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1For instance, Fujita and Thisse's (2002) lucid and authoritative new book doesn't have
"time" in the index.  There is some modeling of the issues in Harrigan and Evans (2002) and
Venables (2001).

2 Previous attempts to unpack ‘trade costs’ include study of the benefits of face-to-face
contact, see Leamer and Storper (2001) and Storper and Venables (2003).
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1. Introduction 
People pay a lot of money to save time.  A modern economy is inconceivable without air travel
and air shipment, ways of saving time at the expense of money.  For workers in urban areas, the
main component of commuting costs is time.  For international trade in manufactured goods
estimates of the costs of the time-in-transit range as high as 0.5% of the value of goods shipped,
per day (Hummels 2001).  Protagonists of ‘just-in-time’ manufacturing techniques emphasise the
importance of organising and locating production to ensure timely delivery of parts and
components.

Surprisingly, these observations have had little impact on the economic analysis of
location decisions.1  Economists have worked with an aggregate of ‘transport costs’ or ‘trade
costs’ to capture the penalty of distance, while simply remarking that these costs are a shorthand
for a complex set of penalties (e.g. Fujita, Krugman, and Venables 1999).  Penalties include
freight and other monetary transactions costs; lack of information about markets and suppliers
and about local institutions and regulations; difficulty in monitoring contracts; the impossibility
of face-to-face contact and communication; and the fact that distance introduces delay into
completion of trades.  It is unlikely that summarising these penalties as a single value of ‘trade
costs’ is adequate for understanding their effects.  The objective of this paper is to contribute to
the process of unpacking the different elements of these trade costs.2  

We focus on the costs associated with delivery times and argue that timeliness is not only
a quantitatively important aspect of proximity, but also matters qualitatively, creating an incentive
for clustering of activities.  The context is the time taken between initiating a project and
completing it and making delivery to the consumer.  We suppose that physical distance between
stages of the production process (eg component manufacture and final assembly) slows down the
process, and argue that slowing down matters for several reasons.  One reason is discounting and
other analogous factors, such as the physical depreciation or technical obsolescence that
component parts may incur during shipment.  These costs will not be the focus of our attention,
although we note that they may be large – computer chips become obsolescent very rapidly, so it
is not sensible to ship them on the slow boat.  

Other reasons why delay matters are intimately connected with uncertainty.  One set of
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arguments is to do with the synchronization of activities; production cannot be completed until
all the parts have arrived, so uncertain arrival times of components can have a cost that is quite
disproportionate to the cost of any single component.  Other arguments arise since, in general, it
is profitable to postpone stages of the production process until as much uncertainty as possible
has been resolved.  We look at several different aspect of demand uncertainty; uncertainty about
the product characteristics that are demanded, and uncertainty about the total level of demand or
costs.

Of course, saving time is always going to be beneficial, just as is saving freight charges. 
To make the point that there may be qualitative (as well as a quantitative) implications of
timeliness, we develop all our models in a very particular framework that enables us to assess the
profitability of clustering activities together.  The framework is one in which there are two
locations, each of which has an assembly plant supplying final demand.  The assembly process
uses a number of component parts, and increasing returns in production of these components are
sufficiently great that each is produced in a single plant.  Where do the component producers
locate?  Clustered around one of the assembly plants, or divided between the two locations?  We
show that the demand for timeliness in delivery creates a force for clustering of plants around a
single assembler.

We develop this argument in a series of models.  Section 3 outlines a benchmark case in
which there are monetary trade costs, but delivery is instantaneous and component producers do
not cluster.  In section 4 we look at the issues raised by the synchronisation of delivery of
components, and show that uncertain delivery times will cause clustering of component
producers.  Sections 5 and 6 show how uncertainty about demand and about costs can also create
clustering.  However, before developing these models we briefly connect our to approach to the
extensive management literature on just-in-time (JIT) production.  

2.  Just-in-time
In the management literature on just-in-time (JIT) production it has been suggested that the
spread of JIT systems might be expected to lead to a geographical reconcentration of supplier
firms and customers (eg Dicken 1998).

The JIT approach was pioneered by Toyota Motors in the 1950s.  Its main features are
that components are delivered in small but frequent batches, that minimal stocks are held, and
that ‘quantity control is built in’.  The perceived advantages are a reduction in the cost of holding
stock, rapid response to customer orders, and the ability to rapidly detect and rectify defective
components.  Effective implementation of JIT is thought to require close and long term supplier/
customer relationships and, where possible, proximity.
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The importance of proximity is illustrated by the example of General Electric’s
appliances division in their attempt to implement JIT in the 1980s and 90s.  They were hampered
by the fact that some suppliers were several thousand kilometres away from GE plants, this
causing a 1993 decision to increase inventory levels (Jones, George and Hill 2000).  The US
auto-industry has been extensively studied, although identifying the effects of JIT on  supplier
location is a tricky empirical question.  Assemblers tend to locate where suppliers are already
located, and in addition there are non-JIT reasons why suppliers may want to be near assemblers
(such as minimizing transport costs irrespective of timeliness considerations).  Klier (1999)
assembles a comprehensive dataset on assemblers and suppliers and shows that, since the advent
of JIT, new supplier plants are more likely to locate near their assembly plant customers than
they were before the advent of JIT.  Klier also finds that proximity generally means “within a
days drive”, rather than right next door, which implies that the agglomeration force of JIT
operates at the regional rather than the urban level.

Our goal in this paper is to develop some simple models that capture some of the features
referred to in this literature, and to draw out their implications for the concentration of activity.

3.  A timeless model
We develop our ideas in a family of models, each based on two locations, A and B, where final
assembly occurs and demand is met.  Assemblers in A and B require components, and component
suppliers can be located in either A or B.  We refer to the final producers as assemblers but the
idea is more general: “assemblers” could be service firms who require a variety of manufactured
or service inputs, or retailers who sell a variety of products.3 

Assemblers produce with constant returns to scale, and the final assembled product is
non-tradeable, so assembly must take place in both locations.  Components are tradeable,
although trade typically takes time.  The number of types of components, N, is fixed, and
production of each incurs a plant level fixed cost and then has constant marginal cost.  The fixed
cost is large enough to ensure that each component is only produced in one location, either A or
B, and our primary question is to ask where this component production takes place.

In most of the models we develop all components are necessary to production of the final
product, raising the question of how surplus is split between assemblers and component
producers.  The theory of (non-cooperative) bargaining offers no answer to this when there is
more than one supplier (see Sutton 1986, Binmore and Dasgupta 1987).  However, it does lead
us to expect that the outcome will be efficient, maximising the combined returns to all parties.  In
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our analysis we therefore look merely at the total returns to different locational patterns, and not
at how these might be divided between players.

Before we move to our models of timeliness, it is instructive to look briefly at a timeless
case based on  ingredients from a standard economic geography model.  In this benchmark
model, assemblers in A and B each combine N symmetric inputs in a CES production function to
create a unit of final output.  The value of producing one unit of final output in location A is
revenue minus the costs of producing and shipping components,

(1)( )
1

11 1
A A A B BV p N r N r σσ στ −− −⎡ ⎤= − +⎣ ⎦

The exogenously given price of final output, net of any assembly costs, is p.  The remaining term
is the cost of the parts required to produce a unit of output.  The cost function has elasticity of
substitution F; NA is the number of components sourced locally with unit production costs rA,
while the remaining NB (NA +NB = N) come from the other location with unit production cost rB

and shipping cost factor J > 1.  Notice that, since we are looking for efficient outcomes, we use
the unit production costs of components, ri, which may not be the same as the prices at which
they are traded.  Furthermore, we will henceforth refer to VA as the profits of assembly in A,
noting that it is both the profits of the assembler and profits (before fixed costs) earned by
component producers on supply of parts to A.  A similar equation gives profits in B.

What values of NA and NB maximise total profit, VA + VB?  The total number of component
suppliers is fixed at N, so that NA = N - NB, and we let input costs be the same in each location. 
Making these substitutions in (1) and taking the derivative of VA with respect to NB gives
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These derivatives establish that VA is decreasing and concave in NB: shifting assembler locations
from A to B has an increasingly negative effect on the returns to assembling in A.  The opposite is
true for the returns from assembly in B.  The point here is that the increasing marginal cost of
remoteness implies that the sum VA + VB is maximized when half of the suppliers locate in each
region.  The point is made explicitly in Figure 1, in which there are 10 components, and the
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number of component suppliers located in B is on the horizontal axis4.  Curves give profits in
each place, and their sum, VA + VB, is maximised when NA = NB.  A lower elasticity of
substitution, F, gives less curvature and a flatter VA + VB schedule, but only in the limit, when the
elasticity of substitution is zero, do the curves become linear, and their sum horizontal. 

This result does not turn on a CES cost function.  Quite generally, if the assembler did not
adjust its input quantities as NA and NB changed, then VA would be the straight line joining values
of VA at NA = 0 and NB = 0.  The possibility of adjustment means that VA lies on or above this
straight line, as illustrated.  More formally, consider any symmetric unit cost function

 in which inputs are partitioned into a group (A) available at price r, the remainder
available at price r + dr (group B).  Quantities demanded in each group are xA, xB, xA > xB.  The
increase in costs when a product moves from group A to group B is  (by
Shepherd’s lemma).  As more products enter group B so xA must increase (in order that input
levels are sufficient to produce the unit of output5), meaning that the cost of moving inputs from
group A to group B is increasing.  This increasing marginal costs gives the convexity of the cost
function with respect to NB, and the consequent concavity of profits. 

The conclusion is therefore that, in this benchmark case, there is no clustering of activity. 
The ex ante symmetric locations, A and B, are also symmetric ex post, as component producers
are split in equal numbers between the locations.  With this benchmark in mind we now turn to
models where remote supply incurs a time cost.

4.  Synchronization
Our first model of timeliness turns on uncertainty about delivery time, and the consequent risk
that production may be delayed by the late arrival of components from a distant supplier.  We
model this by supposing that each assembly firm seeks to produce a unit of output for delivery at
a particular date.  Assembly uses labour to combine N different component parts into final output
using a Leontief production function with unit coefficients.  Of course, production cannot be
completed until all the parts needed have arrived.  For the moment, we assume that holding
stocks of components is infeasible or prohibitively costly.  This might be because of very high
storage or depreciation costs, or simply because the exact specification of the product is
unknown prior to the decision to produce, an idea we pursue in the next section.



6  This production function is formally identical to Kremer’s (1993) o-ring technology.

6

Transport of components between locations is costless, but timely delivery of parts can
only be guaranteed if the assembler and parts supplier are located in the same region.  The
probability of timely delivery is q < 1 if supplier and assembler are located in different regions.  
Assuming that delivery of each part is iid across suppliers and assemblers, for assemblers located
in A,

Pr(all parts arrive on time) = BNq

Pr(at least one part arrives late) = 1 - BNq

where as before NB is the number of parts suppliers located in B, NA + NB = N.  Clearly, Pr(all
parts arrive on time) is decreasing in NB and (importantly, as it turns out) convex in NB:

(4)ln 0
B

B

N
N

B

q q q
N

∂
= <

∂
[ ]

2
2

2 ln 0
B

B

N
N

B

q q q
N

∂
= >

∂

This means that each part which changes from being supplied locally to remotely decreases the
probability that all parts arrive on time, but does so at a diminishing rate.  The intuition for this is
straightforward: if one part is delayed, it doesn’t matter if a second part is also delayed.6 

There are several reasons why delays in completing assembly might be bad for profits.
One is demand decay.  Many goods and services have demand which peaks at a certain time and
the price that the assembler can get for the final product falls unless it is delivered on time. 
Another is that some assembly costs have to be met whether production occurs or not.  For
example, if labor must be hired to assemble parts, then wages must be paid regardless of whether
all parts have arrived.  Think of labour as a cost which must be incurred before the outcome of
the delivery process is known, so that if there are delays, labour must be hired again once all
parts arrive.

To capture these arguments, let final demand be characterized by a reservation price
which is p on the day that demand is realized and p(1 - *) one day later, * 0 (0,1).  Profits if all
parts are delivered on time are therefore

(5)0
A A A A B Bv p w N r N rβ= − − −

where $ is the daily unit labour requirement for parts assembly and wA is the wage.  If parts are
delivered one day late, the reservation price falls and labour must again be hired, so profits are

(6)1 (1 ) 2A A A A B Bv p w N r N rδ β= − − − −
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The difference between profits on day 0 and on day 1, *p + $wA, is the penalty paid by firms who
suffer late delivery of parts.  Expected profits are just profits if there is no delay minus the
expected cost of delay,

(7)( )0 1  (  + )BN
A A AV v q p wδ β= − −

If we assume that there are no cost differences between the two locations, then (5) and (7) imply
that expected profits in A are decreasing and convex in NB: the hit to expected profits of sourcing
an additional part from far away gets smaller as the number of them increases. 

Symmetric results apply to expected profits in B, which has the important implication that
total expected profits are maximized at NB = 0 and at NB = N.  This is illustrated in Figure 2.  In
contrast to the baseline model of the previous section, total expected profits are minimized at NB

= N/2 = NA: with such a division of production, neither suppliers in A nor in B get the benefit of
reliable deliveries.  This illustrates the increasing marginal value of timeliness: if almost all parts
have guaranteed on-time delivery, an increase in share of timely parts has a bigger effect on
expected profits than if most parts are subject to erratic delays. As a result, there is an economic
force leading to the agglomeration of all suppliers in either A or B.

The point of this simple case is then, that although the locations are ex ante symmetric,
the efficient location of component producers is asymmetric.  It is best to have one assembler
operating in a cluster of all the component suppliers and producing without delay, while the other
bears the full cost of the uncertainties associated with delivery delay.  

Notice also that the difference between locations shows up as a productivity difference. 
One of the key facts about agglomeration is that localized industries have higher measured
productivity (see Rosenthal and Strange, 2003, for a review of the evidence).  The model offers
an explanation for this: localized activities benefit from timeliness, which reduces or eliminates
periods when production is interrupted by delayed delivery.  If all suppliers locate in A, then
assemblers in A never have to pay labour twice, while assemblers in B have to pay labour a
second time with probability 1 - qN.  Since output is the same in each location, relative
productivity in A is given by the ratio of expected unit costs:

 (8)(2 ) 1
N

AB
q w rNTFP
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This TFP advantage for assemblers in A is increasing in the probability that at least one part is
delayed and in the importance of assembly labour in total costs.  It is also increasing in the total
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number of parts, which might be thought of as complexity.7  This is intuitive, since the greater
the number of parts the greater the chance of a delay in having all parts arrive.  This result
suggests that parts used in more complex activities have a greater incentive to cluster than do
parts used in simpler activities. 

5. Inventories and product specification uncertainty.
The obvious question on the preceding section is: what about stocks?  We now follow up the
brief discussion of inventories in that section with a model in which assemblers choose
inventories optimally, and we show that the convexity of profits with respect to location may --
depending on the cost of holding stocks -- continue to hold.  We also vary the model by
removing uncertainty about the timing of arrival of components, and instead having uncertainty
about the exact specifications of products that consumers demand.  This uncertainty creates an
incentive to produce quickly (after information about demand has been revealed), as well as
potentially making stocks very expensive to hold.

In each location, A, B, there is a unit mass of consumers, each of whom consumes one
unit of final product.  Each assembler, as above, uses N components with fixed unit coefficients
to produce one unit of a final product.  However, each component now comes in a continuum of
characteristics (of measure one), and consumer preferences are defined over the characteristics of
each component – i.e. consumers want a car with a particular engine specification, body-work,
interior trim, etc.  These preferences are represented by supposing that, for each component,
consumers have ‘high’ preference for a subset of characteristics of measure :, and ‘low’
preference for the remaining 1 - :.  Thus, each characteristic in the set : faces 1/: units of high
preference demand; characteristics not in this set will be consumed only if high preference
characteristics are not available, and only at lower price. 

This is illustrated in figure 3, in which the horizontal axis is the characteristic space for
one component.  The unit mass of consumers has high preferences for characteristics in a set of
measure :.  These characteristics need not form a connected set although, for simplicity, this
case is illustrated.  The rectangle ABCD represents total high preference demand so has area
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unity, implying that high preference demand for each of these characteristics is 1/:.  This pattern
is repeated for each component, and we assume that there is no correlation between demand for
the characteristics of different components; preferences over engine size are uncorrelated with
preferences over exterior colour.  The value of : is known and the same for all components,
however its location (in characteristic space) is initially unknown.  In other words car assemblers
know that : exterior colours will be demanded, but they do not know which ones.  Clearly,
preferences are less uncertain the larger is :, and when : = 1 then there is no uncertainty as all
characteristics are demanded in equal quantity. 

Delivery of components from remote suppliers takes time, so these components have to
be ordered before the assembler knows the exact specification of demand.  This is then revealed,
and components are ordered from local suppliers, delivery and production takes place.  The
production cycle is then repeated indefinitely.  This gives the following time line:

Given this timing, what quantities of what characteristics of each component should the
assembler in A order be holding when production commences?  For each locally supplied
component the assembler knows the : characteristics that have high preference, and orders
quantity 1/: of each of these.  For each remotely supplied component, s denotes the quantity of
each characteristic held when production commences.  If s = 1 then only : consumers can be
served with their preferred variety of the component, the remainder (1 - :) having to make do
with a low preference variety; all s = 1 units of each component get used up in production.  If s >
1, then s: consumers get their high preference variety and the remaining (1 - s:) make do with a
low preference characteristic (the shaded area of figure 3).  Since one unit of each component
gets used in production each period, stock of s - 1 is carried into the next production cycle, with
new purchases replacing stock used.8  Notice that it is never optimal to have s < 1, as one unit is
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(9)

(10)

required to produce the one unit of output, nor s $ 1/:, as this is sufficient to perfectly match
consumer preferences.

The final ingredient we need is to specify the price of final output according to the extent
to which it matches consumer preferences.  Products that are ‘perfect’ – all their components
having the high preference characteristics – have price .  Those that have k low preference 
components (k ‘mismatches’) have price , N(0) = 1.  We assume that N(k) is decreasing
and convex in k, implying that the price falls at diminishing rate with multiple mismatches; as a
consequence, a firm will produce as many perfect products as it can, concentrating all its
mismatched components in as few a products as possible (rather than spreading its mismatched
components over many units). 

The profit from assembly at A as now given by

The first term says that, with stock level s, s: consumers can receive products that perfectly
match their preference.  Other products contain mismatch in all NB of their remotely supplied
inputs, so are valued at .  Remaining terms in the expression give the costs of producing
the components and the inventory cost, where ( is the unit cost of holding stock to the next
production cycle, so (s - 1)(NB is the total cost of inventories.

Efficiency is achieved by choosing s to maximise (9).  The problem is linear in s, so the
solution is to go to one corner or the other.  Thus, the assembler either chooses s = 1/:, to
perfectly match demand, or chooses s = 1, the minimum required to produce one unit of output
regardless of specification.  Evaluating VA at these points, we find: 

Outcomes are illustrated on figure 4, for the case with rA = rB.  The horizontal axis is NB

(NA = N - NB), the intersecting dashed curves give profit when maximal and minimal levels of
stock are held, and the maximised value is the upper envelope, with switch point as indicated in
equation (10).  To the left of the switch point maximal stock levels are held and VA is linear in
NB.  If it were the case that for all NB 0 (0, N),  , and analogously for VB and
NA , then both VA and VB would be linear over the entire range.  If rA = rB then their sum is a
constant, independent of the location of suppliers.  This confirms the idea that holding
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inventories removes the incentive for agglomeration and, in this simple example, makes the
location of suppliers indeterminate.

If however  for some NB 0 (0, N), then the outcome is as illustrated. 
When no stock is held, s = 1, VA is convex, and the upper envelope of the profit curves is also
convex.  Adding profits in each location gives a convex sum VA + VB, so that efficiency is
achieved by putting all suppliers in one place.  At this equilibrium then, one assembler has all
components produced locally, and produces ‘customised’ products that perfectly match demand;
it does this without holding stocks, because it relies on the proximity of suppliers.  The assembler
in the other location chooses not to hold stocks, instead preferring to produce a product range
which is less well tailored to consumer demand.

What factors are conducive to there being an interior switch point and consequent
clustering?  The first is a high direct cost of holding a unit of stock, (.  The second is greater
uncertainty about the exact product specifications that will be demanded (higher :).  These
factors raise respectively the cost and the quantity of stock that needs to be held to completely
match high preference demand.  The third factor is the curvature of the function N(k), giving the
cost of mismatches.  For the argument of this section to work, this function has to be convex so
that – as in the preceding section – the first mismatch is more expensive than the second, and so
on.

The model of this section therefore gives two main messages.  One is that, even if the
direct costs of holding a unit of stock (() are not that high, the fact that stocks need to be held
over a wide range of component specifications (if : is low) can make the stock-holding strategy
expensive.  The other is that uncertainty about demand specification coupled with time in transit
can generate clustering.  Putting these together, we see that in industries where products are
complex (a high N) or demand is volatile (high :), the presence of time in transit will induce an
equilibrium with clustering.  One location will contain all the suppliers and produce customised
products; the other has to import components, and produces ‘generic’ products.  Although
physical productivity is the same in both locations, the output price and hence the value of output
per worker is higher in the location with the cluster.

6. Demand (or cost) uncertainty.
In the preceding models incurring failures (late delivery or mismatched components) becomes 
progressively less costly, and it is this that gives the convexity of the profit functions.  We now
turn to an alternative model in which the mechanism is somewhat different.  There is no
uncertainty about the arrival time of components, or about the composition of demand.  Instead,
there is simply uncertainty about the level of demand, and the location of plants affects the extent
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(12)

to which it is possible to react to information about the position of the demand curve.  In this
way, we build on the work of Evans and Harrigan (2002), who examined a model of “lean
retailing” and its implications for international specialization.9  We develop the model for the
case of demand uncertainty, although show at the end of the section that assembly cost
uncertainty has identical effects.

Demand for the output of each assembler can be high or low, represented by a linear
inverse demand curve in which the intercept depends on the state of nature, so 

 i = A, B,    s = H, L,     "H > "L. (11)

where pi is price and yi is quantity of final product in region i, and superscript denotes the state of
nature.  High demand occurs with probability D.  Whether high or low, demand is fleeting, and
falls to zero if not met immediately.

As before, the production function has fixed unit input coefficients for each component,
and we ignore labour costs in assembly.  The assembler in region A faces the following sequence
of decisions.  First, she has to choose the quantity xB of components to order from each of the NB

remote suppliers.  These have to be ordered before the state of nature is revealed if they are to
arrive in time for production.  The state of nature is then revealed, and firms choose quantities of
components  from each of the local suppliers.  Finally, delivery of all components takes place
and production occurs.  This is summarised by the following time line:

     Choose xB:   6    revealed:   6   Choose :   6   Produce  . 

The assembler’s second choice problem (once the state of nature, s = H, L, is known) is
to choose  to maximise , defined as

The maximand is revenue (where we have used the production function and the inverse demand
curve) minus the costs of locally supplied inputs.  The constraint reflects the fact that the
assembler will never choose more local components than the quantity set by the supply of
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(13)

(14)

(15)

(16)

components coming from region B, because of the fixed coefficient technology.  We solve this
problem by maximising the Lagrangean

The first order condition with respect to  implies,

The solution to this problem gives two qualitatively different regimes.  In one the constraint

binds, so  and  is given by equation (14).  In the other the constraint does not bind

so  and  is solved from (14); some components ordered from B are disposed of. 

The assembler’s first problem is to choose xB before the state of nature is known, to
maximise expected profits

Varying xB changes costs directly, and also changes  and  via the constraint in (12).  The
first order condition for this problem is

since the Lagrange multiplier measures the value to the objective of a unit relaxation of the
constraint.  

As noted above, there are two cases to study.  One we call the no-flexibility case, in
which production is the same in both periods .  Since production is constrained

by components supplied from the remote producers .  The other is the flexibility

case in which, if demand is high, production is constrained by the supply of pre-ordered
components, so  and .  However, if demand is low then not all these
components are used, so  and  .  There is free disposal of unused components.10 
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(17)

(18)

(19)

Which regime applies depends on parameters, including the values of NA and NB.  We look first
at the flexibility case, then turn to the no-flexibility case and the boundary between the regimes.

In the flexibility case, solution of first order conditions (14) and (16) gives, 

Using these equations we can show that the inequality  holds providing
, this condition defining the boundary of the flexibility regime.  Notice that

quantities produced depend on the location of input producers.  Increasing NB has the effect of
decreasing output in the high demand state and increasing it in the low state.  Formally, using NA

= N - NB, setting rA = rB = r and differentiating (17),

Intuitively, higher NB increases the number of components left unutilised, and hence the expected
cost of production; this reduces the profit maximising level of output in the high demand state. 
However higher NB also means that, if the low demand state transpires, a higher proportion of
inputs have zero shadow price (the components from region B which, at the margin, are
discarded).  This reduces the marginal cost of production in the low state, so increasing quantity
produced. 

The effects of varying NB on profits are given by differentiating (15) and (12) with rA = rB

= r, to give:

The second equation comes from using the first order conditions (14) and (16).  It says that --
once quantities of inputs are optimised -- the loss of profits due to a marginal increase in NB is
simply the expected cost of quantities of this component that remain unused.  The final equation
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(20)

(21)

uses (17) to express this in terms of variables that are exogenous to the firm.  From (19), we see
that in the flexibility case (in which )

Increasing NB therefore reduces profits, and does so at a decreasing rate, by the convexity of VA. 
The intuition for the convexity is that the cost of a component changing from being supplied
locally to being supplied remotely is that some of the component remains unused; increasing NB

decreases output in the high demand state and increases it in the low state, as we have already
seen (equations (18)), so reducing the gap between .  The implication is that there is a
force for clustering of component suppliers around one of the final assemblers. 

In the no-flexibility case, solution of first order conditions (14) and (16) gives 

The first equation gives purchases of components and hence also the level of output.  This is the
same in both states, so demand variability goes entirely into the price.  Expected profits, VA, can
be computed using (21) in (12) and (15).  For present purposes, the important point to notice is
that if rA  = rB then output and sales levels do not depend on location of assemblers (the division
of N between NA  = NB, see equation (21)), so neither do profits.  In the interior of this regime
having more local component suppliers does not bring any flexibility, nor therefore any change
in production or profits.

We can now pull threads together by noting that the edge of the no-flexibility regime is

where the shadow value of xB in the low state, , is zero, i.e. .  This is of

course the same condition that gives the edge of the flexibility regime, where output levels in the
high and low demand states just become equal, equation (17).

The complete picture is illustrated in figure 5.  The horizontal axis gives NB, and the
vertical axis gives levels of production and profits of the country A assembler.  The no-flexibility
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regime is where ; a sufficiently large number of components come from
remote suppliers that it is very costly to leave some of each of them unused if the low state
occurs.  Alternatively, when  then only a small share of component types face
the risk of being left unutilised and discarded.  It is therefore worthwhile to order a larger
quantity of each type of remote component, xB, output becomes state contingent, and the
flexibility case applies.

Notice that there are now two distinct arguments creating convexity of profits, VA , with
respect to NB.  One is that, within the flexibility regime, profits are convex, as discussed above
(equation (20)).  The other arises because of the kink in the upper envelope of VA due to the
change in regimes.  Intuitively, having more local suppliers is of no value until some threshold is
passed – only then is it worth adjusting production to exploit the benefits of rapid delivery times. 
The implication is, once again, that input suppliers will all cluster in one location.  One of the
assemblers becomes completely flexible, ordering all its inputs from local suppliers once the
level of demand is known.  The other is inflexible, as all its inputs have to be imported and are
ordered before the state of nature is known.

Several other remarks are worth making on this model.  First, price variability is lower in
the location with the cluster of activity, as quantities are responding to demand shocks.  With
linear demands the expected price is the same in both A and B,

, as is the expected quantity sold,
.  However, since the region with the cluster produces more

in the higher price state, the average value of output produced  is higher in the region
with the cluster.  

Finally, notice that this structure is isomorphic to a model in which shocks are on the cost
side, rather than the demand side.  Suppose that revenue  (equation (12)) were to
be  replaced by revenue net of labour costs,  where  is an exogenously
given price, and cs and b are technology coefficients, giving the level and slope of average costs. 
If cs is state dependent, then this model is evidently identical to the one above, with parameter "s

replaced by parameter .  Uncertainty – in either costs or demand – means that profits are
higher if input decisions can be postponed.  The argument of this section shows that it also
generates convexity of profits with respect to the location of component suppliers, implying that
this uncertainty gives rise to clustering. 

7. Policy implications
Governments are perenially interested in regional economic development, and subsidies have
often been used (and even more often proposed) as a means of sustaining regional economies. In



11 The “auto corridor” is the region in the middle of the country where most auto
production is concentrated.  It includes seven contiguous states: Michigan, Ohio, Indiana,
Illinois, Wisconsin, Kentucky, and Tennessee.
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particular, subsidies to manufacturing assembly plants have been justified in the hope that their
presence in a region will trigger agglomerations of related activities. The baseline model of
section 2 offers some theoretical support for such a subsidy: starting from a world with one
assembly plant with all suppliers located nearby, establishment of a second assembly plant
elsewhere creates an incentive for some suppliers to move near the new plant. This is because of
the decreasing marginal value of proximity in such a model: the first supplier that moves to the
location of the new assembler will generate greater value as a result.

In contrast, our models of timeliness deliver the opposite conclusion.  Because of the
increasing marginal value of timeliness (and hence proximity), there is no incentive for any
supplier to move to the location of a new assembly plant. If these models apply, we would expect
new assembly plants that locate far from existing plants (for whatever reason) to not be followed
by their suppliers. As shown by Klier (1999), this is what has happened in the US auto industry:
assembly plants established far from the “auto corridor” as a result of government subsidies
(BMW in South Carolina, Mercedes Benz in Alabama) or private incentives (NUMMI in
California) have not been followed by a substantial number of suppliers.11

8. Concluding comments.
This paper offers several exploratory models of the importance of timeliness in shaping the
location decisions of firms.  We argue that the costs of stockholding can be very high for firms
that produce a wide variety of product specifications.  Absent inventories, we show how either
uncertainty about the arrival time of components or uncertainty about final demand or costs 
mean that there is a cost to suppliers being remote, and this cost is typically convex in the
number of remote suppliers.  Consequently, efficient organisation of production requires the
concentration of all component plants next to just one of the assembly plants.
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Appendix:
Figure 1: rA = rB = 1, F = 5, p = 1.5, J = 1.5, N = 10.
Figure 2: 1, *p + $wA = 1.5, q = 0.9.
Figure 4: rA = rB = 1, : = 0.1, ( = 0.1, 
Figure 5: rA = rB = 1, D = 0.45, "H = 20, "L = 12, $ = 1

Section 5: Similar results hold if mismatched components are randomly assigned to profits, in
which case the expected value of assembly at A is:
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