-entry condition is satisfied,

fe =

∫ ∞

zd

Vd(z̄)dG(z̄) (11)

3.3.2 The Stationary Distribution µ(z)

As in Melitz (2003), in order to determine aggregate variables we need an expres-

sion for the equilibrium distribution of productivities. We are going to characterize

a time invariant distribution of productivities with finite mean. In the stationary

equilibrium there is a measure of firms defined over the set of possible ages, initial

and current productivities. The density of this measure is Mµ(a, z, z̄) where µ(a, z, z̄)

is a probability density. The density Mµ(a, z, z̄) must satisfy the following version of

the Kolmogorov forward equation10

∂µ(a, z, z̄)

∂a
=
1

2
ξ2
∂2µ(a, z, z̄)

∂2z
− α

∂µ(a, z, z̄)

∂z
− δµ(a, z, z̄) (12)

10See Dixit and Pindyck (1994) for a derivation of the Kolmogorov forward equation using a discrete

random walk approximation.
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Potential entrants are sampling the distribution of initial productivity g(z̄). Suc-

cessful entry attempts are those for which z̄ > zd. This implies that the first boundary

condition of the equation above is

lim
a↓0

z∫

zd

µ(a, v, z̄)dv =





g(z̄)Ma

M z ≥ z̄

0 z < z̄

where Ma is the number of (attempting) entrants. Another condition is given by the

presence of the lower barrier zd: since firms exit at zd and no new firm enter with

a productivity level inferior to zd, we have that µ(a, zd, z̄) = 0 for all a > 0. The

solution to the above equation is then given by11

µ(a, z, z̄) = e−δaψ(a, z|z̄)g(z̄)Ma

M
(13)

for all a > 0 and z > zd, where

ψ(a, z|z̄) = 1

ξ
√
a

[
φ

(
z − z̄ − αa

ξ
√
a

)
− e

− 2α
ξ2
(z̄−zd)φ

(
z + z̄ − 2zd − αa

ξ
√
a

)]
(14)

After lengthy derivations (see the Appendix) we find that the probability density of

productivity conditional on a particular initial level z̄ is

µ(z|z̄) = θ

θ + θ∗



min
{
e(θ∗+θ)(z−zd), e(θ+θ∗)(z̄−zd)

}
− 1

eθ(z−zd)
(

eθ∗(z̄−zd)−1
θ∗

)



 (15)

while the following is the joint productivity and age probability density conditional

on a particular initial productivity level z̄

µ(a, z|z̄) =
[
1− e−θ∗(z̄−zd)

δ

]−1
e−δaψ(a, z|z̄) (16)

where θ and θ∗ are the roots, both non-negative, of the characteristic polynomial

defined by (12).

In order to have a stationary distribution with a finite mean we need to impose

the following assumption

11See the Appendix.
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Assumption 2: The productivity parameters satisfy

δ > α+ ξ2/2

This condition guarantees that θ > 1 and the mean of ez−zd is finite and can be

expressed as

ez̃−zd =

∫ ∞

zd

ez−zdµ(z|z̄)dz = θ

(θ − 1)




1−e−(1+θ∗)(z̄−zd)

(θ∗+1)

1−e−θ∗(z̄−zd)

θ∗



 ez̄−zd (17)

where the right hand-side is greater than ez̄−zd if α+ ξ2/2 > 0. This means that the

average firm is more productive than new entrants.

Recall that the solution of the stationary problem is for a particular rate of entry.

Therefore we can use (13) and the fact that (16) is a density to find the rate of

attempted entry consistent with the stationary equilibrium

Ma

M
=




∞∫

zd

[
1− e−θ∗(z̄−zd)

δ

]

g(z̄)dz̄




−1

(18)

Note that now we can interpret the solution of the Kolmogorov equation under a

different light,

µ(a, z, z̄) = µ(a, z|z̄)µ(z̄)

where

µ(z̄) =
1−e−θ∗(z̄−zd)

δ g(z̄)



∞∫

zd

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄





is the marginal probability density for the initial productivity z̄ in the stationary

equilibrium. As Luttmer (2004) points out, this probability density is different from

g(z̄), the density of initial productivity among potential entrants, because of the pre-

and post-selection process. Pre-selection requires firms to enter into the market only

if their initial productivity is bigger than zd, so that g(z̄) is truncated at zd. Post-

selection implies that firms with initial productivity close to the cutoff zd have a
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higher probability of exiting due to a negative firm-specific shock and therefore they

are downweighted in µ(z̄): the term 1 − e−θ∗(z̄−zd) is increasing in z̄. The effect

of post-selection is stronger when exit uncorrelated to productivity is relatively less

important (lower δ).

Finally, we are ready to determine an expression for the stationary distribution of

productivities. In this ergodic equilibrium the distribution of productivities is deter-

mined by the process of entry, exit, and selection. In particular, selection determines

how the initial distribution from where the potential firms draw their productivities

generates the stationary distribution of active firms. In the appendix we show that

the stationary distribution of productivity is given by

µ(z) =

∞∫

zd

µ(z|z̄)µ(z̄)dz̄ =

∞∫

zd

µ(z|z̄)
[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄




∞∫

zd

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄





(19)

Note that the probability density of productivity is a weighted average of the

conditional probability densities µ(z|z̄). If g(.) is a degenerate distribution with all

the mass at some point z̄, then µ(z|z̄) itself is the equilibrium firm productivity

density. Each µ(z|z̄) is proportional to e−θz when z > z̄ and therefore behaves, in the

upper tail, as a Power law with exponent θ for ez, our productivity coefficient. When

zd < z < z̄, the probability density is increasing in z (see Figure (3)).

This is consistent with the productivity distribution that we showed in Section

2. This expression has a structure similar to the distribution shown in Melitz (2003)

in equation (8). In our setting, though, the equilibrium productivity distribution

µ(z) differs from the productivity distribution of potential entrants because of both

pre-selection and post-selection.
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Figure 3: Equilibrium Probability Density of Productivity conditional on Initial Pro-

ductivity z̄

4 Equilibrium in a Closed Economy

A closed-economy stationary equilibrium is defined by

{[(
Ch

t

)

t≥0

]

h∈Ωh

,
[(
pi(za)

)
a≥0

,
(
li(za)

)
a≥0

,Di
a≥0

]

i∈ΩI
,

}

where (i) each consumer h chooses optimally sequences {Ct}t≥0 of a composite goods

to maximize the intertemporal utility function of equation (1) subject to an intertem-

poral budget constraint; (ii) incumbent firms choose, at every age a, price p(za) and

variable labor l(za) in order to maximize profits, given by equation (7), taking the

price index of the economy as given; (iii) incumbent firms, at every age a, decide if

to keep being active (Da = 1) or to exit (Da = 0) knowing that productivity evolves

according to the Brownian motion of equation (4); (iv) firms enter, if the productivity

draw is bigger than zd, until the free-entry condition (11) is satisfied; (v) labor and

goods markets clear.

With an expression for the stationary distribution of productivity, we can proceed

to solve for the stationary equilibrium under the autarky situation. First, notice that
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by the intertemporal problem of the consumer we pin down the interest rate as

r = ρ

Now we can determine the root of the characteristic polynomial β2 and hence the

only unknown in the value function Vd(z) is the lower barrier zd. We can then use

the free entry condition (11) to solve for zd. Once zd is known, we can compute

the equilibrium probability density for the log of productivity µ(z). The price index

becomes then an equation in two unknowns, P and M .

P 1−σ =

∫ M

0
p(u)1−σdu =M

∫ ∞

zd

(
1

m̄ez

)1−σ

µ(z)dz

The second equation in P and M comes from the labor market. Recall that labor

is used to create new firms (Le), in the form of fixed production costs (Lf ) or in the

form of variable production costs (Lp):

Le = Mafe

Lf = Mfd

Lp = MRPσ−1m̄−σ

∫ ∞

zd

(ez)σ−1µ(z)dz

The expression for Lp is found by recalling the equation for variable labor demand

(8) and by recalling that C = RP . Note that the number of entry attempts Ma is

directly proportional to the equilibrium number of firms through (18) so that Le is

also proportional to M . Labor market clearing requires

Lp + Lf + Le = L

and this is the second equation in M and P .12 Finally, we can determine R from zd

and P .
12Note that knowledge of zd implies knowledge of RP σ−1.
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5 The Open Economy

Consider the world economy consisting of N countries all with the structure described

in section 3. We are going to analyze a symmetric countries equilibrium. Each

country is assumed to be endowed with L units of labor and labor is not mobile

across countries. Therefore, the nominal wage rate is common and we normalize it

to one. Preferences are common to all countries and given by equation (1). In each

country, potential entrants need to pay a fixed entry cost fe to enter the industry.

They draw an initial productivity from an exogenous distribution G(z̄). Productivity

thereafter evolves according to a Brownian motion with parameters (α, ξ). A firm

decides to enter when the expected profits are high enough to cover the entry cost.

If the firms decide to enter it also has to pay a fixed operating cost fd. The fixed

costs fe and fd are incurred for both exporting and non exporting firms. Given the

structure of the shock and the fixed cost of production, in each country a stationary

firm size distribution will emerge.

In what follows we analyze two kinds of international equilibrium. In the first

case, that we develop as a benchmark, firms can costlessly enter and exit from the

export market. In the second case, we assume that there is a positive sunk entry

cost fhy that the firm has to sustain every time the firm wants to enter the exporting

sector. In both cases, we suppose that a firm in country i that exports to country j

bears a fixed operating export cost fx per foreign market. Goods that are exported

are then subject, like in Melitz (2003) and BEJK (2003) to a melting transportation

cost τ > 1. That is, we assume that country i needs to ship τ units of the goods for

one unit to arrive in country j.

5.1 The Case of No Entry Cost

In this section, we describe the trade equilibrium when there is no entry cost. We

consider the economy in its stationary equilibrium and we drop the index for age and

time. Like in the closed-economy equilibrium, a firm with productivity z operating
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in the domestic market will obtain profits

πd(z) =
R

σ

(
m̄−1Pez

)σ−1 − fd

If the firm decides to export to any other single country, the firm will earn some

additional profits

πex(z) = τ1−σR

σ

(
m̄−1Pez

)σ−1 − fx (20)

Assume that each firm can enter and exit from the export sector costlessly. This

implies that period profits from exporting to another country are

πex(z) = max

[
τ1−σR

σ

(
m̄−1Pez

)σ−1 − fx, 0

]

We are going to derive the solution of the following non-homogeneous ordinary

differential equation

−(r + δ)Vex(z) +
1

2
ξ2V ′′ex(z) + αV ′ex(z) + πex(z) = 0

Since the forcing function is defined differently when current profits are positive

or negative we need to solve the equation separately for the two cases and then stitch

together the two solutions at the point where profits from exporting are zero,

πex(z) = 0 ⇐⇒ ezex =
τm̄

P

(
σfx

R

) 1
σ−1

(21)

Since, in the data we observe that some firms don’t export13 we will assume that
(

τ
γd

)σ−1
> fd

fx
which guarantees that zex > zd. Note that this also implies that the

least productive exporter is more productive than the most productive nonexporter

(see Figure (4)). This is something that we do not usually observe in the data and

that we will take into account in the cost-of-entry case.

13See Irarrazabal and Opromolla (2005) for Chile and BEJK (2003) for the USA.
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Figure 4: Firms’ Productivity Distribution, No Cost of Entry in Foreign Markets

The value of the firm is V>ex(z) for the region where z > zex,

V>ex(z) =
fx

[
eβ2(z−zex)

(
σ−1−β1
β2−β1β2

)
− e(σ−1)(z−zex)

]

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

(22)

− fx

(r + δ)

[
β1

β2 − β1β2
eβ2(z−zex) + 1

]

and V<ex(z) for the region where z < zex,

V<ex(z) =






fx
1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)

β2(σ−2)
β1

− β2
fx

(r+δ)





eβ1(z−zex)

β2 − β1β2
(23)

Note that in V>ex(z), the second and fourth terms represents the expected discounted

profit flows from exporting while the remaining two terms represent the value of the

option to stop exporting should productivity fall below zex. In the region (zd, zex),

V<ex(z) represents instead the value of the option to resume exporting should pro-

ductivity rise above zex.

Having determined the cutoff productivity value for exporting zex, we can now

draw on the stationary distribution analysis to derive some expressions for the average
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age (āex), productivity (z̄ex), and size (r̄ex, in terms of revenues) of exporters.

āex =

∞∫

0

a

∞∫

zex

µ(a, z|z > zex)dzda; z̄ex =

∞∫

zex

z

∞∫

0

µ(a, z|z > zex)dadz;

r̄ex = R
(
m̄−1P

)σ−1
∞∫

zex

e(σ−1)zµ(a, z|z > zex)dadz

where µ(a, z|z > zex) is the probability density over age and productivity conditional

on being an exporter. Moreover, knowledge of the productivity distribution and

relevant cutoff values allows us to derive the probability that plants won’t exit before

t years from now as a function of current age, that is the following survivor function,

P (T (zd) > t|a) =
∞∫

zd

S(x, t)µ(x|a)dx

where

S(x, t) = e−δt

[
Φ

(
zd − x− αt

ξ
√
t

)
− e

− 2t
ξ2
(x−zd)Φ

(
x− zd − αt

ξ
√
t

)]
g(x)

Ma

M

is the probability that the firm will exit no sooner than t years from now given its

current productivity x. These are the model equivalent of some of the facts that we

showed in Section 2 and can be used to match the model to the data. Another useful

moment is the probability, Pex(a), that firms of age a that are currently producing

only for the domestic market will become exporters (before exiting). In the Appendix

we show that

Pex(a) =

∞∫

zd

uex(x)µ(x|a)dx

where

uex(x) =
e−2αx/ξ2 − e−2αzd/ξ2

e−2αzex/ξ2 − e−2αzd/ξ2

is the probability that a firm with current productivity x first exits the interval

(zd, zex) at zex.

Trade Equilibrium
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To determine the equilibrium we assume that all fixed costs, the distribution g(z̄)

and the stationary distribution µ(z) are identical for all countries. Once countries are

allowed to trade, new firms will keep trying to enter the industry until the expected

value of setting up a firm net of entry cost is zero, that is

fe =

∫ zex

zd

[Vd(z̄) + (N − 1)V<ex(z̄)] dG(z̄) + (N − 1)
∫ +∞

zex

[V>ex(z̄)− V<ex(z̄)] dG(z̄)

(24)

where the equilibrium condition for the cutoffs is given by (10) and (21). Note that

the expected value of a firm include both the possibility that the firm will produce

only for the domestic market and that the firm will also export to all the other N − 1
countries. An open-economy, no-entry-cost, stationary equilibrium is defined by

{[(
Ch

t

)

t≥0

]

h∈Ωh

,
[(
pi(za)

)
a≥0

,
(
li(za)

)
a≥0

, Di
a≥0, E

i
a≥0

]

i∈ΩI
,

}

where (i) each consumer h chooses optimally sequences {Ct}t≥0 of a composite goods

to maximize the intertemporal utility function of equation (1) subject to an intertem-

poral budget constraint; (ii) incumbent firms choose, at every age a, price p(za) and

variable labor l(za) in order to maximize domestic profits, given by equation (7), and

eventual exporting profits, given by equation (20), taking the price index of the econ-

omy as given; (iii) incumbent firms, at every age a, decides if to keep being active

(Da = 1) or to exit (Da = 0) and if to export (Ea = 1) or not (Ea = 0) knowing that

productivity evolves according to the Brownian motion of equation (4); (iv) firms

enter, if the productivity draw is bigger than zd, until the free-entry condition (24) is

satisfied; (v) labor and goods markets clear.

The free-entry condition, replacing the expressions for Vd(z), V<ex(z) and V>ex(z)

noting that zex = ln ezd τ
γd

(
fx
fd

) 1
σ−1

becomes an equation in the only unknown zd.

From here we can proceed exactly as in the close economy case.14 The price index

equation is slightly different though. To determine the price index observe that all

brands that are produced in a country, by domestic or by foreign firms, have a con-

14Note that now the demand for labor depends also on the fraction of firms that are exporting,

that is, Lf =M
[
fd + fx

∫
∞

zex
µ(z)dz

]
.
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sumer price 1/m̄ez and all imported brands have a consumer price of τ/m̄ez when

the exporter productivity is z. The equation for the price index is

P 1−σ =

∫ M∗

0
p(u)1−σdu =M

∫ ∞

zd

(
1

m̄ez

)1−σ

µ(z)dz+(N−1)M
∫ ∞

zex

( τ

m̄ez

)1−σ
µ(z)dz

where M∗ represents the number of firms supplying the market or the number of

varieties offered.

A multilateral trade opening in the model explained above reduces the price level

P and therefore induces an increase in the cutoff productivity level zd. This result

resembles similar outcomes in previous trade models with heterogenous firms. After

trade opening, firms who want to export have to pay a fixed cost fx, which self-select

high productivity draw firms into the export market. Domestic firms with high enough

productivity to survive pay higher wages. Since the labor is constant, competition in

the local labor market pushes up the real wage and forces low productivity firms to

leave the industry.

5.2 The Case of Entry Cost: Hysteresis

We now analyze the conditions that determines the equilibrium with reentry costs.

When firms’ productivities are stochastic the introduction of an entry cost gives rise

to hysteresis. This phenomenon has been studied by Dixit (1989), Baldwin (1989)

and suggested by Clerides et-al (1998) in a context similar to ours. Our framework

differentiates from previous attempts to model hysteresis in export markets in that

we embed the problem in a general equilibrium framework.

As before we have that firms need to pay a fixed per-period export cost to sell in

each foreign market. However, now assume that each time a firm decides to enter or

reenter the export market, it has to pay a sunk cost fhy. This cost can be interpreted

as the cost of establishing distribution channels, learning about the foreign markets

preferences and standards and adapting to them and updating old export products.

The next proposition summarizes the optimal policy of a firm subject to entry

and reentry costs.
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Figure 5: Firms’ Productivity Distribution with Cost of Entry in Foreign Markets

Proposition 1 An optimal strategy is characterized by three thresholds {zd, zlow, zhi}
with zd < zlow < zhi such that (i) a firm is active if z > zd, (ii) a nonexporting firm

will stay as a nonexporter as long as z < zhi, and (iii) an exporting firm will keep

exporting as long as z > zlow. Furthermore, there is a band of inaction zlow < z < zhi

where an exporting plant will keep exporting and a nonexporting plant will decide not

to enter the export sector.

The previous proposition allows us also to state the following implication of the

model which we observe in the data.

Proposition 2 There is a positive measure of nonexporting firms that are more pro-

ductive than some exporting firms

These two propositions are graphically illustrated in Figure (5).

To prove the previous propositions we need to show the calculation of the relevant

thresholds. As in the case of no entry-cost we have that the value of a firm that only

sells in the domestic marker is given by:

Vd(z) =
{
πd(z)△ t+ e−(r+δ)△tE [Vd(z +△z|z)]

}
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On the other hand, if the firms is also exporting we must adjust our analysis

with respect to the previous case. The value of the firm is now a function of two

state variables, the productivity level z and a discrete state variable which indicates

whether the firm is currently exporting or not. For a non exporting firm, in the region

(zd, zhi) we have

(r + δ)Vex,low(z) = αV ′ex,low(z) +
1

2
ξ2V ′′ex,low(z)

which has the general solution

Vex,low(z) = a1e
β1z + a2e

β2z

where a1 and a2 are constant to be determined and β1 and β2 are the roots of the

quadratic equation determined earlier.

Since the option to export gets very far out of the money as z becomes lower and

lower, the coefficient a2 corresponding to the negative root β2 should be set to zero.

This leaves,

Vex,low(z) = a1e
β1z

Next let’s consider the value of an exporting firm in the region (zlow,∞). The

ordinary differential equation is

(r + δ)Vex,hi(z) = πex(z) + αV ′ex,hi(z) +
1

2
ξ2V ′′ex,hi(z)

where πex(z) is given by equation (20).

The general solution to this equation (after setting the coefficient corresponding

to the positive root to zero) is

Vex,hi(z) = b2e
β2z − τ1−σ R

σ

(
m̄−1P

)σ−1

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z − fx

(r + δ)
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The boundary conditions are

Vex,hi(zhi) = Vex,low(zhi) + fhy

V ′
ex,hi(zhi) = V ′

ex,low(zhi)

Vex,hi(zlow) = Vex,low(zlow)

V ′
ex,hi(zlow) = V ′

ex,low(zlow)

which after replacing the expressions for Vex,low(.) and Vex,hi(.) give a system of

four equations in the four unknowns zlow, zhi, a1 and b2. The first and third conditions

guarantee continuity in the function expressing the value of the firm. Note that, unlike

in the previous case without cost of entry, the value of an exporting firm and the value

of a nonexporting firm are interlinked and must be determined simultaneously. The

equations forming the system are very nonlinear in the thresholds so that it’s difficult

to get an analytical solution. A numerical solution can obtained but we start here by

illustrating some properties about the thresholds (see the Appendix for derivations).

First, the thresholds satisfy 0 < zlow < zhi < ∞ and the coefficients a1 and b2

are positive. Second, suppose that the firm is not an exporter and that it believes

that z will persist unchanged forever. The firm will decide to become an exporter

if πex(z) ≥ (r + δ)fhy. This is the exporting cutoff when there is no uncertainty

and z is constant over time. In our case instead, πex(zhi) > (r + δ)fhy > 0 which

means that zhi, the exporting cutoff, is larger than the productivity level at which the

firm decides to become an exporter when there is no uncertainty and z is constant

over time. This also implies that zhi is bigger than zex, the productivity cutoff for

exporting in the no-entry-cost case. When domestic producers take into account the

uncertainty over future profits, they are more reluctant to become exporters and when

they are already exporters they are more reluctant to abandon. This is consistent with

the difference between the average productivity for new and old exporters that we

showed in Section2. Third, the width of the band of inaction (zlow, zhi) is an increasing

function of the sunk cost fhy. As the sunk cost fhy increases the lower cutoff, zlow, is

decreasing while the upper cutoff, zhi, is increasing.
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Trade Equilibrium

To determine the equilibrium with the assumption of positive reentry cost we

proceed as in the previous case. However, we need to be careful to account for the

export status within the band of inaction and we need to state the following,

Conjecture There exists a probability density µe(z) with positive support over

(zlow, zhi) and such that µe(zlow) = 0 and µe(zhi) = µ(zhi), representing the distribu-

tion of exporters over the band of inaction.15

We can therefore determine the equilibrium price index in the economy using the

expressions for the productivity cutoffs zd, zlow and zhi together with the following

equation,

P 1−σ =M

∫ ∞

zd

(
1

m̄ez

)1−σ

µ(z)dz+(N−1)M
[∫ zhi

zlow

( τ

m̄ez

)1−σ
µe(z)dz +

∫ ∞

zhi

( τ

m̄ez

)1−σ
µ(z)dz

]

As before new firms are trying to enter the industry until the expected value of

the firm net of entry cost is zero, that is

fe =

∫ zhi

zd

[Vd(z̄) + (N − 1)Vlow(z̄)] dG(z̄) + (N − 1)
∫ +∞

zhi

[Vhi(z̄)− Vlow(z̄)] dG(z̄)

(25)

where the equilibrium condition for the cutoffs are given by (10) and by the system

showed earlier. The remaining steps are similar to those explained earlier for the

no-cost of entry case. We just need to formally define the equilibrium concept for this

case. An open-economy, entry-cost, stationary equilibrium is defined by
{[(

Ch
t

)

t≥0

]

h∈Ωh

,
[(
pi(za)

)
a≥0

,
(
li(za)

)
a≥0

, Di
a≥0, E

i
a≥0

]

i∈ΩI
,

}

where (i) each consumer h chooses optimally sequences {Ct}t≥0 of a composite goods

to maximize the intertemporal utility function of equation (1) subject to an intertem-

poral budget constraint; (ii) incumbent firms choose, at every age a, price p(za) and

variable labor l(za) in order to maximize domestic profits, given by equation (7), and

eventual exporting profits, given by equation (20), taking the price index of the econ-

omy as given; (iii) incumbent firms, at every age a, decides if to keep being active

15Determination of a closed-form solution for µe(.) is the subject of ongoing research.

29



(Da = 1) or to exit (Da = 0) and if to export (Ea = 1) or not (Ea = 0) knowing that

productivity evolves according to the Brownian motion of equation (4); (iv) firms

enter, if the productivity draw is bigger than zd, until the free-entry condition (25) is

satisfied; (v) labor and goods markets clear.

6 Conclusions and Extensions

This paper presents a model of international trade with heterogenous producers sub-

ject to uncertain productivity. Our innovation is to introduce firms specific permanent

productivity shocks and derive a stationary industry equilibrium in a multi-country

competition model.

We first embed firms subject to ex-post uncertainty into a monopolistic competi-

tion model. We derive the stationary distribution of firm characteristics and establish

the conditions for the equilibrium of the economy under autarky. We then determine

an equilibrium for an integrated world market with symmetric countries. Several

results of previous trade models with heterogenous producers are derived. We then

show how uncertainty alters in a nontrivial way some of the conclusions of previous

studies. In particular, we show that introducing positive entry costs in a framework

where productivity is evolving stochastically changes the well know partition of firms

by exporting status. We derive explicit conditions to determine the factors that af-

fect the band of inaction in which domestic firms continue to sell domestically and

exporting firms continue to export. Our model retains the prediction that exporters

are more productive than nonexporters but also allows for the natural fact that some

nonexporters are more efficient than some exporters. Finally, in our framework, both

entrants and incumbent firms might sustain temporary negative profits because of

the expectation of becoming profitable later on. An important feature of the model

is that it is amenable to simulation and estimation and can be used as an effective

tool to better understand the consequences of trade opening and trade policies. We

derived closed-form solutions for several static and dynamic moments that can be
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used to match the model to the data. The model can then be easily extended to

analyze the effects of trade policies in a context of multiple asymmetric countries.

The study of transition dynamics is a more complex but natural extension. All these

are subjects of ongoing research.

31



References

[1] Anderson James E., and van Wincoop, Eric "Trade Costs" National Bureau of

Economic Research (Cambridge, MA) Working Paper No. 10480, 2004.

[2] Axtell, Robert L. "Zipf Distribution of U.S. Firm Sizes" Science, September

2001, vol. 293, pp. 1818-1820.

[3] Baldwin, Richard "Sunk-Cost Hysteresis" National Bureau of Economic Research

(Cambridge, MA) Working Paper No. 2911, 1989.

[4] Bernard, Andrew B. and Jensen, J. Bradford “Exporters, Jobs, and Wages in

U.S. Manufacturing: 1976-1987” Brookings Papers on Economic Activity: Mi-

croeconomics, pp. 67-112, 1995.

[5] Bernard, Andrew B.; Eaton, Jonathan; Jensen, J. Bradford and Kortum, Samuel

"Plants and Productivity in International Trade" American Economic Review,

September 2003, 93 (4), pp.1268-1290.

[6] Cabral Luís M.B. andMata José "On the Evolution of the Firm Size Distribution:

Facts and Theory" American Economic Review, September 2003, 93 (4), pp.1075-

89.

[7] Chaney, Thomas "Distorted Gravity: Heterogeneous Firms, Market Structure

and the Geography of International Trade" MIT Working Paper, 2005.

[8] Clerides, Sofronis K.; Lach Saul and Tybout James "Is Learning-by-Exporting

Important? Micro-dynamic Evidence from Colombia, Mexico and Morocco"

Quarterly Journal of Economics, August 1998, 113 (3), pp. 903-947.

[9] Dixit, Avinash "Entry and Exit Decisions under Uncertainty" Journal of Political

Economy, June 1989, 97 (3), pp. 620-38

[10] Dixit, Avinash and Pindyck Robert S. "Investment under Uncertainty" Princeton

University Press, 1994.

32



[11] Eaton, Jonathan and Kortum Samuel "Technology, Geography and Trade"

Econometrica, September 2002, 70 (5), pp.1741-1779.

[12] Gabaix, Xavier "Zipf’s Law for Cities: An Explanation" Quarterly Journal of

Economics, 114 (3), August 1999, p.739-67.

[13] Harrison,J. Michael "Brownian Motion and Stochastic Flow Systems" Wiley Se-

ries in Probability and Mathematics Statistics, New York, 1985.

[14] Helpman Elhanan; Melitz Marc J. and Yeaple Stephen R. "Export Versus FDI

With Heterogeneous Firms" American Economic Review, March 2004, 94 (1), pp.

300-316.

[15] Hopenhayn, Hugo A. "Entry, Exit, and Firm Dynamics in Long Run Equilib-

rium", Econometrica, September 1992, 60 (5), pp.1127-1150.

[16] Irarrazabal, Alfonso and Opromolla, Luca David "Trade Reforms in a Global

Competition Model: The Case of Chile", June 2005, NYU mimeo.

[17] Karlin, Samuel and Taylor, Howard M. "An Introduction to Stochastic Mod-

elling", Academic Press, San Diego, 1998.

[18] Krugman, Paul R. "Increasing Returns, Monopolistic Competition, and Inter-

national Trade", Journal of International Economics, November 1979, 9 (4), pp.

469-479.

[19] Krugman, Paul R. "Scale Economies, Product Differentiation and the Pattern of

Trade" American Economic Review, December 1980, 70 (5), pp. 950-959.

[20] Luttmer Erzo G.J. "The Size Distribution of Firms in an Economy with Fixed

and Entry Cost", Federal Reserve Bank of Minneapolis Working Paper No.633,

July 2004.

[21] Luttmer Erzo G.J. "Growth and the Size Distribution of Firms", May 2005,

mimeo.

33



[22] Melitz, Mark "The Impact of Trade on Intra-Industry Reallocations and Ag-

gregate Industry Productivity" Econometrica, November 2003, 71 (6), pp. 1695-

1725.

[23] Roberts, Mark J. and Tybout, James R. "The Decision to Export in Colombia:

An Empirical Model of Entry with Sunk Costs" American Economic Review,

September 1997, 87 (4), pp. 545-564.

[24] Simon, Herbert A. and Bonini, Charles P. "The Size Distribution of Business

Firms" American Economic Review, September 1958, 48 (4), pp.607-617.

[25] Stokey Nancy "Brownian Models in Economics" lectures notes, 2005.

34



A Appendix

A.1 Value of the Firm

A.1.1 Domestic

In order to derive the value of a firm that is selling only on the domestic market

(equation (9)) and the corresponding productivity cutoff (equation (10)) we need to

solve the following non-homogeneous ordinary differential equation

−(r + δ)Vd(z) +
1

2
ξ2V ′′d (z) + αV ′d(z) + πd(z) = 0

where πd(z) =
R
σ

(
m̄−1Pez

)σ−1−fd = Ade
(σ−1)z+Bd where Ad =

R
σ

(
m̄−1P

)σ−1
and

Bd = −fd. The general solution of the differential equation is

Vd(z) = V p
d (z) + V h

d (z)

where V p
d (z) is a particular solution of the non-homogeneous ode and V h

d (z) is the

general solution of the homogeneous ode. The latter has the form

V h
d (z) = c1e

β1z + c2e
β2z

where c1 and c2 are two constants to be determined and β1 and β2 are the roots of

the characteristic equation associated to the homogeneous ode,

1

2
ξ2β2 + αβ − (r + δ) = 0

that is,

β1 = − α

ξ2
+

√(
α

ξ2

)2
+
r + δ

ξ2/2
> 0

β2 = − α

ξ2
−
√(

α

ξ2

)2
+
r + δ

ξ2/2
< 0

The general solution of the homogeneous equation represents the value of the

option to exit. The likelihood of abandonment in the not-too-distant future becomes

extremely small as z goes to∞, so the value of the abandonment option should go to
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zero as z becomes very large. Hence the coefficient c1 corresponding to the positive

root β1 should be zero. This leaves

V h
d (z) = c2e

β2z

We need to find the particular solution to the non-homogeneous ode. Using the

"undetermined coefficients" method, the particular solution when the forcing term

has the form Ade
(σ−1)z +Bd is V p

d (z) = Ce(σ−1)z +D. Hence, we just need to plug

this into the non-homogeneous ode and find C and D that makes V p
d (z) a particular

solution. This delivers

V p
d (z) = −

Ad
1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z +
Bd

(r + δ)

and

Vd(z) = c2e
β2z − Ad

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z +
Bd

(r + δ)

Now using the boundary conditions Vd(zd) = 0 and dVd(zd)/dz = 0 we can deter-

mine c2 and zd. Let’s start with Vd(zd) = 0 to determine c2.

Vd(zd) = 0 ⇔ c2e
β2zd − Ad

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zd +
Bd

(r + δ)
= 0

c2 =

(
Ad

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zd − Bd

(r + δ)

)

e−β2zd

Now we can use dVd(zd)/dz = 0 and the expression for c2 to determine zd,

dVd(zd)/dz = 0 ⇔ c2β2e
β2zd − Ad(σ − 1)

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zd = 0

so that

ezd =
m̄

P

(
fdσ

R

) 1
(σ−1)

γd

where γd =
[
−β2
(r+δ)

1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)

β2−(σ−1)

] 1
(σ−1)

.

We can now find the general solution to the non-homogeneous ode (equation (9)),

Vd(z) =
fd

(r + δ)

β2
β2 − (σ − 1)

[
e(σ−1)(z−zd) − 1− (σ − 1)

β2

(
eβ2(z−zd) − 1

)]
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Note that

dVd(z)/dz =
fd

(r + δ)

β2(σ − 1)
β2 − (σ − 1)

[
e(σ−1)(z−zd) − eβ2(z−zd)

]
> 0

since σ > 1 and β2 < 0.

Interpretation of Vd(z)

1. The two components of the general solution of the ode Vd(z) have a straight-

forward interpretation. Using Ito’s Lemma and recalling that dz = αda+ ξdB,

we can derive the stochastic process for the domestic variable profits of a firm

πv
d(z) =

R
σ

(
m̄−1Pez

)σ−1
.

dπv
d(z) =

[
α(σ − 1)πv

d(z) + 1/2ξ
2(σ − 1)2πv

d(z)
]
da+ ξ(σ − 1)πv

d(z)dB

that is, variable profits behave like a geometric Brownian motion with drift
[
α(σ − 1) + 1/2ξ2(σ − 1)2

]
πv

d(z) and diffusion ξ(σ − 1)πv
d(z). Hence, if we de-

note today’s variable profits by πv
d(za), the expected value and variance of vari-

able profits a∗ years from now are

E
[
πv

d,a+a∗
]
= πv

d(za)e[
α(σ−1)+1/2ξ2(σ−1)2]a∗

V
[
πv

d,a+a∗
]
= πv

d(za)e
2[α(σ−1)+1/2ξ2(σ−1)2]a∗(eξ2(σ−1)2a∗ − 1)

so that the expected present discounted value of variable profits over an infinite

period of time is

E

[∫ ∞

0
πv

d,a+a∗e
−(r+δ)a∗da∗

]
=

∫ ∞

0
πv

d(za)e[
α(σ−1)+1/2ξ2(σ−1)2]−(r+δ)a∗da∗

=
πv

d(za)

(r + δ)− α(σ − 1)− 1/2ξ2(σ − 1)2

which represents the value of a firm without fixed costs fd. Since fd is constant

over time, the expected present discounted value of total profits over some period

of time is

πv
d(za)

(r + δ)− α(σ − 1)− 1/2ξ2(σ − 1)2
− fd

(r + δ)
= V p

d (z)
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so that the other component of the general solution of the ode, V h
d (z), represents

the value of the option to exit. Note that V h
d (z) > 0 since c2 > 0.

2. The exit cutoff zd is smaller than the zero-profit cutoff z0. Note that ez0−ezd =

(1 − γd)e
z0. So we just need to prove that γd < 1. This condition can be

expressed as

(r + δ) > αβ2 + 1/2ξ
2(σ − 1)β2

which is satisfied when α > 0 since β2 < 0, σ > 1.

A.1.2 Export

In order to derive the component of the value of the firm due to export we need to

solve the following non-homogeneous ordinary differential equation

−(r + δ)Vex(z) +
1

2
ξ2V ′′ex(z) + αV ′ex(z) + πex(z) = 0

where πex(z) = max
[
τ1−σ R

σ

(
m̄−1Pez

)σ−1 − fx, 0
]
= max

[
Aexe

(σ−1)z +Bex, 0
]
and

Aex = τ1−σ R
σ

(
m̄−1P

)σ−1
and Bex = −fx. Since the forcing function is defined

differently when current profits are positive or negative we need to solve the equation

separately for the two cases and then stitch together the two solutions at the point

where πex(z) = 0, that is at

ezex =
τm̄

P

(
σfx

R

) 1
σ−1

In the region z < zex, we have that πex(z) = 0 and only the homogeneous part of

the equation remains. Therefore the general solution is

V h0
ex (z) = k1e

β1z + k2e
β2z

where k1 and k2 are two constants to be determined and β1 and β2 are the roots,

derived earlier, of the characteristic equation associated to the homogeneous ode.
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In the region z > zex, we take another linear combination of the exponential

solutions of the homogeneous part, and add on any particular solution of the full

equation. Using the "undetermined coefficients" method, the particular solution is

V p
ex(z) = −

Aex
1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z +
Bex

(r + δ)

and the general solution for the case z > zex is

V h1
ex (z) = b1e

β1z + b2e
β2z − Aex

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z +
Bex

(r + δ)

Now note that, in the region z < zex, operation is suspended but there is a positive

probability that the productivity process will at some future time move into the region

z > zex, when operation will resume and profits from exporting accrue. The value

V h0
ex (z) when z < zex, is just the expected present value of such future flows. As z

becomes very small the event of its rising above zex is very unlikely and so the value

V h0
ex (z) should go to zero. We can therefore set the constant k2, corresponding to the

negative root β2, to zero.

Now let’s consider the region z > zex. The part of V h1
ex (z) different from the

particular solution represents the additional value of the option to suspend operations

in the future should z fall below zex. As z becomes very large the value of this option

should go to zero and so we can set to zero b1, the constant associated to the positive

root β1. We have then

Vex(z) =





k1e

β1z z < zex

b2e
β2z − Aex

1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)
e(σ−1)z + Bex

(r+δ) z > zex

Note that since the Brownian motion can diffuse freely across the zex boundary, the

value function cannot change abruptly across it. The solution must be continuously

differentiable across zex. We therefore have the following two conditions

k1e
β1zex = b2e

β2zex − Aex
1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zex +
Bex

(r + δ)

k1β1e
β1zex = b2β2e

β2zex − Aex(σ − 1)
1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zex
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which is a system of two equations in two unknowns, k1 and b2. The solutions are

b2 =
β1

β2 − β1β2




Aex

1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)
e(σ−1−β2)zex

(
σ−1−β1

β1

)

+ Bex

(r+δ)e
−β2zex



 > 0

and

k1 =






β2
β2−β1β2

[
Aex

1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)
e(σ−1)zex

(
σ−1−β1

β1

)
+ Bex

(r+δ)

]

− Aex
1
2

ξ2(σ−1)2+α(σ−1)−(r+δ)
1

β1
e(σ−1)zex





e−β1zex > 0

We can now find the final expression for Vex(z). For the region where z > zex we

have equation (22),

Vex(z) =
fx

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

[
eβ2(z−zex)

(
σ − 1− β1
β2 − β1β2

)
− e(σ−1)(z−zex)

]

− fx

(r + δ)

[
β1

β2 − β1β2
eβ2(z−zex) + 1

]

while for the region where z < zex we have equation (23),

Vex(z) =

{
fx

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

β2 (σ − 2)
β1

− β2
fx

(r + δ)

}
eβ1(z−zex)

β2 − β1β2

A.2 Stationary Distribution

A.2.1 The Kolmogorov Equation

The solution of the Kolmogorov equation for firms with initial productivity z̄ is given

by equation (13). The main object of interest is ψ(a, z|z̄), the transition probability

density of a Brownian Motion (BM) za like the one of equation (4), subject to a lower

absorbing barrier zd < z̄. Karlin and Taylor (1998) derive the transition probability

for a BM without drift, with diffusion coefficient ξ equal to one and lower barrier zd

equal to zero:

Pr(za > y|z̄) = Φ
(
y + z̄√

a

)
−Φ

(
y − z̄√

a

)
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The corresponding solution for the case where ξ > 0 and zd �= 0 can be easily,

using the reflection principle, shown to be

Pr(za > y|z̄) = Φ
(
y + z̄ − 2zd

ξ
√
a

)
−Φ

(
y − z̄

ξ
√
a

)

In order to derive ψ(a, z|z̄), just apply the Change of Measure Theorem (see Harrison

(1985)) using the following Radon-Nikodym derivative

dP ∗ = χdP

where

χ = exp

[
α

ξ2
(z − z̄)− 1

2

α2

ξ2
a

]

The term e−δa in µ(a, z, z̄) is due to the fact that firms face a constant risk

of exiting (uncorrelated with productivity) δ. The term g(z̄)Ma

M comes from the

boundary condition on entering firms.

A.2.2 The Density m(z|z̄)

In order to derive the conditional density m(z|z̄) start from

m(a, z|z̄) = e−δaψ(a, z|z̄)

where

ψ(a, z|z̄) = 1

ξ
√
a

[
φ

(
z − z̄ − αa

ξ
√
a

)
− e

− 2α
ξ2
(z̄−zd)φ

(
z + z̄ − 2zd − αa

ξ
√
a

)]

The roots of the characteristic polynomial of the Kolmogorov equations are non-

negative and equal to

θ =
1

ξ2

(
−α+

√
α2 + 2ξ2δ

)

θ∗ =
1

ξ2

(
α+

√
α2 + 2ξ2δ

)

Integrating out a we obtain an expression for the marginal probability of produc-

tivities given an initial starting level. We are going to consider only z̄ > zd, so that,

since z > zd, we have z + z̄ − 2zd > 0.
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m(z|z̄) =

∫ ∞

0
m(a, z|z̄)da

=

∫ ∞

0
e−δa 1

ξ
√
a
φ

(
z − z̄ − αa

ξ
√
a

)
da− e

− 2α
ξ2
(z̄−zd)

∫ ∞

0
e−δaφ

(
z + z̄ − 2zd − αa

ξ
√
a

)
da

= m1 − e
− 2α
ξ2
(z̄−zd)m2

where the solutions of the two integrals m1 and m2 is,

m1 =
min

{
eθ∗(z−z̄), e−θ(z−z̄)

}
√
α2 + 2ξ2δ

m2 =
exp (−θ [z + z̄ − 2zd])√

α2 + 2ξ2δ

Now we can combine the results to get

m(z|z̄) = − 1
α

θ − θ∗
θ + θ∗

[
min

{
e(θ+θ∗)(z−zd), e(θ+θ∗)(z̄−zd)

}
− 1
]

eθ∗(z̄−zd)eθ(z−zd)

The last step is to convert m(z|z̄) into a probability density. Integrating m(z|z̄)
over z, we find

∫ ∞

zd

m(z|z̄)dz = − 1
α

θ − θ∗
θθ∗

[
1− e−θ∗(z̄−zd)

]
=
1− e−θ∗(z̄−zd)

δ

that can be used to transform m(z|z̄) and m(a, z|z̄) into the probability densities

(15) and (16)

µ(z|z̄) = m(z|z̄)∫∞
zd

m(z|z̄)dz =
θ

θ + θ∗



min
{
e(θ∗+θ)(z−zd), e(θ+θ∗)(z̄−zd)

}
− 1

eθ(z−zd)
(

eθ∗(z̄−zd)−1
θ∗

)





and

µ(a, z|z̄) = m(a, z|z̄)∫∞
zd

m(z|z̄)dz =
[
1− e−θ∗(z̄−zd)

δ

]−1
e−δaψ(a, z|z̄)
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A.2.3 Mean Value of Productivity

We need to calculate the mean of the stationary distribution as

∫ ∞

zd

ez−zdµ(z|z̄)dz

=

∫ ∞

zd

ez−zd
θ

θ + θ∗



min
{
e(θ∗+θ)(z−zd), e(θ+θ∗)(z̄−zd)

}
− 1

eθ(z−zd)
(

eθ∗(z̄−zd)−1
θ∗

)



 dz

=
θθ∗

θ + θ∗

1

eθ∗(z̄−zd) − 1






∫ z̄
zd

[
e(θ∗+1)(z−zd) − e(1−θ)(z−zd)

]
dz

+
(
e(θ+θ∗)(z̄−zd) − 1

)
e(1−θ)(−zd)

∫∞
z̄ e(1−θ)zdz






Assumption 2 guarantees that θ > 1 which is necessary for the last integral, in the

previous line, to be finite. We can then go on with,

=
θθ∗

θ + θ∗

1

eθ∗(z̄−zd) − 1






∫ z̄
zd

[
e(θ∗+1)(z−zd) − e(1−θ)(z−zd)

]
dz

+
(
e(θ+θ∗)(z̄−zd) − 1

)
e(1−θ)(−zd) e(1−θ)z̄

(θ−1)






=
θ

(θ − 1)




1−e−(1+θ∗)(z̄−zd)

(θ∗+1)

1−e−θ∗(z̄−zd)

θ∗



 ez̄−zd

Hence, we derive equation (17),

ez̃ =

∫ ∞

zd

ez−zdµ(z|z̄)dz = θ

(θ − 1)




1−e−(1+θ∗)(z̄−zd)

(θ∗+1)

1−e−θ∗(z̄−zd)

θ∗



 ez̄−zd

A.2.4 Equilibrium Rate of Entry

Consider the stationary distribution

µ(a, z, z̄) = e−δaψ(a, z|z̄)g(z̄)Ma

M

The latter is a probability density for a particular value of Ma/M . This is used to

determine the amount of entry that must take place relative to the number of existing

43



firms. We will use the fact that µ(a, z|z̄) is a probability density function.

1 =

∞∫

zd

∞∫

zd

∞∫

0

µ(a, z, z̄)dadzdz̄ =

∞∫

zd

∞∫

zd

∞∫

0

e−δaψ(a, z|z̄)g(z̄)Ma

M
dadzdz̄

Replace the definition of µ(a, z|z̄),

1 =

∞∫

zd

∞∫

zd

∞∫

0

[
1− e−θ∗(z̄−zd)

δ

]

µ(a, z|z̄)g(z̄)Ma

M
dadzdz̄

so that the equilibrium rate of entry is

Ma

M
=




∞∫

zd

[
1− e−θ∗(z̄−zd)

δ

]

g(z̄)dz̄




−1

A.2.5 The Stationary Distribution of Productivity

Use the attempted entry rate equation (18) to get the probability density

µ(a, z, z̄) =
e−δaψ(a, z | z̄)g(z̄)


∞∫

zd

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄





and replace the equation for p(a, z|z̄) into the above to get

µ(a, z, z̄) = µ(a, z|z̄)

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)




∞∫

zd

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄





Now integrate with respect to a and over z̄ in the region (zd,∞) to get

µ(z) =

∞∫

zd

µ(z|z̄)
[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄




∞∫

zd

[
1−e−θ∗(z̄−zd)

δ

]
g(z̄)dz̄




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A.2.6 Average Age, Productivity and Size of Exporters

For the case with no hysteresis, we need to derive the marginal probability density of

age and the marginal probability density of productivity over the interval (zex,∞).
For age, we start by integrating µ(a, z, z̄) over z̄ to derive µ(a, z). Then we get

the conditional probability density µ(a, z|z > zex) as the ratio of µ(a, z) and the

probability that z > zex,

µ(a, z|z > zex) =
µ(a, z)

Prµ(z)[z > zex]

=

∞∫

zd

µ(a, z|z̄)µ(z̄)dz̄

∞∫

zex

∞∫

zd

µ(z|z̄)µ(z̄)dz̄dz

so that the average age of exporters is given by

āex =

∞∫

0

aµ(a|z > zex)da

=

∞∫

0

a

∞∫

zex

∞∫

zd

µ(a, z|z̄)µ(z̄)dz̄

∞∫

zex

∞∫

zd

µ(z|z̄)µ(z̄)dz̄dz
dzda

Let’s now consider productivity. We just need to derive µ(z|z > zex) starting from

µ(a, z|z > zex),

µ(z|z > zex) =

∞∫

0

∞∫

zd

µ(a, z|z̄)µ(z̄)dz̄

∞∫

zex

∞∫

zd

µ(z|z̄)µ(z̄)dz̄dz
da
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and the average productivity of exporters is

z̄ex =

∞∫

zex

zµ(z|z > zex)dz

=

∞∫

zex

z

∞∫

0

∞∫

zd

µ(a, z|z̄)µ(z̄)dz̄

∞∫

zex

∞∫

zd

µ(z|z̄)µ(z̄)dz̄dz
dadz

while the average size, in terms of revenues, is

r̄ex =

∞∫

zex

R
(
m̄−1Pez

)σ−1
µ(z|z > zex)dz

= R
(
m̄−1P

)σ−1
∞∫

zex

e(σ−1)z
∞∫

0

∞∫

zd

µ(a, z|z̄)µ(z̄)dz̄

∞∫

zex

∞∫

zd

µ(z|z̄)µ(z̄)dz̄dz
dadz

A.2.7 Survivor Function and Other Moments

First we derive Pr(T (zd) > a|z̄) where T (zd) is the age of the firm when its produc-

tivity z first hits the lower barrier zd. Take the integral of equation (13) with respect

to z to get

Pr

(
za ≤ z, min

0≤u≤a
zu > zd | z̄

)
= e−δa

[
Φ

(
z − z̄ − αa

ξ
√
a

)
− e

− 2α
ξ2
(z̄−zd)Φ

(
z + z̄ − 2zd − αa

ξ
√
a

)]
g(z̄)

Ma

M

and then let z ↓ zd to find

S(z̄, a) = Pr(T (zd) > a|z̄) = Pr
(
min
0≤u≤a

zu > zd | z̄
)

= e−δa

[
Φ

(
zd − z̄ − αa

ξ
√
a

)
− e

− 2α
ξ2
(z̄−zd)Φ

(
z̄ − zd − αa

ξ
√
a

)]
g(z̄)

Ma

M

the probability of exiting after age a for a firm with initial productivity z̄.

We can then proceed to derive the probability of exiting no sooner than t periods

from now given the current age of the firm a. Think of S(x, t) as the probability of
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exiting no sooner than t periods from now for a firm with current productivity x.

Next, derive the probability density of productivity conditional on age, µ(x|a)

µ(x|a) = µ(a, x)

µ(a)
=

∞∫

zd

µ(a, x, z̄)dz̄

∞∫

zd

∞∫

zd

µ(a, x, z̄)dz̄dx

and finally combine the latter with S(x, t)

P (T (zd) > t|a) =
∞∫

zd

S(x, t)µ(x|a)dx

where T (zd) is now interpreted as the number of periods from now when a firm of

current age a exits.

We proceed by deriving now, Pex(a) the probability that firms of age a that

are currently producing only for the domestic market will become exporters (before

exiting). First, define Tzd,zex as

Tzd,zex = min {t ≥ 0; zt = zd or zt = zex}

that is, Tzd,zex is the random time at which the BM process first assumes one of the

values zd or zex. It can be shown that, uex(x), the probability that a firm with current

productivity x first exits the interval (zd, zex) at zex is16

uex(x) = Pr {z(Tzd,zex) = zex | x} =
e−2αx/ξ2 − e−2αzd/ξ2

e−2αzex/ξ2 − e−2αzd/ξ2

so that Pex(a) is

Pex(a) =

∞∫

zd

uex(x)µ(x|a)dx

16See for example Karlin and Taylor (1998).
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A.3 Hysteresis Derivations

A.3.1 System of Equations

The system of equations that implicitly defines the threshold values zlow and zhi and

the constants a1 and b2 is

b2e
β2zhi − τ1−σ R

σ

(
m̄−1P

)σ−1

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zhi − fx

(r + δ)
= a1e

β1zhi + fhy

β2b2e
β2zhi − τ1−σ R

σ

(
m̄−1P

)σ−1
(σ − 1)

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zhi = β1a1e
β1zhi

b2e
β2zlow − τ1−σ R

σ

(
m̄−1P

)σ−1

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zlow − fx

(r + δ)
= a1e

β1zlow

β2b2e
β2zlow − τ1−σ R

σ

(
m̄−1P

)σ−1
(σ − 1)

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)zlow = β1a1e
β1zlow

A.3.2 Properties of zlow and zhi

Exporting Cutoff (zhi) Define the function,

D(z) ≡ Vex,hi(z)− Vex,low(z)

= b2e
β2z − a1e

β1z − τ1−σ R
σ

(
m̄−1P

)σ−1

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z − fx

(r + δ)

that can be interpreted as the firm’s incremental value of becoming an exporter, over

the range (zlow, zhi).
17 When z is small, the dominant term in D(z) is the one with

the negative root β2. It is decreasing and convex in z. When z is large the dominant

term is the one with the positive root β1.
18 This term is negative, decreasing and

concave. For intermediate values, the third term contributes to the increasing portion

of D(z) (see Figure (6)).

17Here we follow a similar case illustrated in Dixit and Pindyck (1994).
18This is guaranteed by Assumption 1, which by stating that ρ + δ > α(σ − 1) + ξ2(σ − 1)2/2,

actually impose that (σ− 1) < β1. To prove it just solve the inequality for (σ− 1) and find that the

solutions gives |σ − 1| < β1. Recall also that demand is elastic so that σ > 1.
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Figure 6: Firm’s Incremental Value of Becoming an Exporter over (zlow, zhi)

Consider the upper threshold zhi. Subtracting the differential equation for Vlow

from the one for Vhi, we have

(r + δ)D(z) = πex(z) + αD′(z) +
1

2
ξ2D′′(z)

Evaluating at zhi and using the boundary conditions that must hold at zhi, we get

−(r + δ)fhy + πex(zhi) = −
1

2
ξ2D′′(zhi) > 0

or πex(zhi) > (r+δ)fhy > 0 which means that zhi is larger than the productivity level

at which the firm decides to become an exporter when there is no uncertainty and z

is constant over time.

Width of the Band of Inaction Define, over the range (zlow, zhi),

D(z) = Vex,hi(z)− Vex,low(z)

= b2e
β2z − a1e

β1z − τ1−σ R
σ

(
m̄−1P

)σ−1

1
2ξ
2(σ − 1)2 + α(σ − 1)− (r + δ)

e(σ−1)z − fx

(r + δ)
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Write the value-matching and smooth-pasting conditions in terms of D(z),

D(zhi, a1, b2) = fhy

Dz(zhi, a1, b2) = 0

D(zlow, a1, b2) = 0

Dz(zlow, a1, b2) = 0

We are going to find out what is the effect of a small change in fhy on the cutoff

thresholds zlow and zhi. First, totally differentiate the value-matching conditions

Dz(zhi, a1, b2)dzhi +Da1(zhi, a1, b2)da1 +Db2(zhi, a1, b2)db2 = dfhy

Dz(zlow, a1, b2)dzlow +Da1(zlow, a1, b2)da1 +Db2(zlow, a1, b2)db2 = 0

which, using the smooth-pasting condition, simplify to

Da1(zhi, a1, b2)da1 +Db2(zhi, a1, b2)db2 = dfhy

Da1(zlow, a1, b2)da1 +Db2(zlow, a1, b2)db2 = 0

and

−eβ1zhida1 + eβ2zhidb2 = dfhy

−eβ1zlowda1 + eβ2zlowdb2 = 0

Solving the system we find that db2 = e(β1−β2)zlowda1 and that da1 = χdfhy

where χ =
(
eβ2(zhi−zlow)eβ1zlow − eβ1zhi

)−1
< 0 since eβ2(zhi−zlow) < 1, β1 > 0 and

zhi > zlow. Now differentiate the first smooth-pasting condition at zhi

Dzz(zhi, a1, b2)dzhi +Dza1(zhi, a1, b2)da1 +Dzb2(zhi, a1, b2)db2 = 0

that, after using the expressions for da1 and db2 yields

Dzz(zhi, a1, b2)dzhi = β1e
β1zhida1 − β2e

β2zhidb2

=

[
β1e

β1zhi − β2e
β2zhi+(β1−β2)zlow

]
(
eβ2(zhi−zlow)eβ1zlow − eβ1zhi

) dfhy
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Recall that D(z) is concave at zhi so that Dzz(zhi, a1, b2) < 0. Note that the term in

front of dfhy is negative as well so that dzhi/dfhy > 0. When the cost of entering the

export market is higher, the export cutoff is also higher.

Now differentiate the second smooth-pasting condition at zlow

Dzz(zlow, a1, b2)dzlow +Dza1(zlow, a1, b2)da1 +Dzb2(zlow, a1, b2)db2 = 0

which yields

Dzz(zlow, a1, b2)dzlow = β1e
β1zlowda1 − β2e

β2zlowdb2

=

[
β1e

β1zlow − β2e
β2zlow+(β1−β2)zlow

]
(
eβ2(zhi−zlow)eβ1zlow − eβ1zhi

) dfhy

Recall that D(z) is convex at zlow so that Dzz(zlow, a1, b2) > 0. Note that the term

in front of dfhy is still negative so that dzlow/dfhy < 0. When the cost of entering

the export market is higher, the export-abandon cutoff is lower. This proves that the

width of the band of inaction is an increasing function of fhy.
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