

Comparison Study on Network RTK and Precise Point GNSS Positioning

X Meng, J Aponte, J Geng, W Tang, A H Dodson, F N Teferle, T Moore and C Hill IESSG, The University of Nottingham, UK

Friday 27 Feb 2009

Contents

- Network RTK GNSS Positioning
- Sparse Network RTK GNSS Positioning
- Precise Point GNSS Positioning
- Comparison
- Conclusions and Discussion

Conventional RTK GNSS Positioning

Spatial correlated errors can be effectively cancelled out only when the baseline length is not greater than about 20 km – error de-correlation effect

Error sources:

- Satellite clock error δsat_clock
- Satellite orbit error δorbit
- Ionosphere $\delta iono$
- Troposphere δtropo
- Multipath δ mpath
- Antenna PCV δPCV
- Receiver clock error δrec_clock
- Receiver Bias δbiases

As baseline length increases δ iono and δ tropo decorrelate causing a decrease in accuracy, reliability and availability.

Network RTK GNSS Positioning

- Precisely model distance dependent errors of a region
- Reduce the number of RSs needed (inter-RS distances > 100 km) & huge saving in infrastructure construction
- Expand rover-to-nearest-RS baseline > 50 km
- GSM/GPRS link

Advantages of Network RTK

- Modelling GPS errors over the entire network area
- Increased positioning robustness against failures
- Increased mobility and efficiency no need for temporary stations
 - one person surveys!
- Quicker initialisation times for rovers
- Extended surveying range
- No restriction in network size (regional, national, international)
- Capable of supporting multiple users and applications
- Continuous operation 365/24/7
- Provide data & corrections in a consistent datum
- Apart from RTK GPS corrections, other services provided include:
 - -RINEX datasets for post-processing
 - -GPS corrections for DGPS
 - -Wide exploitation for geospatial, transport and engineering applications
- Allow central control and monitoring of all stations/high integrity monitoring scheme

SmartNet NRTK: Reference Stations

- For covering whole country in the United Kingdom more than 150 geodetic grade RSs are installed to deliver quality correction services
- These RSs are equipped with dual frequency network enabled geodetic receivers and Chokering antennas
- Some of them are GPS/GLONASS receivers

NRTK Quality Assessment

Approach: real-time NRTK positioning vs pp GPS/INS "ground truth" solutions

Static Performance of NRTK

• Availability: percentage of coordinates in which a NRTK solution (integer ambiguities resolved) was achieved.

Kinematic Performance of NRTK

Availability (%)

Test	Track	Lost Lock	Stand- Alone	DGPS	NRTK
T1	1	16.41	0.48	37.83	45.29
	2	9.58	0.00	39.60	50.82
	3	29.86	20.86	15.57	33.71
	4	12.34	0.00	36.76	50.90
T2	-	7.44	0.00	52.80	39.77

Sparse Network RTK Positioning

Simulated results from other 9 RSs

	Name	Receiver	Session	Init. Time (S)	N (m)	E (m)	U (m)
1 C	CIIIIII	SR530	1	8	0.0152	0.0117	0.0441
	СНОН		2	13	0.0077	0.0080	0.0235
2 I	NIVE	SR530	1	4	0.0122	0.0172	0.0652
	IINVE		2	4	0.0095	0.0061	0.0294
3	STOD	SR530	1	9	0.0127	0.0150	0.0554
	STOK		2	12	0.0061	0.0069	0.0277
4 ABI		SR530	1	6	0.0129	0.0080	0.0576
	ADDS		2	11	0.0105	0.0150	0.0234
5 0	SWAN	SR530	1	5	0.0106	0.0132	0.0268
5	SWAIN		2	8	0.0084	0.0098	0.0458
6	DUNG	SR530	1	18	0.0174	0.0124	0.0425
			2	15	0.0219	0.0359	0.0403
7	PORT	SR530	1	35	0.0250	0.0146	0.0399
			2	6	0.0111	0.0067	0.0177
8	HORT	SR530	1	23	0.0249	0.0153	0.0232
			2	19	0.0181	0.0126	0.0236
9	IOMS	SR530	1	14	0.0111	0.0063	0.0330
			2	13	0.0117	0.0129	0.0110
	Average			12.39	0.0137	0.0126	0.0350

Precise Point Positioning (PPP)

- Precise positioning at only a single station when precise satellite orbits and clocks are provided
 - Absolute positioning based on a sparse network
 - Homogeneous positioning accuracy on a global scale
- Current applications
 - Crustal deformation monitoring
 - Meteorology
 - Orbit determination of low Earth orbiters
 - Engineering surveying
 - Environmental applications

Real-Time PPP Through Ambiguity Resolution

A Prototype Real-Time PPP System

Real-Time Orbit and Clock Products

Floating vs AMB Fixed Solution (staitc)

Floating vs AMB Fixed Solution (kinematic)

Conclusions and Discussion

- Over traditional RTK GNSS positioning NRTK has many advantages in terms of improvements in positioning accuracy, system reliability and production efficiency. However, there exist many issues in
 - Sustaining reliable communications links
 - Proper correction models
 - High infrastructure construction cost and services subscription fees
- Sparse NRTK can significantly reduce the number of reference stations but need to further investigate effective correction models
- PPP has many potential for geoscience and engineering applications but long convergence time and low positioning accuracy are impeding factors

