On the interaction in solution of a candidate mucoadhesive polymer, diethylaminoethyl-dextran, with pig gastric mucus glycoprotein

M. T. ANDERSON,*† S. E. HARDING* and S. S. DAVIS‡
University of Nottingham, *Department of Applied Biochemistry and Food Science and ‡Department of Pharmacy, University Park, Nottingham, NG7 2RD, U.K.

There is presently considerable interest in the evaluation of favourable mucus–polymer interactions for increasing the transit time of oral polymer drug delivery systems [1]. In this study, we investigate the interaction of the polycationic polysaccharide DEAE-dextran with a mucus glycoprotein by assaying for co-sedimentation in the analytical ultracentrifuge.

Pig gastric mucus glycoprotein (PGM) was partially purified from pig gastric mucus by gel permeation chromatography on a Sepharose CL-4B column using phenylmethanesulphonylfluoride as the protease inhibitor [2] and concentrated by ultrafiltration. DEAE-dextran (a derivative of T-500 dextran, weight average molecular mass (Mₐ) = 0.5 × 10⁶) was obtained from Sigma U.K. The solvent used for all ultracentrifuge experiments was a phosphate/chloride buffer, pH 6.8.1.0.10 [3].

Mₐ values of the PGM and DEAE-dextran were obtained by low-speed sedimentation equilibrium using procedures of Creeth & Harding [4] in a Beckman Model E incorporating a 5 mW He–Ne laser light source, at very low loading solute concentrations (0.2–0.6 mg/ml) to minimize the effects of thermodynamic non-ideality. Values for Mₐ of (2.50 ± 0.12) × 10⁶ and (0.53 ± 0.02) × 10⁶ were obtained for the PGM and DEAE-dextran, respectively. The value consistently obtained for PGM in the solvent specified is lower than that for PGM in 6 m-guanidinium chloride obtained by Creeth & Cooper [5] and probably is a consequence of some protease degradation; indeed, our value for the Mₐ corresponds to the 'subunit' size obtained by Carlstedt & Shecan [6].

The interaction studies and apparent sedimentation coefficient (sᵥ) determinations were carried out at 20.0°C and rotor speeds of 19000 rev./min (to follow the sedimentation of the PGM component) and 44000 rev./min (DEAE-dextran) using sedimentation velocity in a MSE Cetriscan equipped with a monochromator and using scanning Schlieren optics. Cells (10 mm path length) in a multi-hole rotor (to facilitate comparisons under identical run conditions) were employed. Interaction between the candidate polymer and PGM was assessed by evaluating sᵥ of the PGM and DEAE-dextran components (comparing individual controls with mixtures). The PGM and DEAE-dextran controls sedimented as single boundaries with sᵥ values of (29.8 ± 0.9)S and (5.3 ± 0.1)S, respectively.

Received 16 June 1989
was in the same sense as increase in turbidity of the suspension.

The polymer was said to interact with PGM if the components in the mixture sedimented with a larger sedimentation coefficient than the controls after concentration effects had been taken into account (Table 1a). PGM concentrations were kept fixed (2.0 mg/ml) and the DEAE-dextran concentrations were varied (from 0.6 to 3.4 mg/ml): up to a DEAE-dextran concentration of 1.9 mg/ml, values for the faster moving PGM component showed a steady increase (Table 1a) compared with the PGM controls, strongly indicative of an interaction. The increase in sedimentation coefficient of the PGM in the mixture cell (compared with the controls) was in the same sense as increase in turbidity of the suspension and loss of apparent areas under the Schlieren boundaries.

At higher values of DEAE-dextran concentration the s_{20} fell back to near the 'control' value again: this would appear to suggest that the interaction is very concentration sensitive, although the effects of the increased viscosity on increasing the concentration of the slower moving component (DEAE-dextran) cannot be excluded. Increase of the ionic strength in two separate experiments (Table 1b and 1c) also showed loss of interaction, indicating that the interactions between PGM and the polymer are electrostatic in nature.

In conclusion, the increases in (apparent) sedimentation coefficient of the PGM (and also DEAE-dextran) observed could be a direct result of the loss of concentration of PGM and DEAE-dextran in forming large turbid aggregates. Attempts at a more exact quantitative description of the interaction is difficult because of the presence of Johnston-Ogston [7]-related effects. These aspects, together with a consideration of the complications arising from the presence of other potentially interacting substances in the gastrointestinal tract (e.g. bile salts) and a comparison of interactions with other cationic and bifunctional polymers (and also non-interaction with polyanionics) will be considered in a future publication.

Received 29 June 1989

Brain microsomes bind ryanodine and contain ryanodine-sensitive calcium channels

R. H. ASHLEY*
National Heart and Lung Institute, University of London, London SW3 6LY, U.K.

Ca$^{2+}$ channels from striated muscle sarcoplasmic reticulum (SR) have been functionally reconstituted in planar lipid bilayers [1] and purified as high-affinity ryanodine-binding proteins [2]. A deduced amino acid sequence for a skeletal muscle ryanodine-binding protein is now available from cloned cDNA [3]. All the reconstituted channels (including the purified protein) are activated by Ca$^{2+}$, ATP and caffeine, which increase the likelihood of the pore being open without altering the actual rate of ion transport. Some muscle channels are also activated by inositol trisphosphate (InsP$_3$) [4]. Given that the SR is merely a specialized endoplasmic reticulum, are similar channel proteins, possibly gated by chemical messengers, also present in non-contractile cells?

Rat forebrain microsomes were prepared by homogenization and differential centrifugation and binding isotherms for [3H]ryanodine (0.5–50 nm, 54.7 Ci/mmol) were constructed following a protocol based on that in Table 2 of [5]. Unlabelled ryanodine (50 μm) was added to parallel samples to measure non-specific binding (the signal/noise ratio was at least 5:1 at the measured s_{20}). A typical binding isotherm, and associated Hill plot, are presented in Fig. 1(a). Channels

Table 1. PGM/DEAE-dextran interaction data

<table>
<thead>
<tr>
<th></th>
<th>PGM control/mixture concn. (mg/ml)</th>
<th>DEAE-dextran control/mixture concn. (mg/ml)</th>
<th>Ionic strength</th>
<th>PGM control t_{20} (S)</th>
<th>PGM/DEAE-dextran mixture t_{20} (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>2.0</td>
<td>0.6</td>
<td>0.1</td>
<td>18.3 ± 0.4</td>
<td>21.7 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.3</td>
<td>0.1</td>
<td>17.3 ± 0.4</td>
<td>20.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.6</td>
<td>0.1</td>
<td>18.3 ± 0.4</td>
<td>23.4 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.9</td>
<td>0.1</td>
<td>17.9 ± 0.3</td>
<td>25.0 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.6</td>
<td>0.1</td>
<td>18.3 ± 0.5</td>
<td>21.2 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.4</td>
<td>0.1</td>
<td>18.4 ± 0.5</td>
<td>21.1 ± 0.6</td>
</tr>
<tr>
<td>(b)</td>
<td>1.3</td>
<td>1.0</td>
<td>0.1</td>
<td>21.9 ± 1.1</td>
<td>25.9 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1.0</td>
<td>0.2</td>
<td>—</td>
<td>21.7 ± 1.1</td>
</tr>
<tr>
<td>(c)</td>
<td>1.3</td>
<td>1.0</td>
<td>0.3</td>
<td>21.7 ± 0.9</td>
<td>25.8 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1.0</td>
<td>0.3</td>
<td>—</td>
<td>21.6 ± 0.9</td>
</tr>
</tbody>
</table>

Received 29 June 1989