Cinderella will go to the ball

Analytical ultracentrifugation has revived as a tool for protein characterisation

Analytical ultracentrifugation has undergone
an extraordinary evolution since its inception by T. Svedberg and co-workers in the 1920 s .

After many year of decline, it is now rapidly reemerging as a powerful tool for the characterisation of the size, solution conformation (in dilute solution), and, particularly, interaction properties Solution), and, particulary, interaction properties
of protein systems and other classes of biological of protein system
macromolecule.
The renaissance has had two clear effects. The first was the growth of the National Centre for Macromolecular Hydrodynamics (withlaboratories at the Universities of Nottingham and Leicester),
supported by the Science \& Engineering Research Council and industry in response to increasing demands for collaborative work (a similar facility has been set up in the United States with the National Ultracentrifuge Facility atStorrs). The second was the launch last year of the new Optima XLA Analytical Ultracentrifuge from Beckman Instruments, with full on-line computer control and analysis facilities making the technique available for the first time to the laybimolecular and polymer scientist without the need for extensive specialist training.
For conformational analysis (using sedimentation velocity in the ultracentrifuge), this
revival is probably the result of a realisation amongst biological scientists that:

- not all biological macromolecules can be crystallised - many are available in too small a quantity (especially newly-engineered proteins) or are simply not amenable to full structural analysis (for example, intact, immunologically-active antibody molecules);
- the requirement of very high concentrations for NMR analysis of biological macromolecules particularly those with a molecular weight greater than 10,000 - can lead to serious difficulties in data interpretation.

Solution techniques, such as sedimentation analysis or X-ray scattering, although of low resolution, may represent for many systems the only realistic "handle" on macromolecular conformation in solution. It is possible to address: - gross conformation types (whether the macromolecule is first of all behavingas a randomlycoiled structure, a rigid-rodstructure or a globular structure); and,

- by combining sedimentation data with data from other solution techniques, such as X-rayscattering or viscometry, more detailed information, such as the degree of flexibility (if it is a coiled or rod shape) or a representation using "bead models"

Productivity Multiplies with TriCart

The TriCart option for Porton Protein Sequencers is the solution to a dilemma faced by many users of protein sequencers - how to minimize instrument idle time without inconvenient trips to the lab to load samples.

The TriCart option solves the dilemma by incorporating
 three of Porton's easy-to-use reaction cartridges. Just load three samples and ud program the sequencer with the number
 of cycles for each sample. When one sample is completed, the instrument automatically begins sequencing the next.

Porton's Easy-To-Use TriCart System.
Particularly useful for short peptides and sequencing over
weekends, or any time you want to increase your productivity by loading three samples at once.
For information, circle the enquiry number or call Beckman on: Tel: (0494) 441181. Fax: (0494) 447558

Load one sample while another is running. The sequencer can be programmed to run up to six samples. And the twopiece self-sealing reaction cartridges save time by making sample loading easy.

The Beckman data management software automatically tracks which sample is being sequenced and logs the data appropriately,

> Porton Sample Suppor Disks

TriCart retrofit for currently placed PI 2000 and LF 3000 sequencers can be accomplished on site. This assures all research on Porton instruments can employ the latest breakthroughs in sequencing technology.

Porton LF 3000 Protein Sequencer

BECKMAN

if it is more globular.
For molecular weight analysis (using sedimentation equilibrium), the revival in the technique has derived largely from an increasing - sometimes painful - awareness of the limitations of gel electrophoresis and gel chromatographymethods. Bothof these methods, although relativelystraightforward, have limitations formany systems. Problems may arise from non-uniform binding of SDS in the SDS-PACE analysis of some proteins (for example histone, glycoproteins) or more than just the polypeptide chain molecular weight may be desired.
With gel chromatography (including HPLC), difficulties may occur in obtaining suitable calibration standards andalso interms of interaction phenomena with the material of the gel column. Sedimentation equilibrium is an absolute molecular weight technique, not requiring calibration standards or assumptions concerning confirmation. It is superior to other absolute techniques in that, unlike mass-specrometry, it gives the molecular weight of systems containing more than one subunit and also the molecular weights of very large single polypeptides (found in, for example, some muscle proteins, suchas "titin" (molecularweight greater than 10^{6}) and it does not suffer from problems of dust or any other supramolecular contaminations which plague light-scattering measurements.
For interaction studies, sedimentation velocity can be used as a quick, casy-to-use assay for interaction in systems containing different types of molecule (for example anenzyme with its cofactor (Figure 1)) or for the evaluation using sedimentation equilibrium of the association constants in a selfassociating system.
For purity assays, the sedimentation velocity technique and the technique of isopycnic density gradient equilibrium are ideal for looking at the

Figure 1: Co-sedimentation diagram tor the enzyme mutase (bottom scan across the ultracentrifuge cell at a wavelength of 295 nm) and its B12 cotactor (top scan, 608nm and taken 2 minutes atter the bottom scan). The centre of the sedimentation boundaries for both are identical, with no residual absorbance left behind, indicating complete binding of the cofactor. Rotor speed was 44,000rpm.
purity of bimolecular preparations (for example for glycoprotein systems, checking for any contamination through free protein or nucleicacid).
Apart from work on newly-engineered protein molecules - especially those of immunological importance - we find that a large part of interest in the technique is coming from academic and industrial groups interested in pharmaceutical applications, such as the behaviour of biopolymer drug-delivery systems.
For most work, we feel that biochemists and molecular biologists should be able to provide the answers themselves using the new Optima XLA Ultracentrifuge, which doubles up with apreparative capability; for more specialist problems (such as those involvingheterogeneous systems), the facility offered by the National Centre for Macromolecular Hydrodynamics should be able to help. The current capability of the technique, including a comprehensive description of the new XLA, has been described ${ }^{2}$.

References

1. Morgan, P., Byron, I. and Harding, S. (1992) "The solution conformation of novel antibody fragments studied using the Optima XLAAnalytical Ultracentrifuge", Discovery (Beckman Instruments) 1, 2-4
2.Harding, S., Rowe, A. and Horton, J. (eds) (1992) "Analytical Ultracentrifugation in Biochemistry and Polymer Science" (630 pages) Royal Society of Chemistry, Cambridge (ISBN 085186-345-0)

By Dr Steve Harding, National Centre for Macromolecular Hydrodynamics, University of Nottingham
\triangle ENQUIRY NUMBER 440H
Editor's acknowledgement
With thanks to Beckman Instruments (UK) for commissioning this article especially for Laboratory News.

