
Abstract This paper describes a series of four pro-
grammes for the PC based on ellipsoidal representations
of macromolecular shape in solution using Universal shape
functions. ELLIPS1 is based on simple ellipsoid of revo-
lution models (where two of the three axes of the ellipsoid
are fixed equal to each other). If the user types in a value
for a shape function from sedimentation or other types of
hydrodynamic measurement, it will return a value for the
axial ratio of the ellipsoid. ELLIPS2 is based on the more
general triaxial ellipsoid with the removal of the restric-
tion of two equal axes. The user enters the three semi-axial
dimensions of the molecule or the equivalent two axial ra-
tios and ELLIPS2 returns the value of all the hydrodynamic
shape functions. It also works of course for ellipsoids 
of revolution. ELLIPS3 and ELLIPS4 do the reverse of 
ELLIPS2, that is they both provide a method for the unique
evaluation of the triaxial dimensions or axial ratios of a
macromolecule (and without having to guess a value for
the so-called “hydration”) after entering at least three
pieces of hydrodynamic information: ELLIPS3 requires
EITHER the intrinsic viscosity with the second virial co-
efficient (from sedimentation equilibrium, light scattering
or osmometry) and the radius of gyration (from light or 
x-ray scattering) OR the intrinsic viscosity with the con-
centration dependence term for the sedimentation coeffi-
cient and the (harmonic mean) rotational relaxation time
from fluorescence depolarisation measurements. ELLIPS4
evaluates the tri-axial shape of a macromolecule from
electro-optic decay based Universal shape functions using
another Universal shape function as a constraint in the ex-
traction of the decay constants.

Key words Macromolecular shape · Ellipsoids ·
Hydrodynamics

Introduction

There are two approaches to representing the conforma-
tion of fairly rigid macromolecules in solution. The first
approach is the so-called “Bead” or “Multiple sphere” ap-
proach pioneered by V. A. Bloomfield at the University of
Minnesota and J. Garcia de la Torre at the University of
Murcia (see, e.g. Garcia de la Torre and Bloomfield 1977;
1981) whereby a macromolecule or macromolecular as-
sembly is approximated as an array of spherical beads. Us-
ing computer programmes that are currently available 
(based on how these spheres interact) such as HYDRO
(Garcia de la Torre et al. 1994) it is possible for a given
Bead Model to predict its hydrodynamic properties. One
can model quite sophisticated structures by this approach
but it suffers from uniqueness problems: for example, one
can predict the sedimentation coefficient for a particular
complicated model, but there will be many many other
equally complicated models which give the same sedimen-
tation coefficient. This type of modelling is therefore best
for choosing between plausible models for a structure, or
for refining a close starting estimate for a structure from,
say, x-ray crystallography. Another problem which is 
often overlooked is the so-called hydration problem,
whereby a guess as to the amount of water binding has to
be made. This is particularly serious insofar as the sedi-
mentation coefficient is concerned, in that it is not the most
sensitive of hydrodynamic functions of conformation (Ei-
senberg 1976) and is in fact a more sensitive function of
molecular weight and molecular hydration. A significant
step forward has been the launch of a new routine SOL-
PRO (Garcia de la Torre et al. 1997) which provides for
the prediction of hydration-independent shape functions
for a given model.

A complementary approach to bead modelling is to
make no assumptions concerning starting estimates and to
calculate the shape directly from hydrodynamic measure-
ments. This is called the “ellipsoid” or “whole body” ap-
proach (Harding 1989) so called because the investigator
instead of approximating the macromolecule as an array of
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spheres approximates the macromolecule instead as a
smooth whole regular structure – an ellipsoid, or “three di-
mensional ellipse” characterised by three perpendicular
semi-axes a ≥ b ≥ c (Fig. 1). Of course only simple repre-
sentations are possible but by combining shape parameters
together there are no hydration or uniqueness problems.
This approach is best for giving a relatively quick idea of
the overall dimensions or shape of a macromolecule in so-
lution.

There are two types of ellipsoid approach: The ellipsoid
of revolution and the general triaxial ellipsoid. The sim-
plest of these (which has been used in one form or another
for over half a century, Tanford 1961) is the ellipsoid of
revolution in which two of the three semi-axes are equal
(c = b). Ellipsoids of revolution (Fig. 2) are so-called be-
cause they are the shapes formed by rotating an ellipse of
semi-axes, a, b either about the major (a) axis to give a
prolate ellipsoid (semi-axes a, b, b) or about the minor (b)
axis to give an oblate ellipsoid (a, a, b), both defined by
the axial ratio (a/b) (where a ≥ b). One hydrodynamic meas-
urement can uniquely define (a/b), after assuming a value

for the hydration of the molecule; two hydrodynamic meas-
urements are normally sufficient to define (a/b) without
assumptions concerning hydration; a third is occasionally
necessary to distinguish whether an oblate ellipsoid or pro-
late ellipsoid is the more appropriate (usually the latter for
proteins). In the extremes a ob the prolate → rod and the
oblate → disc and the other extreme of a = b is of course a
sphere.

The most sophisticated of the whole body approaches
is the general triaxial ellipsoid where the restriction of two
equal axes b = c is removed. This allows a much greater va-
riety of conformations ranging from rods (a ob = c), discs
(a = b oc) and tapes (a ob oc) as well as the prolate
(a > b = c), oblate (a = b > c) ellipsoids of revolution and the
sphere (a = b = c).

All the necessary theoretical developments for apply-
ing either of these “ellipsoid” strategies are in place. What
has been lacking is a coherent set of easy-to-use algorithms
– available on PC as opposed to computer mainframes –
which the general user has access to. The launch of the
suite of four ELLIPS algorithms in this paper here should
address this. All these algorithms along with a related 
algorithm COVOL – for the accurate prediction of the 
thermodynamic non-ideality of a macromolecule from its
triaxial shape – are available free of charge as indicated at
the end of this paper. Table 1 summarises the purpose of
each of the four ELLIPS routines.

All four are also available on floppy disk in compiled
form. Although ELLIPS2, 3, 4 all use a FORTRAN 77
compiler – the SALFORD (1991) FTN77/486 system – and
the NAG (1991, 1992) Graphics and numerical integration
routines, these are all inbuilt into the programme and the
user does not need his own FORTRAN or NAG compiler.
ELLIPS1 (written in QUICK BASIC) is also supplied in
compiled form.
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Fig. 1 The general ellipsoid. It has three semi-axes (a ≥ b ≥ c) and
its shape is represented by two axial ratios (a/b, b/c)

Fig. 2 Ellipsoids of revolu-
tion. A prolate ellipsoid has
semi-axes (a, b, b). An oblate
ellipsoid has semi-axes
(a, a, b). The shapes of both are
represented by a single axial 
ratio (a/b), with a ≥ b



Universal shape functions: 
hydration dependent and hydration independent

Before we consider each routine in detail we will summar-
ise the hydrodynamic shape functions involved. To be con-
sistent with the bead modelling programme SOLPRO we
call these Universal Shape Functions. By this we mean
each is specifically a function of shape alone (and not vol-
ume): it makes no odds what the size is: a Universal shape
function will have the same value, it will only depend on
the shape. All these universal shape functions have been
worked out in terms of the axial ratio (a/b) for ellipsoids
of revolution and now the two axial ratios (a/b, b/c) for
general ellipsoids. All of these (with the exception of the
exclusion volume based shape functions ured and Π ) are
also available for bead models from SOLPRO (Garcia de
la Torre et al. 1997). For all the ellipsoid formulae the user
is referred to Harding (1995) and references therein and
for all the bead formulae the user is referred to Garcia de
la Torre et al. (1997) and references therein. However, the
investigator need not concern himself with these: all of
these formulae are inbuilt into the ELLIPS routines in the
case of ellipsoid modelling and SOLPRO in terms of bead
modelling. In terms of the experimental measurement of
these Universal shape functions, some require knowledge
of the hydration δ (mass in g of H2O bound per g of dry
macromolecule) or hydrated volume V (ml) of the particle,
the others do not. The particle volume V is often presented
in two equivalent forms:

V = vs · M/NA (1)

where M is the molecular weight or molar mass (g/mol)
and NA is Avogadro’s number (6.02205 × 1023 mol–1), and
vs is the specific volume (ml/g) of the hydrated macromole-
cule (volume occupied by the hydrated macromolecule per
unit mass of dry macromolecule) or

V = (v– +δ /ρ0) · M/NA (2)

where v– is the partial specific volume (ml/g).

Hydration dependent universal shape functions

Those Universal shape functions requiring knowledge of
δ or V for their experimental measurement are:

– Viscosity increment, ν (Simha 1940; Saito 1951)

ν = [η] M/ (NAV ) (3)

ν = 2.5 for a sphere (Einstein 1906, 1911)

– Perrin function, P (Perrin 1936)

P = ( f /f0) /{1 + δ /(v–ρ0)}–1/3 (4)

where ( f /f0), the frictional ratio (Tanford 1961) is related
to the sedimentation coefficient s 0

20,w by

( f /f0) = M (1 – v–ρ0)/(NA · 6 π η0 s0
20,w) (4 π NA /3 v–M)1/3 (5)

or the translational diffusion coefficient D 0
20,w by

(6)

where T = 293.15 K, η0 is the viscosity of water at 
293.15 K (0.010 Poise), ρ0 is the density of water at 
293.15 K (0.99823 g/ml) and kB is Boltzmann’s constant
(1.3807 × 10–16 erg. K–1). P = 1 for a sphere (Perrin 1936)

– Reduced excluded volume, ured

ured = u /V = {2 B M 2 – Z2/2 I}/ (NAV ) (7)

u is the excluded volume (ml), B is the second thermo-
dynamic (or “osmotic pressure”) virial coefficient, from
osmotic pressure, light scattering or sedimentation equi-
librium measurements, Z is the valency of the macro-
molecule, measurable by titration (Jeffrey et al. 1977) and
I is the ionic strength of electrolyte in the solvent (mol/ml).
At sufficient ionic strengths, the Z2/2 I term becomes neg-
ligible compared with 2B M 2. Of course for uncharged
macromolecules and proteins at the isoelectric point Z = 0.
ured = 8 for a sphere (Tanford 1961)

– Harmonic mean rotation relaxation time ratio:

τh /τ0 = {kB T /η0V} · τh (8)

where τh (sec) is the harmonic mean rotational relaxation
time, traditionally measured using steady state fluores-
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Table 1 The ELLIPS routines

Routine Language Model Purpose

ELLIPS1 QUICKBASIC Ellipsoid of Revolution Prediction of axial ratio (a/b) (equivalent prolate or oblate 
ellipsoid of revolution) from user specified shape function

ELLIPS2 FORTRAN 77 General Triaxial Ellipsoid Evaluates the values of all the hydrodynamic shape functions 
from user specified (a, b, c) or (a/b, b/c)a

ELLIPS3 FORTRAN 77 General Triaxial Ellipsoid Evaluates (a/b, b/c) from combinations of hydration independent 
shape functions

ELLIPS4 FORTRAN 77 General Triaxial Ellipsoid Evaluates (a/b, b/c) from electro-optic decay combined with 
other hydrodynamic data

a Equivalent to SOLPRO (Garcia de la Torre et al. 1997) for bead models



cence depolarisation methods (Van Holde 1971, 1985), and
τ0 the corresponding value for a spherical particle of the
same volume:

τ0 = η0V/kB T (9)

In earlier representations a factor of 3 was introduced be-
cause the rotational relaxation time was referred to on a
dielectric dispersion basis (compensated for in the equa-
tions for steady state anisotropy depolarisation) although
this is no longer necessary – compare van Holde (1971)
with van Holde (1985). This is further discussed in Garcia
de la Torre et al. (1997). τh /τ0 = 1 for a sphere (Perrin 1934).

– Time-resolved rotational (fluorescence depolarisation
anisotropy) relaxation time ratios

τk /τ0 = {kB T /η0V ) · τk (10)

For ellipsoids of revolution k = 1–3; for general ellipsoids
and general particles, k = 1–5. τk /τ0 = 1 for a sphere (Small
and Isenberg 1977).

– Reduced electro-optic decay constants

θ i
red = (η0V /kB T ) · θi (11)

where θi are the electric birefringence or electric dichro-
ism decay constants. For ellipsoids of revolution that are
homogeneous i.e. where the geometric axis of symmetry
coincides with the electrical axis, i = 1. For general ellip-
soids that are homogeneous i.e. where the geometric axes
coincide with the electrical axes, i = 2, termed “+” and “–”
(Ridgeway 1966, 1968); for general particles i = 1–5 
(Wegener et al. 1979). For a sphere, θ i

red = 0.66667.

Hydration independent universal shape functions

Those Universal shape functions NOT requiring knowl-
edge of δ or V for their experimental measurement are:

– Scheraga-Mandelkern (1953) parameter

(12)

The β parameter is unfortunately very insensitive to shape,
and Eq. (12) is used more as an equation of consistency,
or for measuring M from sedimentation velocity and vis-
cosity measurements. β = 2.1115 × 106 for a sphere

– Pi function (Harding 1981a)

Π = {2B M /[η]} – {Z2/2 I M [η]} = ured/ν (13)

with the 2nd term (a good approximation of the charge 
contribution for polyelectrolytes) → 0 at sufficient values
of I, and of course = 0 for uncharged macromolecules 
or proteins at the isoelectric point (Z = 0). Π = 3.2 for a
sphere

– Wales-van Holde (1954; Rowe 1977) parameter

R = ks /[η] = 2 (1+ P3) /ν (14)
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where ks (ml/g) is the concentration dependence parame-
ter of the sedimentation coefficient in the limiting relation
s20,w = s 0

20,w (1 – ks c) or 1/s20,w = {1/s 0
20,w} (1 + ks c). Al-

though the theory behind Eq. (14) is less rigorous than that
for Π (because of the greater complexity of “hydrody-
namic” as opposed to “thermodynamic equilibrium” based
non-ideality), it does have a strong experimental basis 
(Creeth and Knight 1965; Rowe 1977, 1992). To apply ks
in this way it is important that charge contributions to ks
are absent or if the macromolecule is a polyelectrolyte,
charge contributions are suppressed by working in a sol-
vent of sufficient ionic strength. R = 1.6 for a sphere.

– Reduced radius of gyration function G (Harding 1987)

G = Rg
2 · {4π NA / (3v M )}2/3 (15)

where Rg is the radius of gyration (cm), from light scatter-
ing, x-ray scattering or neutron scattering measurements.
Provided that there is no difference in scattering density of
the surface bound solvent compared with free solvent, and
there is no significant internal swelling of the macromol-
ecule, we can take, to a good approximation, v ~ v–. Other-
wise G must also be treated as another hydration depen-
dent parameter. G = 0.6 for a sphere.

– Psi-function (Squire 1970)

(16)

For spheres, Ψ = 1. It should be stressed that Ψ, like β is
very insensitive to shape and is more use as an equation of
consistency. Ψ = 1 for a sphere.

– Lambda function (Harding 1980a)

Λ = (η0 · [η] · M ) / (NA · kB T τh) = ν /(τh /τ0) (17)

For spheres, Λ = 2.5.

– Lambda and psi functions for each relaxation time 
(Garcia de la Torre et al. 1997)

Λk = (η0 · [η] · M ) / (NA · kB T τk) = ν /(τk /τ0) (18)

(19)

(k = 1–3 for ellipsoids of revolution; 1–5 for general tri-
axial ellipsoids). For spheres, Ψk = 1 and Λk = 2.5.

– Electro-optic delta and gamma (Harding and Rowe
1983) functions

δi = (6η0/NA kB T ) [η] M · θi = 6 θ i
red ν (20)

γ i = (M 3(1 – v–ρ0)3/ (27N 3
A kB T π2η0

2 s0
20,w

3 ))
· θi = 6 θ i

red P3 (21)

(for homogeneous ellipsoids of revolution i = 1 and for 
homogeneous triaxial ellipsoids, i = “+” and “–”). For
spheres, γ i = 1.0 and (the more sensitive) δi = 2.5.
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ELLIPS1

Aim. Prediction of axial ratio (a/b) (equivalent prolate or
oblate ellipsoid of revolution) from a user specified value
for a shape function.

Description. ELLIPS1 is based on simple ellipsoid of rev-
olution models (where two of the three axes of the ellip-
soid are fixed equal to each other); if the user types in a
value for a shape function from sedimentation or other
types of hydrodynamic measurement, it will return a value
for the axial ratio of the ellipsoid. The question an exper-
imenter wishes to address usually is not “what is the shape
function for a specified value of the axial ratio a/b?” but
rather “what is the axial ratio a/b for my macromolecule
specified by my (Universal) shape function which I have
experimentally measured?”. Unfortunately, although there
are exact analytical formulae linking each shape function
with a/b (Harding and Cölfen 1995), the reverse is not true:
inversion is analytically impossible. In the past, the inves-
tigator has had to interpolate from tables of data (Harding
and Cölfen 1995) or from graphs to obtain his a/b from P
(obtained from the sedimentation or diffusion coefficient),
ν (from the intrinsic viscosity), R, Π, Λ etc. Harding and
Cölfen (1995) have provided a simple polynomial based
inversion procedure giving a/b versus the various Univer-
sal shape functions to an acceptable degree of accuracy
(i.e. to better than the precision of the measurement, which
is normally no better than a few percent) and within the
limits of the assumption that an ellipsoid of revolution
shape is a reasonable approximation of a macromolecule.
The polynomial formulae used is simply

(a/b) = a0 + Σ
i

ai xi (22)

with x = P, ν, β, R, Π or Λ and for both prolate and oblate
ellipsoids in each case.

The fits are split into 3 ranges: Range 1 (1.1 < a/b < 2.0);
Range 2 (2 < a/b < 10) and Range 3 (10 < a/b < 100) and a
polynomial of degree 7 or less is necessary to give a good
to excellent fit (by this we mean the fit is at least as good
as the precision to which the function can be measured –
usually to no better than a few percent). The only excep-
tions are the relatively uninteresting cases of prolate β
range 1, oblate β range 2, oblate β range 3 and oblate Π
range 1: in these cases the ELLIPS routine returns the warn-
ing “POOR FIT: USE GRAPHICAL INTERPOLATION”.
Some functions do not distinguish between prolate and
oblate ellipsoids: in this case the a/b values for both cases
are returned and the user has to choose between the two.
For proteins the prolate usually gives the closest represen-
tation. All the coefficients in Eq. (22) for each function for
each range and for both prolate and oblate ellipsoids are
given in Harding and Cölfen (1995), although again, the
user need not concern himself with these since they are in-
built into the compiled program.

Output. Figure 3 gives the user screens for an example run
on the protein egg albumin using two of the hydration in-

dependent universal shape functions (a) the Pi function and
(b) the R-function. In the case of (a), Π = 3.18 {from
BM = 5.55 ml/g and [η] = 3.49 ml/g (Z2/2 I ~ 0)}: this gives
an a/b ~ 1.5 but after experimental error it could be any-
thing between 1 and 3. However, use of the R function (b),
which is very sensitive for particles of low asymmetry 
confirms this value for the axial ratio for ovalbumin (egg
albumin). Interestingly this finding of 1981 (Harding
1981b) was confirmed from the crystal structure (Fig. 3c)
published 10 years later (Stein et al. 1991). More interest-
ingly the axial ratio of a size 3 U.K. standard egg (Fig. 3d)
is also ~1.5.

Although the MSDOS (Microsoft, Redmond, Washing-
ton, USA) routine can only draw a crude 2D representa-
tion of the structure, CORELDRAW (Corel Co., Ontario)
will give a 3D presentation (Fig. 3c).

ELLIPS2

Aim. Evaluates the values of all the Universal hydrody-
namic shape functions from user specified axial dimen-
sions (a, b, c) or axial ratios (a/b, b/c) for the macromole-
cule as modelled by a general triaxial ellipsoid.

Description. ELLIPS2 is essentially analagous to SOL-
PRO (Garcia de la Torre et al. 1997) in that from a given
structure (as represented by an array of beads in SOLPRO
or as a general triaxial ellipsoid in ELLIPS2) the complete
set of Universal shape functions is returned. ELLIPS2 
also evaluates the excluded volume shape functions ured
and Π, unavailable on SOLPRO. It is based on an earlier
version of the program written in FORTRAN for main-
frame computer (Harding 1982). The earlier version also
lacked ured and Π for the simple reason these hadn’t been
worked out for triaxial allipsoids until 1985 (Rallison and
Harding 1985).

Most of the universal shape functions involve one or
more of 10 different elliptic integrals (called alpha 1 …
alpha 10 – see Harding 1995) of the form

∫
∞

0
f (x) dx (23)

There is still no packaged or published numerical routine
available for integrals of this type; only routines of the form

∫
B

A
f (x) dx (24)

where A can be zero but B must have a finite value, spec-
ifiable by the user. ELLIPS2, like its mainframe fore-
runner uses a NAG (1991) quadrature routine, in this case
D01AJF. B can be set as high as the programmer wishes:
higher values take more computer time though, and in prac-
tice, satisfactory convergence of the integral is obtained if
B is set to 106 for 9 of the intergrals (alpha1– alpha9) and
108 for the remaining alpha10. It is also found that each
integration is best split into 2 parts: part 1 (between A = 0
and B = 100) and part 2 (A = 100, B = 106 or 108). D01AJF
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also requires the following settings: epsabs = 0.0; epsrel
= 0.5 × 10–4. ured and Π also require numerical integra-
tions, this time for two double integrals of the form

∫
0

π /2

∫
0

π /2

f (x1, x2) dx2 dx1 (25)

where f (x1, x2) is a complicated transcandental function in
both cases. Analytical solutions are not possible, so the
NAG routine D01DAF is employed. This quadrature rou-

tine performs a two-dimensional integral and has the set-
ting absacc = 1.0 × 10–5.

Output. Fig. 4 (a) gives the output data for an (a/b,
b/c) = (1.23, 1.52), based on the crystallographic axial di-
mensions of 43 × 35 × 23 Å for myoglobin (Kendrew et al.
1958) (Fig. 4b). Besides giving the excluded volume based
ured and Π, the Λk and Ψk (k = 1 → 5) shape parameters are
given, instead of the less useful “rotational frictional ra-
tios”.

A spin-off of this routine is another called COVOL 
(which will be described elsewhere): this uses the predicted
value of ured to evaluate the second theromodynamic vir-
ial coefficient B, as an aid to the prediction of the non-
ideality terms which appears in analyses of molecular inter-
action phenomena using light scattering or sedimentation
equilibrium.
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a b

c d

Fig. 3 ELLIPS1 output screens for the determination of the axial
ratio (a/b) for ovalbumin (egg albumin) using the Universal shape
functions (a) Π or (b) R. (c) Prolate ellipsoid of a/b = 1.5 drawn by
the WINDOWS based CORELDRAW enclosing the crystal struc-
ture line-drawing of Stein et al. (1991). (d) A standard egg of
a/b ~ 1.5



ELLIPS3

Aim. Evaluates the tri-axial shape of a macromolecule (a/b,
b/c) using two possible combinations of Universal hydra-
tion independent shape functions:

(a) Π (from the second virial coefficient and intrinsic vis-
cosity measurements) with G (from radius of gyration
measurements), or
(b) Λ (from the harmonic mean rotation relaxation time τh
and intrinsic viscosity [η] measurements) with R (from the
concentration dependence sedimentation term ks and in-
trinsic viscosity measurements).

Description. Whereas an (a/b, b/c) specifies uniquely val-
ues for all the hydrodynamic shape functions, the reverse
is unfortunately not true: measurement of P, R, Λ etc. does
not uniquely fix (a/b, b/c) but rather gives a line solution
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a

b

Fig. 4 a ELLIPS2 output for 
a macromolecule of axial ratios
(a/b, b/c) = (1.23, 1.52) (myo-
globin). b Ellipsoidal represen-
tation of the crystal structure of
myoglobin (a/b, b/c) = (1.23,
1.52) {based on axial dimen-
sions of 45 × 35 × 23 Å (Ken-
drew et al. 1958) and line draw-
ing of Dickerson and Geis
(1969)}

of possible values: Fig. 5 shows the all the possible values
of (a/b, b/c) for ν = 3.8016 and all the possible values of
(a/b, b/c) for P = 1.1302. However, it can be seen immedi-
ately from Fig. 5 that a unique solution for (a/b, b/c) could
be fixed from the intersection of the “ν-line solution” with
the “P-line solution”: … at least in principle … from the
graphical intersection of these two lines {in this case (a/b,
b/c) = (2.0, 2.0)}. This particular combination is however
useless in practical terms since the intersection is so shal-
low (after allowance for experimental error there is indeed
no intersection) and also both P and ν require for their
measurement knowledge or a guess of the hydration 
parameter δ. One of us (Harding 1995) has explored the
variety of possible combinations of those Universal shape
parameters which do not need δ for their experimental
measurement. Based on this latter criterion, along with or-
thogonality of the graphical intersection and sensitivity to
shape (and insensitivity to experimental error), ELLIPS3



provides for 2 of the most promising combinations. The
first is a combination of Π (from the second thermody-
namic virial coefficient and intrinsic viscosity) with G
(from x-ray, neutron or light scattering), the second is a
combination of Λ (from steady state fluorescence depola-
rization measurements and the intrinsic viscosity) with R
(from the concentration dependence sedimentation term ks
and intrinsic viscosity measurements).

ELLIPS3 uses as its basis the function calculation rou-
tine of ELLIPS2 except that a whole array of such values
are evaluated in the (a/b, b/c) plane (a matrix of 40 × 40
values). A Contour plotting routine (J06GAF in the NAG
FORTRAN Library) interpolates between these matrix
points and can plot the Π, G, Λ and R functions (or any
other of the universal shape functions if the programmer
so decides) in the (a/b, b/c) plane. In the pre-compiled ver-
sion available for ELLIPS3, the user does not have to con-
cern himself with the details behind the program if he is
happy with either the Π –G or Λ –R combinations.

Output. Figure 6a shows an example of running ELLIPS3
for the Π –G combination: the user selects the “Pi and G
plot” option and has a choice of entering Π and G directly,
or if these have not been evaluated from the raw data, has
the option of entering BM, and [η] (and, if necessary, a
charge correction) for Π, and/or Rg and the specific vol-
ume, v for G. The user specifies the experimental uncer-
tainty in both functions and then the program gives the user
a choice of axial ratio ranges for his plot. If no prior infor-
mation about macromolecular shape is known the user is
recommended to choose a wide range (such as 1 → 100) in
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Fig. 5 Triaxial (a/b, b/c) plot showing that a single value of a Uni-
versal shape function corresponds to a range (specified by a line) of
possible values of (a/b, b/c). Two examples shown: ν = 3.8016 and
P = 1.1302

a

b

c

Fig. 6a–c ELLIPS3 output. Determining the triaxial shape (a/b,
b/c) of a macromolecule using the Pi-G intersection method. The ex-
ample shown is for myosin (Harding 1987 and references therein)
(a) running the programme (b) Pi-G output plot (c) CORELDRAW
triaxial shape of (a/b, b/c) = (80, 1)



the first instance, and then replot at higher resolution in the
range of interest. The myosin example is given to show
that, without any prior assumptions about the conforma-
tion (rod, sphere disc, etc.) and despite hinge regions of
limited flexibility in the molecule and the presence of the
S1 protrusions at one end, the overall gross conformation
of a rod shape of axial ratio ~80 :1 is returned.

The second example of ELLIPS3 (Fig. 7) is for the 
Λ –R plot applied to the neural protein neurophysin: de-

tails of how [η], τh and ks was extracted for both monomers
and dimers is described in Nicolas et al. (1981) and also
Harding and Rowe (1982). Figure 7a shows the running of
ELLIPS3 for Λ –R and Fig. 7b and c the output for the
monomers and dimerised form of the protein, with the lat-
ter clearly indicating that when the 4 :1 prolate ellipsoidal
monomers dimerise they must do so in a side-by-side as
opposed to end-on process.
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b

c

a

Fig. 7a–c ELLIPS3 output.
Determining the triaxial shape
(a/b, b/c) of a macromolecule
using the Λ-R intersection
method. The example shown is
for neurophysin (Harding and
Rowe 1982 and references
therein) (a) running the pro-
gramme (b) Λ-R plot for neuro-
physin monomers (inset – 
CORELDRAW ellipsoid of
(a/b, b/c) = (4,1)) (c) Λ-R plot
for neurophysin dimers yield-
ing (a/b, b/c) = (2.5, 2.85) {in-
set shows likely mode of as-
sembly of the monomers}



ELLIPS4

Aim. Evaluates the tri-axial shape of a macromolecule (a/b,
b/c) from electro-optic decay based Universal shape func-
tions combined with other hydrodynamic data.

Description. Rotational hydrodynamic shape functions,
based around rotational diffusion measurements are attrac-
tive for determining the shapes of macromolecules in so-
lution since they are generally more sensitive functions of
shape compared to other shape functions. This sensitivity
comes however at a price because they are generally mo-
re difficult to measure. A lot of the difficulty centres around
resolution of multi-exponential decay functions. Electro-
optic measurements are more attractive than time-resolved
fluorescence depolarization anisotropy measurements in
the sense that for homogeneous triaxial ellipsoids at least,
there are only two exponential terms to resolve (the decay
constants or reciprocal relaxation times θ+ and θ–) as op-
posed to five (τ1 – τ5):

∆n = A′+ exp (–6θ+ t) + A′– exp (–6θ– t)

(Ridgeway 1968, Harding and Rowe 1983) where ∆n is
the birefringence or dichroism (often expressed as “opti-
cal retardation” in degrees) at time t after the aligning
electric field has been switched off. A practical problem
with electro-optic decay methods is the potential local heat-
ing effects from the high electric fields used, especially if
the experiments are conducted in solutions of high ionic
strength: the investigator is advised to consult an article by
Porschke and Obst (1991) describing how these effects can
be minimised.

After eliminating hydration (via e.g. combination with
[η]) to give the Universal hydration independent shape
functions δ+ and δ– and graphical combination with an-
other Universal hydration independent shape function such
as R (Harding and Rowe 1983) or Π (Harding 1986) the
triaxial shape as represented by the two axial ratios (a/b,
b/c) can be evaluated. Resolution however of even two ex-
ponential terms is not easy, particular for globular macro-
molecules where θ+ and θ– are similar (Small and Isenberg
1977), and no-matter what form of mathematical decon-
volution is applied, whether it be non-linear least squares
or more refined types of analysis (Harding 1980b; Jost and
O’Konski 1978; O’Connor et al. 1979; see Johnsen and
Brown (1992) for the analagous problem in dynamic light
scattering analysis of polydisperse systems). In our hands
(Harding 1980b; Harding and Rowe 1983) we have found
a more reliable method of extraction is to use another hy-
drodynamic function as a constraining parameter in the
analysis of the electro-optic decay data: in this way the
problem is reduced to one of four variables (A′+, θ+, A′–, θ–)
to one of three (A′+, A′–, a/b) since a/b will specify, by the
constraining function a unique value for b/c (and hence
θ+,θ–). ELLIPS4 has been written to facilitate this proce-
dure for PC based on an earlier non-interactive version of
the programme written for mainframe computer (Harding
1980b, 1983). Its use is best illustrated by application to 

synthetic data (with error) generated for a macromolecule
“Protein 1” (Harding and Rowe 1983) which includes 
the following characteristics: (a/b, b/c) = (1.5, 1.5);
M = 71744 Da; [η] = 2.74 ml/g, and the following electro-
optic decay parameters: = A′+ = 0.07, A′ = 0.05, θ+ =5.81538
× 106 s–1, θ– = 4.15646 × 106 s–1, T = 293.15 K, η0 = 0.01
Poise. Figure 8 shows the electro-optic decay for this based
on expected error (standard deviation) of ±0.1 degrees 
(optical retardation) or ±0.0017 rads random normal error
on the decay data.

With ELLIPS4 the user puts his electro-optic decay data
(∆n versus t) into a data file which is read in. The user also
has to specify values for [η] (ml/g), the molecular weight
M (Da), the solvent viscosity (Poise) and temperature (K)
at which the electro-optic measurements were made. The
user also needs to specify the coordinates of a line of (a/b,
b/c) values (based on measurement of R, Π or some other
hydration independent Universal shape function) in a sec-
ond data file: Fig. 9 shows such a constraining line of al-
lowed (a/b, b/c) values for “Protein 1” which has an R-
function value of 1.479. This constrains each iteration of
(a/b, b/c) and hence θ+, θ–, to work along the line speci-
fied by the constraining function, since each value of (a/b,
b/c) specifies a value for δ+ and δ– – (worked out using the
same procedure involving the NAG routine D01AJF used
in ELLIPS2 and 3) which, combined with the user entered
values for T, η0, [η] and M gives the θ+, θ– for each itera-
tion. This reduces the risk of the fitting routine falling into
subsidiary minima. When the minimum of the least squares
procedure has been formed ELLIPS4 successfully returns
a/b, its corresponding value of b/c and the pre-exponential
factors A′+ and A′–. The programme runs automatically 4
times using successively the 4 different values of a/b en-
tered from the constraining function (excluding the first
and last data points) as starting estimates for a/b: this pro-
vides a further check against the dangers of subsidiary min-
ima. For the starting estimates for A′+ and A′– the routine
automatically takes these as ∆nmax/2. The routine has in-
built various error warnings concerning the reliability of
each estimation. If no error warning is returned the result
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Fig. 8 Electro-optic decay (expressed as the decay of optical retar-
dation with time, t [s]). Synthetic data shown corresponding to a pro-
tein of true (a/b, b/c) = (1.5, 1.5) {“Protein 1” of Harding and Rowe
1983}. The electro-optic data is fed in as a date-file into ELLIPS4



for the evaluation from a particular starting point should
be reliable.

Output. Figure 10 shows (a) the running of the programme
and (b) the output for a run on the data of Fig. 8 for Pro-
tein 1, which returns a value for (a/b, b/c) ~ (1.62, 1.34) –

i.e. to within two tenths of an axial ratio unit of the true
axial ratios. In practical terms however, the user is advised
to (i) repeat the whole operation several times with vari-
ous cut-off times for the decay data (at longer times the
signal/noise data gets progressively worse, on the other
hand more information concerning the slower relaxation
time, or larger decay constant, θ+ is contained in this re-
gion) to be certain of no subsidiary-minima problems (ii)
repeat the operation allowing for experimental error in the
constraining function (iii) check for any concentration de-
pendence of the returned parameters: and extrapolate if
necessary to zero concentration (Riddiford and Jennings
1967). These and other features have been extensively ex-
plored with the earlier mainframe version of the pro-
gramme (Harding 1980b; Harding 1983; Harding and 
Rowe 1983). A possible area of further improvement 
includes the additional constraint that A′+ + A′– = ∆nmax
although this may cause problems if the data is noisy and
the t = 0 position is not precisely defined.

Concluding comment

All the routines ELLIPS1, 2, 3 and 4 are available on disk
or via email/ftp as explained below and all should be sim-
ple to use. The user ultimately however has to decide just
how far he wants to take his hydrodynamic conformation
determinations on a macromolecule, assuming it is fairly
rigid (if the molecule fails this criterion then there are other
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Fig. 9 ELLIPS4 constraining data extraction. The user takes his de-
termined value of R or other suitable constraining function (Π, G, Λ
etc.) and plots the line of corresponding values of (a/b, b/c) using
ELLIPS3 (ELLIPS3 gives 2 lines which allow for experimental er-
ror, both of which can be used in successive runs using ELLIPS4. It
also plots 2 lines for a 2nd function which should be entered = 0).
The user then reads off 6 (a/b, b/c) coordinates from this line which
can be either entered as a 2nd data file into ELLIPS4, or instead en-
tered at run-time

Fig. 10a, b ELLIPS4: Determining the triaxial shape (a/b, b/c) of
a macromolecule using electro-optic decay data. Illustrated by ap-
plication to “Protein 1” of true (a/b, b/c) = (1.5, 1.5) and based on
the electro-optic decay data of Fig. 8 and constraining line solution
of Fig. 9. a Running the programe. The user needs to enter values
for the temperature, solvent viscosity, intrinsic viscosity [η] of the
macromolecule and the molecular weight M. The programme runs 
4 times with the constraining values (a/b, b/c) {excluding the first
and last point) as the initial estimates. b Output giving the returned
values for (a/b, b/c) and the pre-exponential factors for each of the
four starting estimates for (a/b, b/c) and the final “best” result. A
list of potential error warning estimates is also given



procedures available, as reviewed by Harding 1995). 
Ellipsoids of revolution – via the routine ELLIPS1 give a
relatively quick impression of the overall form of the mole-
cule (providing a distinction as to whether its best mod-
elled by a prolate or oblate can be made). Although gen-
eral ellipsoid modelling, using ELLIPS2, like bead mod-
elling using SOLPRO (Garcia de la Torre et al. 1997) can
now easily predict the hydrodynamic properties of a mac-
romolecule of given shape: the reverse is more difficult.
With SOLPRO the problems are one of uniqueness (i.e. the
multiplicity of models which yield the same set of hydro-
dynamic parameters); ELLIPS3 and 4 circumvent these
uniqueness problems but only by forgoing molecular de-
tail and using a graphical extraction strategy, with undoubt-
edly ELLIPS3 the easiest to perform.

Whatever he does the investigator needs to moderate
his desire for high precision with a sense of realism:
whether it be ellipsoids or beads, these are only approxi-
mations to the true conformation of a macromolecule (the
hydrodynamic theory behind the latter is also only an ap-
proximation); even though the so-called hydration prob-
lem can be countered with the use of those Universal shape
functions which are hydration-independent, there is still a
further assumption (usually reasonable) that the hydration
of a macromolecule is ~ the same for different measure-
ments. Because of these reasons, hydrodynamics will 
always be a so called “low” or “fairly-low” resolution ap-
proach to conformation analysis.

Nonetheless, the relative speed with which the meas-
urements can be performed, coupled with the limitations
of the so-called “high-resolution” techniques (which in
many instances cannot be applied and can never be applied
anyway to a molecule in dilute solution) make modern hy-
drodynamic conformation algorithms highly attractive as
“overall solution structure” (ellipsoids) or “solution mo-
lecular refinement” (beads) algorithms.

Program availability The ELLIPS programs are available. Free at
charge either directly from the authors (email: steve.harding@not-
tingham.ac.uk or coelfen@mpikg-teltow.mpg.de) or from the Inter-
net. Log in as anonymous ftp on BBRI.HARVARD.EDU and then
change to /RASMB/SPIN/MS_DOS/ELLIPS-HARDING.
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