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ABSTRACT

The equilibrium distribution of particles dispersed in an aqueous solute situated in a centrifugal
accelerative field is routinely studied by means of an optical trace recorded photographically.
Rayleigh interferometric fringe patterns have been widely used to give this trace, in which the
displacement of the parallel fringes is directly related to particle concentration differences. We
have developed a simple but highly efficient frameshift algorithm for automatic interpretation of
these patterns1. Results obtained from extensive use and further definition of this algorithm
confirm its validity and utility.

We have also studied algorithms for the interpretation of Fresnel fringe patterns yielded by an
alternative optical system. These more complex patterns involving non parallel fringes can be

analysed successfully, subject to certain conditions, with a precision similar to that obtained using
Rayleigh interference optics.

1.INTRODUCTION
1.1 The methodology employed

The Analytical Ultracentrifuge is used to study systems of dispersions of large particles in a fluid
(usually aqueous) medium2. From the results yielded, important conclusions can be drawn
concerning the structure, interactions and state of dispersity of the particles. A particularly
powerful approach involves the balancing of radial centrifugal forces acting on the particles
against the forces arising from the chemical potential gradient induced by the former. The sytem in
this state is said to be at 'sedimentation equilibrium'.

The basic equation governing the distribution of particles at sedimentation equilibrium in a
centrifugal field is

de/dr = ker - (1)

where ¢ is the concentration of particles at radial position r, and k is a reduced particle mass,
given by

k = M(1Vp) w?RT )

where M, is the particle mass, V the partial specific volume (= reciprocal density) of the

particles, o the density of the fluid, R is the gas constant, w the angular velocity and T the
temperature (deg Kelvin).



Equation (1) is frequently used in integrated form :
Alogc/A(re) = k/2 (3)

Normally the parameter M; will be the object of study. It may itself be a function of r, either
directly as a result of polydispersity or indirectly as a result of depending upon ¢, which as a
consequence of redistribution of the solute particles varies with r.

The basic function of any analysing optical system is thus to record a pattern capable of being

interpreted to yield either c or dc/dr as a function or r. In the former case equation (3) is
applicable : in the latter case equation (2) would be used.

1.2 Analysis to yield ¢ vs r data

The classical approach has been to use Rayleigh interference optics to give a pattern in which the
displacements of the fringes in a direction (z) normal to radial is a linear function of the
concentration increment at the radial position in question. The fringes are of course equi spaced
and parallel, and hence a scan across them in the z direction yields a sinusoidal intensity function
whose phase is a measure of (the non integer part of) the fringe shift.

We have developed a simple but fast and stable algorithm for deriving the phase shift from the
intensity function!. The Iatter is logged from the photographic record of the fringe pattern, using
a commerical scanning densitometer, the LKB 2202 laser densitometer. Then if Q fringes are
contained within the window analysed, an iterative frameshift is performed within the data set, to
maximise the Fourier coefficient of order Q. The method is thus a null method, which searches for
the frameshift which will set the phase term to zerol.

Thus this algorithm, unlike earlier approaches in this area, yields estimates for the fringe
increment whose precision is not a function of the latter. The precision of the recorded fringes
may be gauged subjectively from Figure 1 :
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Figure 1 Digitised optical density values outputted from an LKB Ultroscan XL 2222 (two
dimensional scanner) scanning at a single radial position. 575 values were logged in this case at

each of 175 radial positions in the cell, and these form the data set for subsequent analysis. Data
for sedimentation equilibrium experiment on iipase, using Rayleigh interference optics.
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Initial results using our algorithm suggested a precision of /500 (f is a single fringe increment)
as being attainable. Further development and applications of the algorithm have followed, and are
now presented and discussed.

1.3 Analysis to yield dc/dr vs r data

The earliest optical method used to analyse distributions within the ultracentrifuge cell was the
'Schlieren’ optical system, in which an analysing diaphragm is inserted into the back focal plane of
the camera lens employed to image the cell. Shadows or other traces are produced, whose
displacement, again in the z direction, is proportional to the first derivative of solute
concentration with respect to radial distance. Other than in the earliest work, a 180° phase plate
has been used as analysing diaphragm. The resulting single trace is rather broad as compared to an
interference fringe (Figure 2).
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Figure 2 Phase plate Schlieren records of a solution at sedimentation equilibrium in an
ultracentrifuge cell (MSE Mk Il Analytical Ultracentrifuge). The solution column is some 2 mm
long in real space. From original negatives conventionally (L) and correctly (R) exposed.

It has been universally considered that the precision with which this trace can be interpreted falls
well short of what can be achieved using Rayleigh intereference optics. Subjectively this is
understandable. The Schlieren trace appears relatively broad, and only a single trace is yielded,
thus making unavailable the reduction in noise/signal normally achieved from multiple records.
Yet the principal optical components of the two optical systems are identical, and are used at the
same working aperture. Insofar as distinctive components are introduced in either method, there
is no reason to suppose that these limit the information transfer function, which one would expect
to be very similar in both cases, given adequate interpretative algorithms.

We have therefore researched the possibility of developing the interpretation of Schlieren records
to a much higher level than heretofore. There are a number of practical reasons for doing this. As
detailed below, we find that with suitable developments of the methodology, and subject to certain
relatively minor reservations, results from the Schlieren optical method can indeed be



interpreted with a precision approaching those obtained by the Rayleigh interference method. The
basis of this is the recording and interpretation of the more complex Fresnel fringe patterns
generated by the Schlieren optical diaphragms. Several approaches to the interpretation of Fresnel
fringe patterns can be defined. It seems likely that an optimal approach has yet to be delineated,
but results to date are more than adequate to demonstrate the potential of work in this area.

2. FRINGE SHIFTS IN RAYLEIGH INTERFEROMETRIC PATTERNS

We have completed the construction of a 2 dimensional data acquisition system and the writing of a
package of user fnendly interpretative software, built around the frameshift Fourier algorithm
described earlier!. Sophisticated search procedures have been incorporated to ensure that the
system reproducibly and stably finds the oorrect fringe intensity maximum in what is now a full 2
dimensional record (cf our earlier version1 which was a series of individual one dimensional
scans) . As it is now possible to analyse data at up to 200 radial positions from a single

experiment, rigorous tests can be performed to assess such factors as sample homogeneity and
interactions (Figure 3) :
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Figure 3 Plot of the logarithm of the solute concentration (expressed in absolute fringe
numbers, J) versus the radial displacement (squared) parameter £ . Data from a low speed
sedimentation equilibrium experiment on recombinant Hirudin, loading concentration 0.8 mg/ml.
From the slope a weight averaged molecular mass of 7080 + 100 is computed (from sequence =
6964).

The completed system is now in intensive use, and results on many systems have fully justified
our initial estimates? of the precision attainable.



3. REFRACTOMETRIC OPTICS AND FRESNEL FRINGE PATTERNS

3.1 Refractometric optics

The presence of an analysing diaphragm in the back focal plane of the camera lens imaging a cell, in
this case located in an ultracentrifuge rotor, leads to the formation of a 'Schlieren’ pattern in the
image plane. The presence of a cylindrical lens results in a pattern in the image plane in which the
z deflection of the trace at any radial position is linearly related to the refractive index change
(derdr) in the conjugate locus in the cell plane (Lloyd3). Although any physical form of diaphragm
can in principle be employed, it has long been customary to use a 180° phase plate (Wolterg),
which causes no loss of transmitted light and has been considered on general principles (rigorous
analysis appears not to have been performed) to maximise the information transfer function3. As
a pure phase plate records no signal as dc/dr > 0, a thin line of metal evaporated onto the half wave
step is normally added3. The latter only produces a trace for zero or very low dc/dr values. The
optics of the transition region of dc/dr have yet to be been defined.

The resulting trace shows a well defined but rather broad line (Figure 1). This represent the
zeroth order fringe of an often poorly resolved Fresnel pattern. We have addressed ourselves to the
definition at high resolution of the co ordinates of this pattern, both by location of the zeroth order
fringe, and by an alternative approach in which we derive and apply a relationship between
Fresnel fringe spacing at defined r and the corresponding dc/dr and Ac values.

3.2 Definition of the zeroth order fringe in a Fresnel pattern

As noted above, the conventional approach here has been to record the Schlieren pattern using a
modified phase plate diaphragm. The pattern is in principle symmetric with respect to the zeroth
order fringe, which is located in the centre of the line trace. However, as was noted by Rowe and
Khan®, a simple knife edge diaphragm has a better established optical theory, and can yield
results of a precision equal to that given by a phase plate. We have therefore explored the use of a
simple knife edge diaphragm to generate the Fresnel pattern.

We have in all cases adopted certain modified procedures for setting up of the ultracentrifuge cells
and optics designed to maximise the information transfer function. These will be described
elsewhere. They are not relevant to the interpretative algorithms described below, but are
indispensible if results of the precision described are to be obtained in practice.

3.2.1 The zeroth order in a phase plate generated Fresnel pattern

The zeroth order in this case is simply the maximum density (minimal intensity) in the z scan
across the line pattern (Trautman and Burns®). Unfortunately as normally recorded the line is
rather broad and the precision in the estimation of the position of the maximum not high. This is
the conventional reason behind the general opinion that Schlieren optics are inherently of low
precision.

Several experimental procedures can be adopted which largely circumvent the problem of the
width and lack of definition of the optical trace. The experimental procedure most relevant to the
present discussion is the use of long photographic exposures to bring the optical record near to the
centre of the line trace into the linear part of the gamma curve of the recording material. It seems
not to have been generally appreciated (though Lloyd3 commented briefly on the matter) that
giving a 'normal' exposure as gauged for the whole photograph seriously degrades the transfer



function in the critical region.

Locating the zeroth order in a suitably exposed photographic image (i.e. highly over exposed with
respect to 'non information’) by analysis of successive radial z scans results in a very smooth data
set. Figure 3abelow illustrates typical final results computed from data measured in this way.
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Figure 3a M,,  values computed for the protein dynein at a cell loading concentration of 0.5

mg/ml. These point weight average values are computed by numerical integration of the dc/dr
values to give ¢ values, the constant of integration being found by a numerical manipulation based
upon the equivalence of harmonically related averages.

These results are entirely comparable to those which would be obtained using Rayleigh
interferometric optics together with the Fourier algorithms described above, and would
correspond to a precision of at least /300 in the latter terms. There are however certain
qualification which must be made concerning the absolute accuracy as distinct from the precision
of the results. As noted above, for low values of dc/dr, the optical behaviour of a compound phase
plate is far from well defined. This can be circumvented by avoidance of such conditions. More
seriously, it seems not to have been appreciated that the physical properties of the phase plate and
in particular its phase angle are critical.

We have computed intensity distributions in the image plane for a phase plate of various angles,
using the Cornu Spiral construction®. The treatment given by Trautman and Burns® assume a
phase angle of 1809. We have extended this to the more general case, and as the tabulated values for

the Cornu Spiral are in some cases of insufficient resolution we have computed the co-ordinates
from the relation? :



F(x) = (2/m)0-5 (x +jx3/3 + (j2/2!)(x5/5) + . . . .. + () (xen+1/2n41))0.5 (4)

forn=0,1,2. .. and the spiral is plotted in the complex plane j= (1)0-3

The results are shown in Figure 4 below for phase angles of 180, 150 and 120 degrees :
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Figure 4. Computed intensity distribution of the Fresnel pattern yielded by a phase plate of
phase angle 180 degrees, 150 degrees and 120 degrees. The location of the true geometrical edge
is shown by the vertical line in each case.



It is clear that the location of the true geometrical edge coincides with the minimum of the
intensity distribution only for the case of a 180 degree phase angle. Moreover the pattern is not
symmetrical for other phase angles. Thus the wavelength used is critical, and must be tuned to the
particular phase plate used, a precaution which has not formed part of normal practice, and can
give rise to practical problems in securing adequate light intensity in monochromated light.

3.2.2. The zeroth order from a knife edge pattern
A simple knife edge used as a diaphragm results in a 'shadow' pattern, with a set of Fresnel fringes

(Figure 5). Although actually of slightly smaller amplitude than those generated by a phase plates,
th lower dynamic range of the image means they are frequently better registered.

Figure 5. A part of a Schlieren pattern recorded with a knife edge diaphragm from a solution of
an enzyme (chloramphenical acetyl transferase) at sedimentation equilibrium. Centrifugal
direction is from left to right.

The location of the zeroth order fringe can be computed by measurement of (say) the 1st and 2nd
order minima, and from the knowledge that their location (z) with respect to the zeroth order is
given for order i by

z = (4(i+1) -0.5)05 (5)

In practice only the first two or three orders can be measured in a z scan (Figure 6) :
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Figure 6 Vertical (z) scan across a set of fringes from a knife edge diaphragm (as in Figure 5)
The location of the centre of the peaks in the scans can be determined by established procedures?.
The resulting precision is found to be of the order of 110 2 % of the fringe spacing.

3.3 Zeroth order determined from the Fresnel fringe spacing

It is possible to use the values of the fringe spacings in the z direction to evaluate Ac directly
instead of bg computation of the location of the zeroth order. This is because of the defined
relationship® between fringe spacing and the second derivative of the refraction (and hence
concentration) gradient, from which it follows at once that

b i=(n-1)
ac = [J {(_21(zi+1 - )/ (4i+1)- 05)95/ (4i-0505)/(n -1)} ()
=
fa

This equation defines the relationship between Fresnel fringe spacings and Rayleigh fringe shifts.
The double integration is highly favourable with respect to error reduction in the data set,
achieving at least an order of magnitude of diminution, greater if the summation can be effected by
measurement of multiple fringes. A constant of integration is required for the first integration.
This is in fact the zeroth order spacing, but as an independent estimate of this constant can be
obtained from each radial scan, errors in its estimation are not serious.

We have evaluated several procedures for determining the z spacings in a multiple fringe pattern.
Direct fitting of the Fresnel function by a least squares algorithm has been implemented, but is not
totally successful. This is primarily because the intensities in a Fresnel pattern, ranging from
true zero upwards, cannot possibly be recorded photographically within the linear part of the
gamma curve of the emulsion. The true pattern is thus convoluted with an envelope function, which
as the Fresnel amplitude/intensity function is anharmonic, cannot readily be deconvoluted as with
Rayleigh patterns!. Furthermore, as noted above, although up to 10 or more Fresnel fringes can
be discerned by eye, the intensity scans give only 2 or 3 clearly defined maxima/minima (Figures
5 & 6). :

Thus this approach, whilst somewhat superior to the simple evaluation of the zeroth order, has yet
to be developed to its full potential.



4. CONCLUSIONS

The evaluation of relative solute concentrations within an ultracentrifuge cell by Rayleigh
interferometric fringe shifts can, using optimal procedures and interpretative algorithms, yield a
data set with a precision approaching /500, where f is a single fringe shift!. Our results to date
using the alternative Schlieren optical system show that under identical experimental conditions
(i.e. same solute concentration and optical path length) this latter system can approach the
Rayleigh fringe level of precision. In terms of Rayleigh fringe shifts, the direct evalution of the
zeroth order by a phase plate diaphragm (3.2.1) attains /300, though with some danger of
systematic error, and by knife edge diaphragm attains f/150 to f/200. By the use of the fringe
spacings (3.2.2) and the transformation noted above (equation 6) a precision of close on /300 is
attained.

Refractometric (Schlieren) optics have a number of advantages over Rayleigh interferometric
optics. Their alignment is much simpler, and window distortions are a much less serious problem.
The widely held supposition that their precision is much inferior to Rayleigh optics lacks a
theoretical basis and is now shown to be untrue in practice. Given more advanced two dimensional
analysis of the recorded fringe patterns to enable up to 10 fringe spacings to be analysed, the
precision of refraction and hence concentration increment determinations will be essentially the
same by either method, and it will be possible to choose the simpler refractometric system when
experimental conditons so dictate. It is possible that the transformation between the two types of

fringe pattern noted above and the interpretative algorithms developed may have application to
other systems.
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