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ABSTRACT A general method for modeling macromolecular shape in solution is described involving measurements of
viscosity, radius of gyration, and the second thermodynamic virial coefficient. The method, which should be relatively
straightforward to apply, does not suffer from uniqueness problems, involves shape functions that are independent of
hydration, and models the gross conformation of the macromolecule in solution as a general triaxial ellipsoid. The
method is illustrated by application to myosin, and the relevance and applicability of ellipsoid modeling to biological

structures is discussed.

INTRODUCTION

Hydrodynamic measurements have for several decades
provided a rapid and useful way of obtaining information
concerning the gross conformation of biological macromol-
ecules in solution by modeling them in terms of rather
simple models: spheres, rods, and oblate and prolate ellip-
soids of revolution (i.e., ellipsoids with two equal axes; see,
for example, Nichol and Winzor, 1985). A relatively
recent and significant development has been the ability to
model macromolecules in terms of complicated structures
by representing their structure as a series of spheres that
interact in a way described by the Burgers-Oseen (or
modifications thereof ) tensor (see Garcia de la Torre and
Bloomfield, 1978). The idea is to take a model and
successively “iterate” it until the predicted hydrodynamic
property (usually the sedimentation coefficient) agrees
with the experimentally measured value. This type of
modeling has found many applications ranging from virus
assembly (Wilson and Bloomfield, 1979) to the structure
of complement (Perkins, 1985). There are, however, con-
siderable limitations to this type of modeling: (a) Unique-
ness; depending on the complexity of the model there can
be an enormous number of other models, equally as
complex as the one chosen, which can give the same
calculated value for the hydrodynamic coefficient. (5) The
frictional ratio and, hence, the sedimentation coefficient is
notoriously insensitive to shape. (¢) Assumptions have to
be made concerning macromolecular solvation (including
physically trapped or entrained solvent). For complex
modeling, there is a strong likelihood of significantly
different hydrations for the chosen complex models (see
Perkins, 1985). Hydration (which includes physically
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entrained as well as chemically bound solvent) is a noto-
riously difficult parameter to measure. As a result, com-
plex modeling of this type can only be satisfactory when
(a) a close starting estimate is available from, for example,
electron microscopy (which itself may give a quite dif-
ferent representation from the true solution structure) or
x-ray crystallography, and (b) the hydration is accurately
known, and the relative hydration of the different models is
also accurately known.

The most general shape now available, which can be
applied unambiguously and using hydration-independent
shape functions, is the general triaxial ellipsoid (i.e., an
ellipsoid with three unequal axes). Earlier work (Harding
and Rowe, 19824, b, 1983; Harding, 1980, 1986) was
concerned with developing much of the necessary method-
ology. A whole range of analytic expressions are now
available enabling us to predict both hydration-dependent
and hydration-independent hydrodynamic parameters for
any given value of the two axial ratios a/b, b/c, which
characterize a general triaxial ellipsoid of semi-axes a =
b = ¢ (Harding, 1982). All these triaxial shape functions
share the common property of having a line solution of
possible values for the axial ratios (a/b, b/c) for any given
value of the hydrodynamic function. A unique solution for
the two axial ratios may be found from the intersection of
two or more of these “line solutions.” The problem centers
around finding two suitable (preferably hydration-inde-
pendent) parameters that (a) are experimentally deter-
minable to a reasonable precision, (b) are sensitive to shape
(and insensitive to experimental error), and (c) give a
reasonable intersection (i.e., as orthogonal as possible).
These criteria are quite restrictive and the methodology
described earlier has involved the use of shape functions
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(such as those from transient electric birefringence mea-
surements) that are difficult to measure or involve func-
tions (such as from fluorescence depolarization) that are
affected by internal and segmental flexibility of the macro-
molecule.' The procedure described here, however, appears
to satisfy these stringent criteria.

In this study, we examine the usefulness of the hydra-
tion-independent II function (from intrinsic viscosity and
excluded volume measurements), which is now available
following the recent evaluation of the excluded volume for
triaxial ellipsoids (Rallison and Harding, 1985). In partic-
ular, we examine the feasibility of combining this function
with a shape function for triaxial ellipsoids, G, which can
be obtained from the radius of gyration of a macromole-
cule (as measured by, for example, light scattering or
low-angle x-ray scattering).

Triaxial Shape Functions

The hydration-independent shape function II is a com-
pound function involving both excluded volume and viscos-
ity parameters and is defined by (Harding, 1981)

Upeq U

(1)

where w4 is the “reduced” excluded volume (ml/g), v is
the viscosity increment, U is the molar covolume (ml/mol),
M is the molecular weight (g/mol), and [»] is the intrinsic
viscosity (ml/g). Precise relationships relating both u,4
and » with the axial ratios (a/b, b/c) for a general triaxial
ellipsoid are now available;

3
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where R and S are the double integrals
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'Functions involving fluorescence depolarization have however been
applied with some success to a study of neurophysin monomers and
dimers (Harding and Rowe, 19825) and also to a study of myosin light
chains by Stafford and Szent-Gyorgi (1978), the latter using adapted
Perrin rotational frictional relations (Perrin, 1934; Small and Isenberg,
1977) and a procedure for coping with the further difficulty of resolving
decay data of more than one exponential term.
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u and v being the ellipsoid surface parameters (essentially
dummy variables in Eqs. 2 and 3). The integrations may be
readily solved without convergence problems by using
standard numerical packages (Rallison and Harding,
1985).

A numerical method (involving matrix inversion proce-
dures) for evaluating » for triaxial ellipsoids was given by
Rallison (1978). An analytic solution was given by Hard-
ing et al. (1979, 1981);
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where the ay, 8o, vo, €tcetera are elliptic integrals and can
be solved using standard numerical routines (Harding,
1982), again without convergence problems.

The term § = O for axisymmetric particles (viz., “ellip-
soids of revolution”), is negligible for general ellipsoids of
(a/b,b/c) < (2.0,2.0) and <1% for higher axial ratios, and
represents the small deviation of asymmetric particles from
rotating with the same angular velocity as the local unper-
turbed solvent. Its value was worked out by J. M. Rallison
(personal communication) and Haber and Brenner

Yo +
Bo(c*vo + d’a)

(1984);
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Table 1 gives values of II as function of a:b and b:c and Fig.
1A gives the corresponding contour plot; both illustrate the
line solution properties of II as a function of a/b, b/c.

The molecular covolume is related to the second virial
coefficient, B, from sedimentation equilibrium, osmotic
pressure, or light scattering measurements by (Tanford
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TABLE I
VALUES OF I1 AS A FUNCTION OF (a/b/cy FOR A GENERAL TRIAXIAL ELLIPSOID (@ = b = ¢)

b/c
alb
1t 2 3 4 6 7 8 9 10
1* 3.200 3.180 3.179 3.192 3.208 3.225 3.241 3.255 3.268 3.280
2 3.122 3.043 3.029 3.035 3.046 3.058 3.070 3.080 3.090 3.098
3 2.960 2.814 2.776 2.768 2.770 2.775 2.781 2.786 2.792 2.797
4 2.778 2.584 2.530 2.513 2.509 2.510 2.512 2.515 2.518 2.521
S 2.601 2.378 2.315 2.293 2.285 2.283 2.283 2.284 2.286 2.288
6 2.438 2.199 2.131 2.106 2.096 2.092 2.091 2.091 2.092 2.093
7 2.291 2.043 1.973 1.947 1.936 1.931 1.929 1.928 1.929 1.929
8 2.159 1.908 1.838 1.811 1.799 1.794 1.791 1.790 1.790 1.791
9 2.041 1.791 1.721 1.694 1.682 1.676 1.673 1.672 1.672 1.672
10 1.935 1.688 1.619 1.592 1.580 1.574 1.571 1.570 1.569 1.569

*This row corresponds to an oblate ellipsoid.
$This column corresponds to a prolate ellipsoid.

[1961] and Ogston and Winzor [1975});
U=2BM?* - Z%/2], (5)

where Z is the charge on the macromolecule and [ is the
ionic strength, viz., the concentration of uni-univalent
supporting electrolyte. An improvement to the second term
on the right side of Eq. 5 has recently been given by Wills
et al. (1980). If charge effects are negligible (either by
working, for example, at the isoelectric point or using
solutions of high enough ionic strength), then Eq. 1 simpli-
fies to I1 = 2BM/[n]. If not, the full form of Eq. S must be
used since the charge or “Donnan” term can be signifi-
cantly larger than the excluded volume term. This point is
discussed further below.

Since BM is normally more readily measurable from
nonideality measurements (for a dilute monodisperse, non-
interacting solution) as opposed to B itself, a precise
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FIGURE 1

knowledge of the molecular weight may, therefore, not be
necessary; the product BM is normally directly obtainable
from, for example, plots of apparent molecular weight
versus concentration (sedimentation equilibrium) or
“Zimm” plots from light scattering (see, Harding and
Johnson, 1985).

A relationship between the root mean square radius
about the center of Mass, R,;,2 and the axial dimensions of a
triaxial ellispoid has been derived by Mittelbach (1964);

RI=Ys(@+ b+ ). (6)

?R, is almost ubiquitously referred to in the literature as an operational
“radius of gyration,” although this differs from its usage in a classical
mechanical sense, where it is defined with respect to a fixed axis of
rotation. However, providing its usage is consistent, no errors are intro-
duced.

b/c

a’/b

Plots of contours of constant value for the shape functions IT (4) and G (B) for a general triaxial ellipsoid of semi-axesa = b = c,

in the (a/b, b/c) plane. A 10 x 10 matrix of grid values for the plot was used; intermediate values were calculated by interpolation using the

Cambridge CAMPLOT routine GRCT2D.
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TABLE 11
VALUES OF G AS A FUNCTION OF (a/b/c) FOR A GENERAL TRIAXIAL ELLIPSOID (@ = b = ¢)

b/c
alb
1 2 3 4 5 6 7 8 9 10
1 0.600 0.714 0.878 1.039 1.193 1.339 1.479 1.612 1.741 1.866
2 0.756 1.050 1.339 1.607 1.857 2.092 2.315 2.528 2732 2.930
3 1.058 1.564 2.022 2.438 2.823 3.184 3.526 3.852 4.165 4.467
4 1.429 2173 2.825 3412 3.955 4.463 4943 5.402 5.842 6.267
5 1.847 2.850 3.715 4.492 5.208 5.878 6.513 7.118 7.698 8.258
6 2.302 3.582 4.676 5.657 6.560 7.406 8.205 8.968 9.700 10.405
7 2.787 4.360 5.697 6.895 7.997 9.028 10.004 10.934 11.827 12.687
8 3.300 5.179 6.772 8.197 9.509 10.736 11.896 13.003 14.065 15.087
9 3.837 6.035 7.895 9.558 11.089 12.520 13.874 15.164 16.402 17.596
10 4.395 6.925 9.062 10.973 12.730 14.374 15.928 17.411 18.832 20.202

To use it as a triaxial ellipsoid shape parameter we reduce
it to the dimensionless quantity “G”’;

G- (41)"’ R - '[L"._L_]
3V & 5| (abc)¥?

where, for a sphere of uniform density, G is simply 0.6.
Values of G for other various ellipsoidal axial ratios are
given in Table II, with the corresponding contour plot as
Fig 1 B. Assuming there are no internal cavities and that
the bound solvent does not differ in density from free
solvent, V can reasonably be taken as the dry volume of a
macromolecule (see Jarcot, 1976; Martin, 1964), which is
related to the partial volume v and the molecular weight by
V = vM /N, where N, is Avogadro’s number. v is readily
available for many macromolecules; thus, measurement of
G normally poses no real difficulties.

(7

Graphical Combination of Line Solutions

We now examine the feasibility of employing the intersec-
tion method described above for obtaining the axial ratios
of a macromolecule modeled by a triaxial ellipsoid. The
criteria for judging the suitability are as before, viz.,
sensitivity to axial ratio, insensitivity to experimental error,
hydration independence and experimental measurability.
Fig. 2 illustrates the type of intersection for two macromol-
ecules with typical axial ratios, allowing for expected
experimental error in the functions; a globular macromole-
cule of true axial ratio (a/b, b/c) = (2.0, 2.0) and a more
extended molecule of (a/b, b/c) = (5.0, 5.0). Since a
precise measurement of molecular weight may not be
required as described above and intrinsic viscosity can be
measured to a precision of 1% (see Harding and Rowe,
1983) we have allowed an error of +3% for II. This would

3%

b/c

G!5% 4

3%

1 L L 1 1 1

a’b

FIGURE 2 Details same as in Fig. 1, but contours for Il and G are shown in both plots: (4) True (a/b, b/c) = (2.0, 2.0); (B) (a/b,b/c) =
(5.0, 5.0). For a macromolecule with a given value for (a/b, b/c) [(2.0, 2.0) and (5.0, 5.0) in this example], IT is calculated to be a certain
number, n. The two lines on Fig. | give the a/b and b/c values that correspond with n + 3% and n — 3%, respectively. Similarly, for the G lines

where the error is now +5%.
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not appear to be unreasonable when compared with some
reported accuracies for B in the literature (Gellert and
Englander, 1963; Tomimatsu, 1964; Emes and Rowe,
1978; Jeffrey et al.,, 1977); the effect of error in B is
discussed in more detail below. For the G function, we have
allowed an error of +5%. In practice, the radius of gyration
would provide the largest source of error to G, although
this will depend on the size of the particle and the method
employed, as discussed below.

It is apparent from Fig. 2 that our procedure is more
sensitive for more asymmetric particles than for “globu-
lar,” although it is still useful even for near-spherical
particles. The method of measurement, however, is rela-
tively rapid, does not suffer from the need to crystallize the
sample or to work on “low” molecular weight macromole-
cules, and refers directly to the solution structure without
the uncertainties of electron microscopy. An important
consideration, on the other hand, when applying this
procedure, is that the axial ratios (a/b, b/c) from the G
function refer to the dry particle surface, whereas II refers
to the hydrated particle; the axial ratios of both these
particles may not, therefore, be quite “identical,” depend-
ing on the extent of the surface hydration layer relative to
the gross particle dimensions.

For a protein with typical surface hydration levels, the
difference is not likely to be significant compared with the
errors in measurement.

Application to Myosin

The procedure can usefully be illustrated by applying it to
data available in the literature for myosin (monomers).
Myosin, as visualized by electron microscopy, is a fairly
rigid rod-shaped molecule with a potential hinge point at
the interface between the heavy meromyosin (HMM) and
light meromyosin (LMM) polypeptide chains and with two
head regions (S1 and S2) at one end (see, for example,
Squire, 1981). Myosin has been well characterized in
solution and has been the subject of an exhaustive hydrody-
namic study involving Burgers-Oseen interaction theory
(Garcia de la Torre and Bloomfield, 1980). We seek now to
model the myosin molecule in terms of a general ellipsoid,
without prior assumptions about molecular hydration or
using prior information from electron microscopy. That is,
given the wide range of shapes that a triaxial ellipsoid will
allow (ranging from tapes, discs, rods, and intermediate
shapes), what does the method predict without prior
knowledge about what the shape may be? The results thus
found will reveal how the method is prone to error through
local variations in shape (in the case of myosin, primarily
through the S1 heads) and rigidity (viz., effects of possible
variable orientation of the S1 heads and flexibility of the
HMM/LMM interface).

Values for the virial coefficient from a range of mea-
surements are in very good agreement and have been
reviewed by Emes and Rowe (1978). For this example, we
take BM to be 52.6 ml/g (Emes and Rowe, 1978),

HARDING  Modeling Macromolecular Shape

[n] = 217 ml/g, giving a value for IT of 0.47. We also take
R, as 468 x 108 cm (Holtzer and Lowey, 1959), and v =
0.728 ml/g and M = 474000 (Emes and Rowe, 1978),
giving a value for G of 82.0. The corresponding line
solutions for each of these functions, after allowance for
the same experimental error as in Fig. 2, are shown in Fig
3. It is seen that, even allowing for the extra degree of
freedom the general ellipsoid gives, the myosin molecule
appears as a prolate ellipsoid of (a/b, b/c) ~ (80, 1).

Of course we could have arrived at the same results from
either I or G independently by assuming a prolate ellipsoid
in the first place; or we could have used the Scheraga-
Mandelkern (1953) 8 function for prolate ellipsoids. The
superiority of the present approach stems from the fact
that (a) a prolate ellipsoid does not have to be assumed a
priori, and (b) the shape functions are far more sensitive
than 8. The difficulties of applying the 8 function have
been well described (see, Harding and Rowe, 1982a);

Because of the higher concentration of mass towards one
end due to the presence of the heads, the axial ratio of 80
for the rod shape is likely to be an overestimate from the
radius of gyration information but by no more than 15%
(M. Dampier, personal communication). Nonetheless,
nonwithstanding the difficulities of modeling an ellipsoid to
a particle that has a “lop-sided end”, this result is in good
agreement with predicted results from electron micros-
copy, and would appear to suggest that the S1 heads are in
a “closed” rather than an “open” form in solution in the
native state, and that the majority of the myosin molecules
in solution are linear and not significantly bent at the
HMM/LMM interface. A much more thorough determi-
nation of the extent of flexibility in the myosin molecule
has been given by Garcia de la Torre and Bloomfield
(1980).

DISCUSSION

Effects of Experimental Error and some
Potential Pitfalls

The most likely source of experimental error involved in
this approach concerns the measurement of the molar
covolume, U, via the second virial coefficient, B. Nichol,
Winzor, and coworkers (Nichol and Winzor, 1985; Jeffrey
et al., 1977; Nichol, 1981) have considered the experimen-
tal determination of B in some detail. Because of the
greater problems of sample polydispersity, clarification,
etc. association with light scattering, it is my opinion that
low speed sedimentation equilibrium procedures, such as
those described by Jeffrey et al. (1977), provide the more
accurate method for obtaining B (or BM). Since light
scattering may also have to be used as well (unless low
angle x-ray scattering (LAXS) or neutron scattering is
employed) to obtain R,, the “Zimm” plot method would
still be useful for providing a check on the value obtained
for B. Whatever method employed, it is essential that the
contribution of the Donnan term be taken into account,
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FIGURE 3 Plots of constant values for II and G in the (a/b, b/c) plane
for myosin. Other details are the same as in Fig. 2.

along the lines described above and illustrated for oval-
bumin by Jeffrey et al. (1977). These authors also describe
how any appreciable flexibility in the macromolecule will
also be a source of error (it will tend to lower the
covolume); the treatment would, therefore, be unsuitable
for randomly coiled polymers.

The major contribution to experimental error in the G
function would appear to be from measurement of the
radius of gyration, since the partial specific volume or
molecular weight can normally be measured to a much
higher precision, particularly if, for a protein, the amino
acid composition or (better) the sequence is known. R, is
commonly obtained from the “Zimm plot” procedure
(Zimm, 1948; Tanford, 1961). The accuracy to which R,
can be obtained depends largely on the wavelength of the
radiation employed and the size of the particle. For
example, using light scattering, for vaccinnia virus (M =
2.7 x 10°). Fiel et al. (1970) report an acurracy of ~1.4%,
whereas for many proteins the accuracy can be consider-
ably lower (Muller and Burchard, 1981; Holtzer and
Lowey, 1958). However, for these macromolecules, LAXS
(or neutron scattering) would be the method of choice
(wavelength of the radiation employed < particle diame-
ter). For example, using LAXS, Witz et al. (1964) obtaina
value for R, of lactoglobulin of 3.44 + .04 nm. It should be
stressed, however, that because of the high sensitivity of G
to change in axial ratio (Figs. 2—4), it is the accuracy in Il
(or equivalently, B) that will be the principal limiting
factor, particularly in the low axial ratio range (both a/b
and b/c < 3).

Another potential source of systematic error is in sample
heterogeneity. It is essential that solvent conditions should
be such that the sample is monodisperse and that self-
association (or dissociation in the case of assemblies)
phenomena are minimized. This requirement is, of course,
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common to other modeling procedures using scattering or
hydrodynamic methods.

Ellipsoids of Revolution Versus
Triaxial Ellipsoids

For many macromolecules, the “ellipsoid of revolution”
model (i.e., an ellipsoid with two equal axes) can give a
very reasonable representation of the gross conformation of
macromolecules in solution; Squire and Himmel (1979)
have shown that, for several globular proteins, the pre-
dicted dimensions from such modeling (albeit based on
“assumed” hydration levels) agrees well with that from
x-ray crystallography. However, for many macromolecular
systems, the restriction to two equal axes is inadequate
(Harding, 1980). In addition, either an “oblate” two equal
major axes) or “prolate” (two equal minor axes) has to be
assumed a priori, together with (more often than not) a
“typical” hydration level: values of between 0.2-0.35 g
water/g protein are commonly chosen (see, Tanford,
1961). The significance of the presently defined approach
is that (a) neither ellipsoid has to be assumed a priori (as
illustrated with the myosin example), and (b) a value for
the hydration need not be assumed. Indeed, if the hydra-
tion could be measured independently, and accurately, we
could have used hydration-dependent functions for our
intersection procedure (including, for example, v) without
having to use the virial coefficient at all. Lack of adequate
hydration information is, of course, one of the limitations
of the Burgers-Oseen multiple sphere approach.

Some of the macromolecular systems that would appear
to benefit from the general ellipsoid approach include
C-protein (which is thought to be *“asymmetric” from
electron microscopy studies) from muscle filaments, a-
actinin, another muscle protein whose function is closely
related to its conformation in situ, and fibrinogen, for
which there still appears considerable discrepancy in the
recent literature as to its solution conformation.

The Relevance of Ellipsoid Modelling

There is no biological macromolecule whose surface is
exactly described by a triaxial ellipsoid. How misleading
are the dimensions for the gross conformation obtained by
using a general triaxial ellipsoids as a hydrodynamic
model? Indeed, for the somewhat related case of rotational
diffusion, Wegener et al. (1979) have demonstrated that
some values for the rotational diffusion coefficients do not
correspond to any ellipsoid at all, for example, for the
fork-shaped immunoglobulins. Although rotational diffu-
sion parameters are not used here, it is possible that there
exist similar particles that have = and G functions not
corresponding to ellipsoids. It is unlikely, however, that
merely surface roughness alone would invalidate the
model, since calculations performed by Bloomfield et al.
(1967) for the analagous case of frictional coefficients have
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shown that holes and crevices have little effect; the same
has also been demonstrated for the cases of intrinsic
viscosity and rotational diffusion (see Wilson and Bloom-
field, 1979). (This, of course, is the whole basis for the
multiple sphere approximation of macromolecular struc-
ture using the Burgers-Oseen tensor as mentioned above).
Broersma (1960) has confirmed this experimentally (see
also Squire and Himmel, 1979, who find the ellipsoid of
revolution approximation quite adequate). In any case, the
effects of surface hydration would be to “smooth over” the
surface topology, further strengthening the ellipsoid
approximation. Although with the relative simplicity of the
approach compared to x-ray crystallography, or Burgers-
Oseen modeling, it is not possible to examine the richness
in detail and the possible local flexibility of the molecular
in question, we have demonstrated that, even for myosin,
the overall gross conformation is still very adequately
represented.

It is my view that the Burgers-Oseen multiple sphere
approach of Bloomfield and coworkers and the ellipsoid
approach described here should prove complementary; the
first, when close starting estimates for the structure are
available from other sources, and where the hydration is
known accurately, thereby facilitating a complex model;
the second, when no prior shape or hydration information is
available, and only the gross solution dimensions of the
macromolecule in solution are required.
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