School of Medicine
  • Print

Division of Medical Sciences and Graduate Entry Medicine 

Back to Division homepage

Image of Wayne Carter

Wayne Carter

Lecturer & Principal Investigator, Faculty of Medicine & Health Sciences


  • workRoom Room 3010 Division of Medical Sciences & Graduate Entry Medicine
    Royal Derby Hospital
    Uttoxeter Road
    DE22 3DT
  • work01332 724738
  • fax01332 724626


Dr Wayne Grant Carter completed a BSc (Hons) degree in Biochemistry with Nutrition and then a PhD in Biochemistry at the University of Southampton. He subsequently undertook post-doctoral research posts at The Babraham Institute, Cambridge; Imperial College, London; University of California at Irvine, USA, and then at the University of Oxford. Additionally, Dr Carter has worked for a global reagent supplier, Sigma, a SME company, Mobious Genomics, and has been employed as a consultant for Syngenta. Dr Carter is currently a Lecturer and research Group Leader within the School of Medicine, University of Nottingham. Dr Carter's research interests are varied and include detection and utilisation of novel biomarkers of toxicological exposure.

Expertise Summary

Understanding the molecular mechanisms that underpin disease provides the basis for targeted therapeutics. The research in my lab is concerned with understanding protein changes and modifications that can trigger pathology. In recent years we have focussed upon hepato- and neuro- toxicological mechanisms. We employ cell and animal models and human postmortem tissue to understand pathological changes, and utilise a broad range of biological and biochemical techniques to study disease. Current projects include an examination of biological targets of environmental pesticides in brain, hepato- and neuro-pathology of alcohol abuse, and protein aggregation in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

My research expertise includes methods utilized to detect and quantify post-translational modifications, and examine tissue, cell, and protein damage and repair mechanisms;

  • 1D and 2D proteomic separation techniques; mass spectrometry; and autoradiographic imaging.
  • Immuno-detection methods. animal dosing and toxicokinetics.
  • Protein and peptide purification techniques, including FPLC and Smart system IEC, SEC, HIC, affinity-ligand, and RP-HPLC.
  • Gene cloning, recombinant protein production and purification.
  • Biophysical methods such as surface plasmon resonance.
  • Synthetic methods such as solid phase peptide and phosphopeptide synthesis.
  • Cell monolayer and suspension culturing.
  • Small animal surgery, and toxicokinetic measurements.

Teaching Summary

BSc (Hons) Medical Physiology & Therapeutics, course code B121.

  • Module Convenor:

Year 1: A11 Body Structure & Function (teaching protein structure/function, cell cycle & genetics, & alimentary physiology).

Year 2: A12 Cancer Biology (teaching all elements of cancer cell biology, cellular signaling, genetics, treatments etc).

Year 3: A13 Cellular Basis of Disease (teaching microbiological & neurodegenerative diseases & treatments).

  • Module Contributor:

Year 1: A11 Infection & Defense (teaching immunology); A11 Supply & Demand I (teaching nutrition & metabolism).

Year 2: A12 Neuroscience (teaching neurodegeneration); A12 Pharmacology & Therapeutics (teaching drug use & toxicity); A12 Respiratory Disease (teaching lung cancer).

Year 3: A13 Final Year Research Project (Supervisor for lab-based research & systematic reviews & meta-analysis based research projects).

  • Admissions Tutor & Admissions Lead for B121 BSc (Hons) degree & B12B (BSc (Hons) Medical Physiology & Therapeutics with a Foundation Year).
  • Examinations Officer and Exams Lead for courses B121 and B12B.

Bachelor of Medicine Bachelor of Surgery (BMBS):

  • Module Contributor:

Year 1: A12 Structure, Function & Defense (teaching protein structure/function, bacteria & viral immunology); A12 Alimentary System (teaching liver structure, function, & pathology); A12 Respiratory Sciences (teaching respiratory inflammation).

Year 2: A12 Integrative

Year 1 & Year 2 problem based learning (PBL) facilitation.

  • Examinations Officer and Exams Lead for course A108; Medicine with a Foundation Year.
  • BMedSci research project supervisor.
  • Graduate Entry Medicine (GEM) interview panel member.
  • BMBS University of Nottingham Graduate Alumni administrator.
  • Admissions Lead, Laboratory Session Lead, & Q & A Lead for University of Nottingham Open Days.
  • Laboratory Session Lead for Nottingham Widening Participation Schools program, Nottingham Potential Summer Schools, Local Schools Health Science Discovery Days.
  • Nominated for University of Nottingham Lord Dearing Award for Outstanding Teaching (2013).
  • Nominated for University Staff Oscar for best Dissertation Tutor (2014).
  • Examiner for the International Baccalaureate in Biology.

Research Summary

My research & development career has been concerned with understanding cellular signaling and the protein changes and modifications that can trigger pathology, and how therapeutics can limit… read more

Selected Publications

Current Research

My research & development career has been concerned with understanding cellular signaling and the protein changes and modifications that can trigger pathology, and how therapeutics can limit disease progression. Many extracellular signals bind to specific trans-membranous receptors to initiate a cellular signaling pathway [1-4,9,19]. Signal transduction invariably requires protein post-translational modifications (PTMs) to propagate intracellular signaling events. Additionally, PTMs arise from extracellular xenobiotic agents that cross cell membranes. An example is environmental pesticides that can adduct cellular proteins including a number of specific neuronal targets [8,10,13,14,16,17,19]. Other toxic agents such as alcohol trigger protein PTMs and damage to tissues and cellular proteins [12,20,21].

By utilizing proteomic strategies we have characterised the cellular damage that arises from these agents, and their specific cellular and nuclear (epigenetic) protein targets [5-8,10-17,20,21]. One such protein target is protein isoaspartyl methyltransferase (PIMT), an enzyme that normally repairs age-related protein damage, and whose activity is impaired by alcohol consumption [5,6,11,12,18,20,21].

My current laboratory studies include an examination of the targets and consequences of environmental pesticide exposures; hepato- and neuro-pathology of alcohol abuse; and studies of the protein PTMs and protein aggregation in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

School of Medicine

University of Nottingham
Medical School
Nottingham, NG7 2UH

Contacts: Please see our 'contact us' page for further details