

Real-time Precise Point Positioning with Ambiguity Resolution for Geosciences

<u>J Geng</u>¹, X Meng¹, FN Teferle¹, AH Dodson¹, M Ge², C Shi³, and J Liu³

IESSG, University of Nottingham, UK German Research Centre for Geosciences (GFZ), Germany GNSS Centre, Wuhan University, China

EGU2009, Vienna, Austria, 19-24 April 2009

Contents

- Precise Point Positioning (PPP)
- Real-Time PPP Ambiguity Resolution
- Continental Centimetric PPP
 - Satellite Clock Estimation in Real Time
 - Kinematic Positioning Accuracy
- Case Study: L'Aquila Earthquake
 - Introduction
 - Data & Models
 - Station Displacement
- Conclusions

Precise Point Positioning

- Precise positioning at only a single station when precise satellite orbits and clocks are provided
 - Absolute positioning based on a sparse network
 - Homogeneous positioning accuracy on a global scale
- Current applications
 - Crustal deformation monitoring
 - Meteorology
 - Orbit determination of low Earth orbiters
 - Engineering surveying
 - Environmental applications

Precise Point Positioning

- Normal positioning accuracy
 - mm level using daily data in static PPP
 - dm level using hourly data in static PPP
 - dm level in real-time kinematic PPP
- Integer ambiguity resolution is ignored in PPP by most researchers in this field
- Integer ambiguity resolution has the potential to improve the positioning accuracy significantly

Ambiguity resolution in PPP

Determine the common errors in satellites using a network of stations

Ambiguity resolution in real-time PPP

A prototype of real-time PPP system

Continental real-time PPP

- 1-Hz data from EUREF-IP project on Day 188 in 2008
- 25 reference stations are selected with inter-station distances larger than 250 km
- 6 stations are chosen as 'rover' stations to conduct real-time PPP with ambiguity resolution

Orbit and clock accuracy in real time final IGS products as truth

Kinematic positioning at station BSCN

Positioning accuracy improvement

L'Aquila Earthquake on April 6th

Earthquake details (from USGS)	
Magnitude	6.3
Date-time	Monday, April 06, 2009 at 01:32:39 UTC
Location	42.334°N, 13.334°E
Depth	8.8 km (5.5 miles)
Region	Central Italy
Distances	75 km (45 miles) W of Pescara, Italy 85 km (55 miles) NE of Rome, Italy 115 km (75 miles) SE of Perugia, Italy 145 km (90 miles) S of Ancona, Italy

Data & models

- 18 1-Hz stations from EUREF-IP project
- 3 1-Hz stations near the epicenter
- IGU predicted satellite orbits
- Zenith troposphere delays are estimated as a constant parameter within each hour

Network stations

Location of 1 Hz stations

Station displacement at UNPG & UNTR

Station displacement at MOSE

Displacement during the Earthquake

Conclusions

- Integer ambiguity resolution contributes significantly to the improvement of the positioning accuracy in realtime PPP
- A prototype real-time PPP system for crustal deformation can be built
- Real-time PPP with ambiguity resolution has successfully determined the displacement caused by Earthquake in L'Aquila

Thank you for your attention!

isxjg@nottingham.ac.uk

EGU2009, Vienna, Austria, 19-24 April 2009

