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Over the last decade there has been a mini-explosion of interest in hydrodynamics as a
tool for probing biomolecular structure and interactions in solution. This has been most
notably so with the technique of analytical ultracentrifugation with the appearance of
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new instrumentation (Schachman, 1989; Giebeler, 1992; Furst, 1997), scientific papers
and a plethora of reviews and books (Harding et al., 1992; Schuster and Laue, 1994).
Another area of hydrodynamics which has seen a considerable expansion in analytical
applications, is size-exclusion chromatography and its coupling to absolute molecular
mass and conformation probes such as laser light scattering (Wyatt, 1992). The hydro-
dynamic “affinity” technique of surface plasmon resonance has also been developed as a
powerful analytical probe for molecular interactions, and there have also been significant
advances in both the measurement of translational diffusion by dynamic light scattering
(Brown, 1993), and rotational diffusion and relaxation analysis by electro-optic
(Porschke and Obst, 1991; Meyer-Almes et al., 1994) and fluorescence anisotropy
(Acuna er al., 1987a,b).

Another classical hydrodynamic probe - viscometry - has also been the subject of sig-
nificant advances, both at the “‘rheological” or concentrated solution end and at the di-
lute solution end. With rheology, these advances include an understanding of the
structure of gels and colloidal suspensions, particularly with regard to polysaccharides
(Lapasin and Pricl, 1995) and large glycoconjugates (Hardingham ez a/., 1989). Whereas
the rheology of concentrated dispersions is of considerable interest to the colloid scien-
tist, pharmacist or food technologist, of more interest to the molecular biophysicist is di-
lute solution viscometry and the structural parameter the intrinsic viscosity [n].

The intrinsic viscosity is not a new molecular parameter. Einstein considered it for a
suspension of spherical particles in 1906 (Einstein, 1906); with a correction five years
later, Einstein, 1911). The classical review of its measurement and application, particu-
larly to proteins, appeared almost forty years ago (Yang, 1961) and a corresponding
treatise focusing mainly on the theory for linear macromolecules appeared almost 30
years ago (Yamakawa, 1971). A more recent treatise was the highly useful text of
Bohdanecky and Kovar (1982), which focussed on linear polymers.

The intrinsic viscosity is also not a true viscosity at all: the dimensions of viscosity are
conventionally the “Poise™ in c.g.s units (dyn.cm 2.s) or the “Pascal second” (N.m™.s)
in S.1. units, whereas intrinsic viscosity has reciprocal concentration units: although in
the past, units of dl.g™' have been highly popular, the c.g.s. unit of mlg™ is now
preferred, at least in physical biochemistry.

This article considers the considerable progress that has been made in the measure-
ment of [y} and its interpretation in terms of molecular conformation, hydration and
flexibility of proteins and glycopolymers (including glycoproteins, polysaccharides and
nucleic acids) in solution. The traditional measurement of viscosity of a macromolecular
solution was by either timing the flow of liquid through a capillary tube, or by recording
the force required to rotate one concentric plate with respect to another with the fluid in
between. Although instrumentation for both these “capillary and “cone and plate"
approaches has become either automatic or semi-automatic with on- or off-line computer
data capture and analysis, the basic design has remained the same since the time of
Yang’s (Yang, 1961) article. Neither are outstandingly attractive however, in protein bio-
chemistry, because of the relatively large quantities of material required: normally
greater than 1 ml at concentrations of several mg/ml. Although such quantities are still
less than may be required by nuclear magnetic resonance spectroscopy (NMR), they
may still be prohibitive, particularly for newly engineered proteins or precious glyco-
conjugate molecules. As with NMR, measurement at concentrations in excess of a few
mgs/ml poses the additional potential problem of molecular aggregation phenomena if
structural information about the molecule is being sought. In this respect, parallel
measurements with the analytical ultracentrifuge are mandatory to monitor for such
complications.

A more radical development has been the appearance of an instrument based on quite
different principles (the direct dependence of viscosity on hydrostatic pressure) and is the
so-called pressure imbalance or ‘“differential” viscometer. The significance of this is
that measurements can be performed at lower concentration and on smaller volumes,
making the intrinsic viscosity attractive to the protein biochemist once more. This is for-
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tunate because advantage can be taken of developments in hydrodynamic
representations of molecular conformation in dilute solution. Although intrinsic viscosity
measurement—in common with any other hydrodynamic measurement—cannot give
high resolution information about molecular structure in the same way as high-resolution
NMR or X-ray crystallography, [#] is one of a number of parameters from hydrodynamics
and solution light and X-ray scattering for pinpointing the overall configuration of mol-
ecules in dilute solution. Also since Yang, developments have progressed beyond the
“ellipsoid of revolution™ approach to allow both three-dimensional representations via
the general ellipsoid approach and modelling of complex shapes via the hAvdrodynamic bead
approximation. The old problem of molecular hydration still remains and has to be
addressed: a hydrodynamic property is not only a measure of the shape of a macromol-
ecule but also the amount of solvent it immobilises, through hydrogen bonding and
through physical entrainment. Since Yang, there have also been important developments
in the representation of the conformation and flexibility (in terms of parameters such as
the Kratky-Porod persistence length, L, the Kuhn statistical length, 27! or the Smidsroad-
Haug stiffness parameter B) of linear polymers that are a feature of nucleic acids, filamen-
tous viruses and many glycopolymers, and also branched biopolymers (in terms of the
branching parameter g') that are the hallmark of polysaccharides like amylopectin. This
article will thus serve the purpose of addressing the progress that has been made in (i)
instrumentation; (ii) molecular modelling of quasi-rigid particles such as globular pro-
teins; (iii) the hydration problem, and (iv) molecular modelling of the conformation and
flexibility of linear biopolymers such as nucleic acids and many glycopolymers and also
branched glycopolymers.

II. THE INTRINSIC VISCOSITY
2.1. Definitions

The viscosity of a fluid is a measure of its resistance to flow. Formally, the (shear)
viscosity coefficient, # (or u) of a fluid is defined as the shearing stress, 7 (or ¢) per unit
rate of shear, g (other common notations are G or f3) via Newton’s formula (Fig. 1):

n=rt/g .1

Yy A

L » X

Fig. 1. Shearing of a Newtonian fluid (laminar flow with constant velocity gradient, g). g = uy/y

where 1, is the local mass average velocity of the fluid in the x-direction and uy =u,=0. dy is the

infinitesimally small thickness of adjacent fluid elements such as 4. B and C. Adapted from
Tsvetkov et al. (1971). See also Van Holde (1985)
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An alternative definition of viscosity is in terms of energy dissipation (see e.g.,
Tsvetkov et al., 1971). Consider the simple case of Fig. 1 and the three adjacent layers
A, B and C of infinitesimal thickness dy. The infinitesimal shift, dx in the x-direction of
layer C relative to layer A in time ¢ is dx = #du,/dy).dy = tg.dy. Thus in the centre
layer B of thickness dy the work done per unit area in overcoming the resistance to flow
through internal friction is t.dx = tgt.dy for a volume of liquid dy x 1. Substituting for
7 from eqn (2.1), the work done, E, in unit time per unit volume due to the directional
flow is then

E =g’ (2.2)

A Newtonian fluid is one where the viscosity coefficient # is not a variable with shear
rate: macromolecular solutions approximate Newtonian fluids at slow or creeping
velocities, u, as found in for example capilliary viscometers. More formally, if the fluid
is also incompressible the equation of motion for the fluid can be described by the
following form of the Navier-Stokes equation:

ou

o HuVu= —Vp 4+ nV?u+ pF (2.3)

P
where 9/t is the time rate of change at a fixed point in the fluid, p is the hydrostatic
pressure the fluid would be supporting if it was at rest at its local density p and tempera-
ture T and F is the external body force per unit mass (in the absence of any other forces
this will be from the acceleration due to gravity). Equation (2.3) (or its equivalent form
in energy dissipation terms), in the appropriate coordinate systems and boundary
conditions, forms the basis of the calculation of the effect of dissolving or dispersing
macromolecular solute on the viscous flow properties of a fluid (Happel and Brenner,
1973).

In practical terms, the effect of the dissolved/dispersed macromolecular solute on a
solution is given by the relative viscosity, 0. or the reduced viscosity (or “reduced specific
Viscosity”), Nred, Where

Hret = 7]/7]0 (24)
Hop = Nret — 1 (25)

and
Nreda = nsp/c = (nrel - 1)/C (26)

# is the viscosity of the solution (or dispersion), #, is the viscosity of the solvent and c is
the weight (mass) concentration. The c.g.s. system of units is preferred, so the unit of
reduced viscosity is ml/g, although the traditional unit of dl/g is still in use. A related
term is the inherent viscosity ni,p, (Or In) which is defined by

Ninh = (lnnrel)/c (27)

Because of the effects of non-ideality and/or associative phenomena, both #,.4 and
Minn Will be concentration dependent. The limit as ¢ — 0 of both #.q and #j,, is
defined as the intrinsic viscosity [n], presumably so named because it is an intrinsic
function of the dissolved/dispersed macromolecule:

[1] = lim(n,.) = lim(n,,/c) 28

[n] = limn;,, = lim{(in,;)/c)) (2.9)
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2.2. Form of the Concentration Extrapolation

The following equations have been given to describe the dependence of #,eq and ||
with concentration, correct to first order in concentration (i.e. dilute solutions). The
most popular of these is the Huggins (1942) equation:

Hrea = (1 + Ky (n].c) (2.10)

where Ky is the (dimensionless) Huggins constant. A variant is the form

Nrea = M1 + ky.c) (2.11)

(Rowe, 1977) and so the concentration dependence parameter has the same units (ml/g)
as the equivalent parameters from sedimentation velocity (k) and translational diffusion
(kq). Ku, k, are both generally positive: i.e. a plot of #.q versus ¢ usually has a positive
slope (Fig. 2).

Another form is due to Schulz and Blaschke (1941):

Nred = ['7](1 + KSE'r]S[)) (212)

The equivalent concentration dependence relation to eqn (2.7) for the inherent vis-
cosity, (In 1,.)/c, is the Kraemer (1938) equation

(Inn,)/¢ = [n)(1 — Kk[n].c) (2.13)

with a negative slope (Fig. 2) and where Kk is the Kraemer constant.

These equations were put forward over 50 years ago: subsequent attempts have been
made to modify and refine them. For example a power-law form of eqn (2.13) has been
proposed (Baranov et al., 1987; Krasovskii et al., 1993):

(lnnrel)/c = ([’7]‘?)& (214)

and Chee (1985) has suggested other numerical procedures. Other attempts at developing
the Huggins and Kraemer relations have centred around estimating [#] from measure-
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Fig. 2. Huggins and Kraemer extraction methods for intrinsic viscosity. Reduced viscosity Hreq
(ml/g) versus concentration (e) and inherent viscosity Hinn {=In(n.y)/c} (ml/g) versus concen-
tration (A) for irradiated (10 kGy) guar in phosphate chloride buffer (pH = 6.8, 7 = 0.10). The
“common’’ intercept gives [y], the slopes are KH[ry]2 and Kg[n]>. Ky is the Huggins constant and

Kx the Kraemer constant, respectively (from Jumel, 1994)
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ment of #, at a single concentration (Solomon and Ciuta, 1962; Solomon and
Gotesmann, 1969; Deb and Chatterjee, 1969; Elliott ef al., 1970; Rudin and Wagner,
1975; Ram Mohan Rao and Yaseen, 1986). For example Solomon and Ciuta (1962)
proposed a combination of eqn (2.10) and eqn (2.13) to yield the approximate relation

1] = (1/¢).[2n,, — 2ln(n,)]"/* (2.15)

a relation which is also known also as the “Solomon-Gotesmann™ (1969) equation. This
has been popular with pressure imbalance types of viscometers coupled on-line to a gel
filtration (size exclusion chromatography) column (see Section 3 below). Deb and
Chatterjee (1968) suggested the following alternative relation:

1] = (1/0).[3In(1,0)) + (3/2)(3,) = 3] (2.16)
and more recently Ram-Mohan-Rao and Yaseen (1986) gave a more simplified form
[’7] = (l/zc)[r]sp - ln(rlrel)] (217)

Other workers have attempted to alternatively improve the form of the extrapolation
of equations (eqn (2.8)) and (eqn (2.9)). For example Reilly es al. (1979) have pointed
out that when 5, or ln 5, is divided by the solution concentration, the error in the
quotient caused by error in the relative viscosity measurement is magnified at low con-
centration: extrapolation methods using 7, as opposed to #p/c instead would therefore
appear to be advantageous. For example, application of 'Hopital’s rule to eq. (eqn (2.8))
provides an alternative method for evaluation of the intrinsic viscosity in terms of the
derivative dn,,/dc at zero concentration (Kozicki and Kuang, 1996):

(1] = (dn,,/de)—o (2.18)

i.e. the limiting slope at ¢ = 0 of #y, plotted versus ¢. Kozicki and Kuang (1996) have
pointed out that (0,0) is an experimental point and hence extrapolation outside the range
of data—required by the Huggins, Kraemer and related procedures (eqns (2.10), (2.11),
(2.12), (2.13) and (2.14)) is therefore not required. These workers have also demonstrated
that non-linear least squares fitting the specific viscosity data versus concentration ¢ to
either the polynomial

Ny = Inle + ax* + aac? (2.19)
or the relation

Ny = Inle + b.c (2.20)

with [4], as,a; or [, b, d the variables gives significantly improved estimates for [y], with
eq. (2.20) the best (Fig. 3).

I1I. MEASUREMENT OF INTRINSIC VISCOSITY

This requires measurement of the relative viscosity 7, and concentration, ¢. A plot of
either the reduced specific viscosity, #req =#p/¢ Versus concentration, or just g, versus
concentration, or manipulation of eqns. (2.15), (2.16) and (2.17) can then be used to
extract [] as discussed in Section 2.2.

Neel Can be measured in one of three principle ways: 1. using a capillary viscometer; 2.
using a plate viscometer (cone and plate or parallel plate or cub and bob); 3. using a
so-called ‘“‘pressure-imbalance” differential method. One often neglected feature is the
importance of accurate concentration measurement for the subsequent evaluation of [y]:
this will also be considered.
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Fig. 3. Specific viscosity rg, versus macromolecular concentration, for aqueous polyacrylamide
at 25.0°C. The non-linear least squares line fitted is to ny,=[nlc + b.c* where (5], b and d are
variables. Reproduced, with permission, from Kozicki and Kuang (1996)

3.1. Capillary Viscometry

The capillary or “Ostwald” viscometer (Ostwald and Malss, 1933) is still the most
common viscometer (Fig. 4a) and involves essentially just a piece of glassware—albeit
beautifully constructed (see Fig. 5)—suspended in a constant temperature environment.

The principle is simple: measurement of the time for a volume of liquid (solution or
solvent) to flow through the capillary in the vertically aligned viscometer. This measure-
ment is performed for the solvent and then the biomolecular solution at one or more
concentrations. To facilitate measurement at a series of concentrations where the
dilutions can be performed in situ, a modified form called an Ubbelohde viscometer
(Ubbelohde, 1936) can be used which is so designed so that the head of liquid when the
flow time is being measured is independent of the amount of solution in the viscometer:
progressive dilutions can then be made directly in the viscometer. However, if a macro-
molecule degrades or denatures appreciably during a series of measurements, this type of
viscometer should not be used. Kragh (1961) discusses the advantages and practical
limitations of both this and the conventional Ostwald.

From Poiseuille’s law (see, e.g. Tanford, 1961) the relative viscosity can, under the
appropriate experimental conditions, be given simply by

Nyt = 1P/ 10p ) (3.1

where ¢ and ¢, are the flow times for the biomolecular solution at a particular con-
centration ¢ and p and p, the corresponding solution and solvent densities. The
relative viscosity without the density correction is known as the “kinematic” (as
opposed to “dynamic™) relative viscosity 71;(,, =1/t,; subsequent derived parameters:
n‘;p,;y;ed,ln(n,/e,/c) and [n] are the corresponding kinematic quantities. To a reasonable
approximation, for concentrations <1 mg/ml #e~#r. Although measurements at
such low concentrations are possible with many solutions of polysaccharides and mucus
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(b) 1 ()

Fig. 4. Schematic Ostwald (a), Ubbelohde (b) and Fox-Flory (c) viscometers (from Kragh, 1961)

glycoproteins which have large relative viscosities, for globular proteins and globular
macromolecular assemblies (even large spheroidal plant viruses), this is not generally
possible since the relative viscosities are too small (~1.003 or less). However it is not
necessary to measure solution density at each concentration since the correction of
Tanford (1955) can be applied:

or

Nred = nred, + [(1 - \_/P())/Po] (33)

where v is the partial specific volume of the macromolecule. Of course if this latter
parameter (¥) is not known for the solvent conditions being used, or cannot be calcu-
lated from the chemical composition of the macromolecule (Perkins, 1986) then solution
density measurements are required:

v=(1/p,).(1 —3p/3c) (3.4)

po and p can be measured using a mechanical oscillator device as described by
Kratky et al. (1973). There are two ways in which the precision of #,¢ can be increased,
particularly for measurements at low concentration, both based on increasing the flow
time (and hence flow time difference ¢~ ¢,) for solvent and solution. The first is the
method of Szuchet-Derechin and Johnson (1966), which is to add a low concentration of
glycerol (~3%) to the solvent and solution: this has permitted the measurement of
protein relative viscosities at concentrations <4 mg/ml. The second way is to use
specially designed extended Ostwald viscometers (Fig. 5) (Holt and Creeth, 1972), which
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Fig. 5. Extended Ostwald viscometer

increase the flow time difference (¢ —¢,) by extending the length of the capillary (the
same result can in principle be obtained by decreasing the capillary radius but this
increases problems of capillary blockage). In a further development Booij et al.
(1991) have described a multiple bulb viscometer with different volumes and different
capillary lengths between them, facilitating shear rate dependence studies of the intrinsic
viscosity.

Measurement of flow times is now done automatically using photosensors, and a
commercial example is the Schott-Gerédte (Hofheim, Germany) system. Because solvent
viscosity is such a sensitive function of temperature, a controlled water bath (to within at
least 0.01°C) and accurate temperature measurement (using for example, an accurately
calibrated platinum resistance thermometer) are necessary. Other practical details
(kinetic energy correction, guarding against capillary blockage, effect of alignment and
other errors) described in Kragh’s (Kragh, 1961) classical article, are still relevant
however and should be consulted by any potential user.
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3.2. Plate Viscometers

With these types of viscometer the solution is placed in a space between two plates
and one is moved at constant speed relative to the other which is held by a torsion wire
on which the viscous drag will exert a torque: measurement of the torque change with
increase in speed (and hence shear rate) gives the viscosity # of the solution. If this is
repeated for the solvent #, the relative viscosity 5. =#/n, can be readily found. There
are three principal types (Lapasin and Pricl, 1995): cone and plate, parallel plate and
cup and bob. Like capilliary viscometry, measurement is now automated and an
example of a commercial system is the CS Rheometer from Bohlin instruments (Lund,
Sweden). Although all permit (after appropriate calibration) the evaluation of absolute
viscosity, 1, and the investigation of the effect of shear rate on # (and hence the measure-
ment of non-Newtonian behaviour), for dilute solution work the accuracy is consider-
ably less than for capilliary viscometry. The principle limitation is that to measure the
very small torsions at dilute solution conditions, it is necessary to have a very narrow
gap between the plates: it is in practice, very difficult to maintain a uniform separation
when one plate is moving relative to another (Kragh, 1961), and this puts a lower limit
for accurate measurement of 5, ~1.01. For a detailed consideration of the application of
these methods, the reader is referred to Lapasin and Pricl (1995) and references cited
therein.

3.3. Pressure Imbalance Differential Viscometer

This uses a fluid analogue of a Wheatstone bridge electrical circuit (Haney, 1985a,b).
Referred to as a “‘differential viscometer” since it measures relative viscosity directly.
It is also highly sensitive, permitting the accurate measurement of low relative viscosities
and hence measurements at low concentration (~1 mg/ml for globular proteins). At base-
line conditions the differential pressure across the bridge will be zero because there is sol-
vent in all four capillaries. When the sample enters the bridge (Fig. 6) it fills capillaries
R, R; and R; while solvent from a delay reservoir remains in capillary Ry. The differ-
ence in viscosity between the solvent in R4 and solution in Ry causes a pressure imbal-
ance AP in the bridge, which from Poiseuille’s law can be related to relative viscosity or
the specific viscosity of the solution (Haney, 1985b):

Ny = 4AP/(P; — 2AP) (3.5)

From knowledge of the concentration the reduced specific viscosity can be obtained.
A commercially available instrument is available from Viscotek Ltd. (Houston, USA).

Besides its great sensitivity at high dilution and rapidity of measurement, solution can
be injected continuously via a flow cell; it can thus be fitted on-line to a concentration
detector (refractive index or uv absorbance based—see Section 3.5) for converting #,e
to reduced specific viscosities. It can also be fitted on-line to a multi-angle laser light
scattering detector (Wyatt, 1992) so that the (weight average) molecular weight, M,, can
also be obtained.

Either #y,/c can be obtained and plotted versus ¢ to obtain [#] as described in Section
2, or, since concentrations can be very small (~1 mg/ml for globular proteins) the single
point [#] evaluation formulae can be applied, such as the Solomon-Ciuta (Solomon and
Ciuta, 1962; Solomon and Gotesman, 1967) formula eqn (2.15). Use of this latter
equation is particularly valuable for polydisperse materials (the hallmark of polysacchar-
ides and other heavily glycosylated systems) if the system is coupled not only to a con-
centration and molecular weight detector, but also downstream from size-exclusion
chromatography (SEC) columns (Dutta ez al., 1991; Jackson et al., 1991): the [y] versus
M,, relationships can then be readily described (see Section 5 below). A popular set-up
would thus have this on-line facility plus a separate injection port if monodisperse sol-
utions were being characterised not requiring column separation. A further development
(not for SEC) is the so-called Dual Capillary Viscometer (Vicotek Ltd., Houston USA)
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Puise Dampner

Column

—

] . inlet T
Differential N pressure
\
R, \\
Res B

Fig. 6. Principles of the pressure imbalance differential viscometer. Uses a fluid analogue of a
Wheatstone bridge electrical circuit to measure differential viscosity directly from the chromatog-
raphy effluent. For a detailed description see Haney (1985b). At “baseline conditions™ (solvent
only) the differential pressure across the bridge will be zero because there is solvent in all four
capillaries, R;—R4. When the biomolecular solution enters the bridge from the column (delay for
non-separation, or size-exclusion for separation) it fills capillaries Ry, R» and R3 while solvent
from a delay reservoir (Res B) remains in capillary R4 and prevents the entry of the biomolecular
solution. The transducer X measures the differential pressure AP and Y measures the inlet
pressure P;. The reservoir Res A located out of the flowstream acts to compensate volume so that
any flow rate fluctuations cause equal pressure changes on each side of the differential pressure
transducer Y. The difference in viscosity causes a pressure imbalance in the bridge which is
proportional to the specific viscosity of the sample solution. From knowledge of the concen-
tration (measured using an off- or on-line refractive index detector), the reduced specific viscosity
can be obtained. Alternatively [#] can be obtained using the “single point” approximate formulae
of eqns (2.15), (2.16), (2.17) and (2.18)). Adapted from Haney (1985b) and Dutta et al. (1991)

which operates with just two capillaries (one solvent, one solution) with the same rate of
flow.

3.4. Microviscometry Using EPR and NMR

Mention should be made of the use of correlation times, ., from electron paramag-
netic resonance or nuclear magnetic resonance using a suitable label or probe to measure
the “microviscosity” in the vicinity of the probe (Tanford, 1980; Gennaro et al., 1996).
This is particularly useful for probing the local viscosity in cytoplasmic or other physio-
logical media and can be used to probe solute concentration, or if this is known, a local
intrinsic viscosity can be estimated which can be compared with the “macroscopic™
intrinsic viscosity [] found by the conventional methods described above. A calibration
curve is necessary of 7. versus viscosity, using sucrose solutions of known concentration.
It has been popularly used to study the dependence of cytoplasmic microviscosity on
hemoglobin concentration (Morse et al., 1979; Daveloose et al., 1983; Herrmann and
Muller, 1986; Endre and Kuchel, 1986; Gennaro et al., 1996).
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3.5. Concentration Measurement

Concentration errors are more often than not the principal limiting factor to which the
accuracy of a macromolecular parameter—molecular weight, sedimentation coefficient,
diffusion coefficient or intrinsic viscosity-—can be measured. It is particularly important
for the measurement of intrinsic viscosity not only because of the extrapolation to zero
congcentration (Section 2.2), but because the concentration is also required for the evalu-
ation of the reduced specific viscosity or inherent viscosity (cf. Equation (2.8), eqn (2.9)).
For proteins, the most popular concentration measurement method is by uv absorbance
at 278 nm. The extinction coeflicient is required from prior measurement (and hence
itself from accurate concentration measurement!) or can be estimated from the amino-
acid composition (Perkins, 1986). A more general method, which is not just limited to
proteins, is based on measurement of the solution refractive index, », using differential
refractometry (Wyatt, 1992). The refractive increment, dn/dc is required (which again
requires accurate concentration measurement).

By analogy the density, p, of the macromolecular solution can be measured (Kratky er
al., 1973): concentration can be calculated from this so long as the density increment,
Sp/dc (or the partial specific volume, ¥, see eqn (3.4)) is known. v, like ¢ for proteins, can
be calculated from knowledge of the composition of the macromolecule (Perkins, 1986).
Alternatively chemical methods for concentration measurement can be used, such as the
Kjehldahl method for proteins or the phenol-sulphuric acid method for polysaccharides
(Ball, 1989). With both refractive index and density methods it is important that the
concentration of non-macromolecular solutes in the solvent is the same for both the
macromolecular solution and the reference solvent: careful dialysis with allowance (by
weight measurement) for loss of water is recommended. For polysaccharides that are
optically active, the extent of rotation of polarised light is also a function of concen-
tration and this can be used (see Van Holde, 1985).

A most important point derived from all this is that concentration cannot be measured
to an accuracy much greater than ~ 4+1%: the [n] can thus also be measured to no better
than ~ + 1%, no matter how accurate the measurement of relative (or specific) viscosity
is. This fact is sometimes forgotten when attempts to obtain detailed information about
biomolecular structure in solution are made.

IV. CONFORMATION MODELLING OF [5] IN DILUTE SOLUTION
4.1. The Viscosity Increment, v

There are two molecular contributions to the intrinsic viscosity: one from shape, the
other from size or volume, as summarized by the relation

] = v.vs (4.1)

where v is a molecular shape parameter known as the viscosity increment (Yang, 1961)
and vy(ml/g) is known as the swollen specific volume: an anhydrous macromolecule
will essentially expand when suspended or dissolved in solution because of solvent
association, and vs(=V.M/Ns where V is the swollen volume (ml), M the molecular
weight (Da or g/mol) and N, is Avogadro’s number) is a measure of such (aqueous)
solvent associated with the macromolecule, and is defined as the volume of the macro-
molecule in solution per unit anhydrous mass of macromolecule. This ‘“associated”
solvent which we consider in more detail below can be regarded as that which is either
chemically attached or physically entrained by the macromolecule. v, can be related to a
popular term called the “hydration™ J, by the relation

vy =V + 5/p0 (42)
The viscosity increment v is referred to as a “‘universal shape function” (Garcia de la

Torre et al., 1997; Harding et al., 1997b) since, unlike [#], it can be directly related to the
shape of a particle independent of volume (the symbol w rather than § is often used to
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avoid clash in notation with a shape parameter used by Scheraga (1961) based on a com-
bination of [#] or v with the rotatory diffusion coefficient). For its experimental measure-
ment it does however require measurement of vg (or ¥, § and p,) as well as of course [#].

4.2. The “Hydration”, o

Opinions vary as to what this parameter actually means—if it is a parameter at all—
but it is used to represents the amount of solvent “‘associated” with the macromolecule
and includes “‘chemically bound” via hydrogen bonds and “‘physically entrained” sol-
vent. The “monolayer” concept sometimes propagated is, however, without proper
justification and it is therefore safer to regard “hydration™ as simply the level to which
aqueous solvent can be added to a dry macromolecule beyond which there is no change
in a macromolecular property other than dilution of the sample (Rupley and Careri,
1991).

Various techniques have been used to assign values for 8, particularly for globular
proteins and have been considered in some detail by Kuntz and Kauzmann (1974).
Another interesting method was subsequently presented by Rowe (1977), nvolving use of
the ratio of the viscosity concentration dependence regression coefficient k, (eqn (2.11))
with the corresponding parameter k, from sedimentation velocity in the analytical ultra-
centrifuge. Rowe (1977) equated the ratio of k,/ks to v,/v and this method has been used
for example to assess the ¢ for myosin (Byron, 1995).

For globular proteins a value of 0.3-0.4 has been inferred from nuclear magnetic
resonance (Kuntz, 1971), infra red spectroscopy (Rupley er al.. 1983) and computer
simulation. It is possible to assign a value for d from viscosity measurements via eqns.
(eqn (4.1)) and (eqn (4.2)) and also via analagous relations for the translational frictional
ratio (from sedimentation coefficient or translational diffusion coefficient measurements)
if the shape of the macromolecule is known. For example, by approximating crystal
structures of globular proteins as ellipsoids of revolution, Squire and Himmel (1979)
showed that apparent hydration values calculated from the sedimentation or diffusion
data varied greatly (from ~0.1 to ~1, with a mean, from over 20 proteins studied of
~0.54). Zhou (1995) later claimed that this discrepancy with the other treatments was
due to inadequacy of the crude ellipsoid of revolution as a model for the molecular
surface, and that using a more refined approach based on relating the intrinsic viscosity
to the capacitance and polarizability of a protein estimated from its atomic structure, a
value of 0.3-0.4 for § is returned—apparently consistent with the other techniques. This
narrow range must not, however, be regarded as prescriptive for all biomolecular types,
particularly the larger and highly expanded polysaccharides and glycoconjugates which
can have 8 values > 50 (Harding er al., 1983; Harding et al., 1997a).

4.3. Effect of Molecular Charge

In addition to shape and “hydration™, if the biomolecule possesses electrostatic charge
this can also affect the intrinsic viscosity. These affects can be particularly serious if
the macromolecule is a multiply charged ‘‘polyelectrolyte”. Proteins, DNA, mucin
glycoproteins and many polysaccharides are all polyelectrolytes. This electrostatic contri-
bution will be strongly dependent on the pH of the solution (relative to the pK, of the
charged groups) and the ionic strength, 7 (in mol 1I”! or “M”) of the solution. The poly-
electrolyte itself will only make a significant contribution to / under conditions where the
presence of low molecular weight electrolyte is neglible (<0.01 M): this is the exception
rather than the rule for biomolecular systems. Physiological media have ionic strengths
>0.1, largely through the presence of low molecular weight electrolyte, and most physi-
cal measurements are accomplished buffered and in the presence of low molecular
electrolyte to an [ of 0.01 or above.

For compact globular proteins, there will be three distinct “electroviscous™ contri-
butions (Shaw, 1980; Dickinson, 1992): one from the resistance of the diffuse double
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(electrostatic) layer surrounding the protein—the “‘primary” effect; another from
repulsion between the double layers of different protein molecules—the “secondary
effect’””; another if these interparticle repulsions affects the shape itself of the protein—
the “tertiary effect”. The latter effect is very small for globular proteins (see Tanford and
Buzzell,-1956) and the first two are only significant at very low ionic strength. In water
for example, the contribution to the solution 7 is entirely from the polymer: hence as the
polymer concentration decreases, the 7 will decrease which results in an increase in [g].
For a linear molecule (DNA, polysaccharides), the effect can be more significant and is
considered in more detail in Section 5.5.

4.4. Spheres and Ellipsoids of Revolution: the Einstein, Simha and Saito Equations

The effect of a suspended particle is to increase the energy dissipation during bulk
flow because the extra stresses acting over its surfaces are doing work (Happel and
Brenner, 1965). It was the pioneering work of Einstein (1906, 1911) {English translation:
Einstein (1956)} who based on scalar energy dissipation arguments, and with the
assumption that the suspension behaved macroscopically as an isotropic incompressible
Newtonian continuum, was able to evaluate a value of 5/2 for the parameter v(=[n]/v,)
for a suspension of non-interacting randomly distributed spheres (his 1906 paper con-
tained an error, corrected in the later paper). Brenner (1958) obtained the same result
using an improved derivation “avoiding a rather unusual integration over the surface of
a large, vaguely defined spherical surface concentric with the particle”.

When attention turned to ellipsoids of revolution (Fig. 7), the calculation became
considerably more complicated because of two opposing effects: the hydrodynamic shear
which tends to align the ellipsoids in the direction of flow, and Brownian motion which
tends to randomize particle orientations. The relative effects of the two is represented by
the rotary Peclet number, P.=g/D,, where g is the shear rate and D, is the effective
rotational diffusion coefficient of the macromolecule. Jeffery (1922) neglected the effects
of Brownian motion (P.~c0) and produced a complicated open solution which predicted
a range of possible values of v for each value of a/b, where a,b are the ellipsoid semi-axes
and a > b. However, for macromolecules Brownian motion is the dominant factor, i.e.
P.—0, and Simha (1940) gave the first correct formula:

| 2a, L7 +z[ Bo(@ + ad) + 2P, ” “3)
Bo'l

V= 2 Y 57 s "
ajaz | 15a300'B, 15a505 5 Za%a%ﬁ(zﬁ-(a%%—a%)ﬁo

where the « etc are the same elliptic integrals as defined by Jeffery (1922) {see Harding
and Colfen (1995) for these in a form appropriate to the notation of eq. (eqn (4.3))}.
For prolate ellipsoids a; =a, a,=»5 and for oblate ellipsoids @, =5 and a;=a with a>b
in both cases. The elliptic integrals in eq. (eqn (4.3)) are soluble numerically (and
now easily using numerical packages such as the NAG (1986) routine DO1GAF), and
Fig. 8 shows a plot of v versus a/b for both prolate and oblate ellipsoids. Simpler
approximations are available (Simha, 1940) for the limits of large axial ratios
(a> > b) where prolate ellipsoids can be approximated by rods and oblate ellipsoids by
discs. If p is the axial ratio (a/b)> 1, for prolate ellipsoids, this approximation is (for
p> ~15)

v = p?/15{(In(2p) — 1.5} + p*/{5(In(2p) — 0.5)} + 14/15 (4.4a)
and for oblate ellipsoids, again with p> ~ 15

v = 16/{15parctan(1/p)} (4.4b)

For a homologous series of rod-like prolate ellipsoids having the same minor axis (),
equation (eqn (4.4a)) can be further approximated by (Simha, 1945):
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Prolate ellipsoid

Oblate ellipsoid |

(b)

Fig. 7. (a) Prolate and oblate ellipsoids of revolution. The axial ratio in both cases = a/b, where
a > b. (b) Prolate ellipsoid approximation with (a/b) = 1.5, to the crystal structure for ovalbumin.
Crystal structure: Stein ef al. (1991). Hydrodynamic shape: Harding (1981b)

v =0.233"9% (20 < p < 100) (4.52)

v = 0.207"732 (100 < p < 300) (4.5b)

formulae which are useful for the representation of linear molecules as considered further
in Section 5 below. Simha’s approximate formulae (eqn (4.4a)) and (eqn (4.4b) are very
similar to those developed by Kuhn and Kuhn (1945). However, there is absolutely no
need for these approximations now the full equation (eqn (4.3)), along with other useful
hydrodynamic shape functions, are available using an easy to use PC routine (ELLIPS2
(Harding et al., 1997b)) which not only covers the case of ellipsoids of revolution, but
general tri-axial ellipsoids with two axial ratios (a/b, b/c)—as described below. There is
thus also no need now to follow the customary practice of quoting extensive tables of
data.

It is impossible however to inver: equation (eqn (4.3)) directly to specify (a/b) in terms
of v. However, a simple polynomial approximation has been found (Harding and
Colfen, 1995) which is accurate to within 1%:
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Fig. 8. v evaluated from the Simha formula (eq. 4.3) plotted against axial ratio (a/b) for prolate

and oblate ellipsoids

(a/b) = — 10.71584 + 2.79158v + 1.622009v* + 0.01556169v° — 0.1929971*
+0.02060718v°( prolate 1.1 <a/b<2)
= — 3.80413 + 2.8712v ~ 0.3908319v* + 0.036122821° — 0.001733981v*
+ 0.0000332711v°( prolate 2<a/b<10)

=4.241113 + 0.464459v — 0.001981036v% + 6.111643.10~%° — 9.374974.10~°

+ 5.478654.10712.v°( prolate 10 <a/b<100)

= — 2523436 + 10.43327v + 2.122294v* — 0.4294092v° + 0.05816609v*
—0.1960477v° + 0.04331335v%(oblate 1.1 <a/b<?)

= — 5.439531 + 3.883619v — 0.6477747v° + 0.083536391° — 0.0049459921*
+9.922261.10v3(oblate 2<a/b<10)

=0.6888919 4 0.9078403v + 0.04002417v* — 1.154619.1073}

+ 1.457981.107°v* — 6.725495.1078 v’ (oblate 10 <a/b<100)

V4

(4.6)

The PC QUICKBASIC algorithm ELLIPS1 (Harding et al., 1997b) has been set up to
perform these calculations and other inversions of hydrodynamic shape functions (from

sedimentation, exclusion volume, and rotary diffusion).

Although the Simha result (eqn (4.3)) is correct, the derivation as originally given
by Simha (1940) is wrong, and in fact the correct formula is a result of fortituitous
cancellation of errors. According to Simha, as a result of the Brownian motion the
suspended ellipsoids would have random orientations and have zero angular velocity, w:
“w = 0 in Jeffery’s formulae 22, 24 and 26". Saito (1951) was the first to question the
Simha derivation, although surprisingly however, obtained the same final formula as
Simha, and this fact led him to suggest that Simha had made “some errors in calcu-
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Table 1. Axial dimensions of some globular proteins based on crystal structures. For some the
approximation of two equal axes (axisymmetric ellipscid) is reasonable, for others it is not

Protein Dimensions (nm) Reference

Lipase (Humicola lanuginosu) 43x4.3x4.0 Brady et al. (1990); Dodson (1995)
Ovalbumin 70x45x%x5.0 Stein et al. (1991)

B-Lactoglobulin 8.1x4.7x4.0 Brownlow and Sawyer (1995)
Mpyoglobin 43x35x%x2.3 Kendrew er al. (1958)

Hemoglobin 6.4x55%x5.0 Perutz et al. (1960)

lation™. Harding et al. (1982) later showed that Simha had arrived at the correct result
from the wrong assumption by the fortuitous omission of a series of terms, later
confirmed by Haber and Brenner (1984). Had Simha really been considering a model in
which the ellipsoids had zero rotation as his words may have suggested, the formula
should, without the fortuitous omissions, have reduced to v = 4 as shown by Brenner
(1970), and not the correct Einstein value of (5/2).

4.5. Triaxial Modelling: the Batchelor, Hocquart et al., Rallison, Harding et al.,
Haber and Brenner Relations

Although some globular proteins have two axial dimensions approximately equal
(Table 1), the ellipsoid of revolution is rather limited in its ability to represent the overall
conformation of quasi-rigid macromolecules. The first published attempt to calculate
the intrinsic viscosity of dilute suspensions of ellipsoids with three unequal axes,
i.e. “‘general triaxial ellipsoids” (of semi-axes a > b = ¢, Fig. 9), in the case of dominant
Brownian motion is due to Batchelor (1970). Unfortunately, although in his model the
particles were randomly oriented, he considered following Jeffery (1922) onty the hydro-
dynamic torque and neglected the Brownian couple. Although his formula yields the
correct value for v of 5/2 in the sphere limit, it leads to serious error at higher axial ratio,
and fails to reproduce the correct Simha formula (eqn (4.3)) in the case of axisymmetric
ellipsoids.

The first correct formula was given by Hocquart et al. (1974) who considered properly,
both the hydrodynamic and Brownian torques. Their formula was confirmed by Haber
and Brenner (1984) some 10 years later using a similar approach considering the
dynamics of the particle movement and also the Einstein scalar energy dissipation
method. This formula, in terms of the viscosity increment v = [4]/v, is given by

y
4

Fig. 9. The general triaxial ellipsoid. Semi-axes are a = b > ¢. Semi-axial ratios are (a/b, bjc).
Limits are (i) sphere (a/b, bjc) = (1,1): (ii) Prolate ellipsoid (b/c = 1); (iii) Oblate ellipsoid (a/
b = 1); Rod (a@/b> > 1; bjc = 1); Disc (a/b = 1; b/c> >1); Tape (a/b> >1; bjc> >1)
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the elliptic integrals «; etc are, as with the case for ellipsoids of revolution (eqn (4.3))
given by Jeffery (1922), and in a form appropriate to the notation of eqn (4.7) and
eqn (4.7b) by Harding (1995). Unlike for ellipsoids of revolution however, the use of
high-speed computers is mandatory (rather than just highly useful), for the numerical
solution of the elliptic integrals for the general triaxial case, and we have found the
NAG (1986) routine DOIGAF again convenient for this.

The term ¢ on the RHS of eqn (4.7) is identically =0 for spheres and ellipsoids of
revolution. For other values of (a,b,¢) it contributes only ~1% at most to the total value
of v (Harding et al., 1981).

In between the derivations of Hocquart (1974) (missed by Haber and Brenner) and
Haber and Brenner (1984) two other interesting approaches were published, throwing
different insights into the relation between suspension viscosity and particle dynamics.
The approach of Rallison (1978) was to use the Gibbs rotation dyadic (Gibbs and
Wilson, 1960; Brenner and Condiff, 1972). This led to algebraic complexity involving
inversion of a fourth rank Cartesian tensor and a closed analytical expression similar to
eqn (4.7) was not possible, although numerical inversion procedures led to results in
exact agreement with the results of eqn (4.7) (Haber and Brenner, 1984). Harding et af.
(1981) explored the validity of the assumption of particles rotating on average with the
same local angular velocity of the fluid, knowing this assumption to be exact only for
axisymmetric ellipsoids. This assumption simplifies considerably the calculation of v, and
they found a formula for v which at worst led to deviations of no more than 1% from
Rallison’s (Rallison, 1981) numerical procedure. In fact their formula is identical to
eqn (4.7) without the small final extra term &: the magnitude of ¢ is thus a measure of the
deviation of ellipsoids from not rotating with the same angular velocity of the fluid. This
term (=0 for axisymmetric ellipsoids) asymptotically — 0 for tapes (¢> >b> >¢). The
assumption was thus shown to be excellent for general ellipsoids although no comment
can be made on its validity for general particle shapes (Haber and Brenner, 1984).

The PC FORTRAN routine ELLIPS2 (Harding ez al., 1997) has been set up to calcu-
late v using the full form of eqn (4.7) (along with other Universal shape parameters such
as P (from the frictional ratio), u,eq (from the exclusion volume), G (from the radius of
gyration), 8.4 (from electro-optic decay), for either a user specified (a,h,c) or, since all
these are universal functions which depend on shape only (and not size), just (a/b, b/c).

4.6. Solving the Uniqueness and Hydration Problem for Ellipsoids

With both axisymmetric (ellipsoid of revolution) and triaxial ellipsoid modelling there
is a uniqueness problem. A value of v will specify two ellipsoids of revolution axial ratios
(one for a prolate the other for an oblate). For a triaxial ellipsoid the situation is worse:
there is a line solution of possible values of the two axial ratios (a/b, b/c) for a given
value of v or [y]. as Fig. 10 illustrates. A further problem is that of the influence of
associated solvent: to convert [y] to the shape function v using eqns. (eqn (4.1)) or
(eqn (4.2)). the swollen specific volume, v, or the “hydration™ J is required. Although for
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Fig. 10. Line solution of possible values of (a/b b/c) for a given value of v (=3.803). The line
solution for the Perrin translational frictional ratio function, P(=1.130) is also shown

globular proteins there appears to be support for a value for J of between 0.3 and 0.4
(Section 4.2 above) for other macromolecules it is far less clear to define.

The uniqueness problem and the hydration problem can both be addressed by the
combination of v with other hydrodynamic parameters.

The earliest attempt to tackle the hydration problem for ellipsoids of revolution was
by Oncley (1941), who suggested a graphical combination of v with the shape contri-
bution (called the Perrin or ““P” function) to the frictional ratio. This was followed in
1953 with formulae given by Flory (1953) and Scheraga and Mandelkern (1953) describ-
ing an analytical combination of v with P to yield a function f. which, with [x] in ml/g is
given by:

' N e

M 231 = 5pg)100'7 ~ (1620072) 7 P (48)

p

Unfortunately the fS-function proved very insensitive to shape change (Fig. 1la).
Fortunately further combinations of v with other universal shape parameters have
proved more successful. These include

(1) the Ay, function (Harding, 1980a):
Ay = (M. M )/(N4.kgT) = v/(zi/70) (4.9)

(Fig. 1tb) where 1y, is the harmonic mean rotational relaxation time (from steady
state or time resolved fluorescence anisotropy decays measurements) and ty/7, is
another universal shape parameter, the “harmonic mean rotational relaxation time
ratio”, with t,(=n,Mvs/RT) the corresponding value for a spherical particle of the
same hydrated volume and #,, T, the solvent viscosity and temperature of the aniso-
tropy measurements. Similar hydration independent shape functions, A; are available
corresponding to the time resolved anisotropy decay times 7;(i = 1-3 for ellipsoids of
revolution, i = 1-5 for general particles) (Garcia de la Torre et al., 1997; Harding
et al., 1997Db).
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Fig. 11. Hydration independent universal shape functions involving (] for axisymmetric ellipsoids. (a) # and R.
(b) Ay (c) TT.

(ii) the IT function (Harding, 1981a):
I =2BM/[nl} — f(Z.]) = ttrea/V (4.10)

(Fig. 11c) with u.4 the reduced excluded volume (Rallison and Harding, 1985), B
(ml. mol.g™?) the thermodynamic (or “osmotic pressure”) second virial coefficient
(from osmotic pressure, light scattering or sedimentation equilibrium), and fiZ,]) is a
function of the charge (valency), Z, on a macromolecule and the ionic strength
I(mol.ml™"). At sufficient ionic strengths, the f{Z,I) term becomes negligible compared
with 2BM. Of course for uncharged molecules and proteins at the isoelectric point,
Z=0,and izl)=0
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(iii) the Wales-Van Holde (Wales and Van Holde, 1954; Rowe, 1977) parameter
R=ky/[n) =2(1+ P’)/v (4.11)

(Fig. 1la) where k; is the concentration dependence parameter of the
sedimentation coefficient $20.w in the limiting relation S20. =
550.:(1 = ksc) or alternatively 1/s20. = {1/59 . J(1 + ksc). Although the theory behind
eqn (4.11) is less rigorous than that for IT, it does have a strong experimental basis
(Creeth and Knight, 1965; Rowe, 1977, 1992; Lavrenko et al.. 1992) and appears to
give the correct value for spheres (Brady and Durlovsky, 1988). To apply &; in this
way it is important that charge contributions to &, are absent or if the macromolecule
is a polyelectrolyte, charge contributions are suppressed by working in a solvent of
sufficient ionic strength.

It can be seen from Fig. 11 that both Ay and [T have the added advantage that, except
at low axial ratio (<2), a value of Ay, or IT will uniquely specify a prolate or an oblate
ellipsoid. Polynomial inversion formulae, similar to eqn (4.6). giving (a/b) for a specified
value of B, R, A, or Il are available in tabular form (Harding and Colfen, 1995) and
have been directly built in to the PC algorithm ELLIPSI (Harding ez a/., 1997b).

For triaxial ellipsoids there is no analytical or numerical combination of (universal)
shape functions that can uniquely specify a triaxial shape, via the two axial ratios (a/b,
bjc). Instead, a graphical inversion procedure is necessary involving a combination of
two or more universal shape functions. Figure 10 shows an attempt to combine, for
example, v with the Perrin frictional function, P: the intersection is too shallow (and
after allowance for experimental error, the intersection disappears). and both require
measurement of v, or . The concept of this graphical combination of hydration
independent universal shape functions has been explored in detail by Harding and cow-
orkers (Harding and Rowe, 1982ab, 1983, 1984; Harding, 1986: Harding, 1987;
Harding, 1989; Harding, 1995; Harding et al., 1997). Besides the derivation and avail-
ability of v for triaxial ellipsoids as considered in Section 4.4 above, the Perrin transla-
tional friction shape parameter P, together with the rotational relaxation time ratios 1/
7, and T1/1, (i = 1-5) are all available (see Harding, 1995) and combinations of these
with v has enabled the hydration independent f, R, Ay, A; (eqn (4.8), eqn (4.9), eqn.
(4.10), and eqn (4.11)) to be specified for the general triaxial case. Combination of v with
the reduced electro-optic decay constants Grfd and 04 (Ridgeway, 1966, 1968) has also
enabled the hydration independent 4. and 6. universal shape functions to be specified
(Harding and Rowe, 1983, 1984):

84 = (61no/N4kgT)HIMM - 0, = 607y

S_ = (6n9/ NakgT )M - 0 = 66""v (4.12)

where 0, and 0. are the electro optic decay constants, #, the viscosity of the solvent at
temperature 7, and kg is the Boltzmann constant.

Finally, the evaluation of the excluded volume and reduced excluded volume, u.s for
general ellipsoids (Rallison and Harding, 1985) has enabled the IT function to be also
specified for general ellipsoids (eqn (4.10)). The PC routine ELLIPS2 evaluates the com-
plete set of hydration dependent and hydration independent universal shape functions,
for user specified values of (a/b, b/c) or (a, b, ¢). Again, because they are all universal
shape functions and hence not dependent on size, specification of the two axial ratios (a/
b, b/c) is quite sufficient. The performance of the reverse procedure, i.e. obtaining a
unique value of (a/b, b/c) for a macromolecule from a combination of universal shape
parameters (using the graphical intersection procedure) has been built into the program
ELLIPS3 (combining A, with R, see Fig. 12 or IT with the radius of gyration based
function G) or ELLIPS4 (combining the electro-optic/viscosity based shape functions d.
with a further shape function of the user’s choosing (Harding ef al., 1997)).
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Fig. 12. Use of the intrinsic viscosity based A,—R intersection plot to uniquely fix the triaxial

shape of a particle in terms of («/h. hjc). Based on synthetic data generated for a true (a/b. b/

¢) = (5.0. 5.0), an allowance for +1% experimental error in R, +2% in Aj,. Reproduced with per-
mission from Harding and Rowe (1982b)

4.7. The Hvdrodynamic Bead Model Approximation: the Bloomfield et al. and Garcia De
La Torre et al. Approaches

The pioneering work for representing the shapes of complex but quasi-rigid macro-
molecules was done by Bloomfield er al. (1967a.b). Their idea was to model a macromol-
ecule as an array of spheres or “‘beads”, and from approximate calculations based on the
interaction tensor between these spheres the hydrodynamic properties of macromolecules
of arbitrary shape could be approximately calculated. The main restrictions of this early
work were the approximate nature of the interaction tensor used (the so-called Burgers-
Oseen tensor), and the limited computational power available at that time (bearing in
mind computation time ~N* where N is the numbers of beads in a model). Aided with
the assistance of an improved interaction tensor and the huge advances in computational
capabilities, Bloomfield, Garcia de la Torre and their coworkers (see, e.g, Garcia de la
Torre and Bloomfield, 1978; Wilson and Bloomfield, 1979a,b; Bloomfield et al., 1979;
Garcia de la Torre and Bloomfield, 1981; Garcia Bernal and Garcia de la Torre, 1980;
Garcia de la Torre, 1989; Garcia de la Torre et al., 1994; Garcia de la Torre et al., 1997)
and others (see, e.g., McCammon ¢t al., 1975) have thence considerably extended the
power of this methodology for the calculation of the intrinsic viscosity (and hence the
viscosity increment, v) and other related hydrodynamic shape parameters based on trans-
lational and rotational frictional properties.

In common with rotational frictional coefficients, the intrinsic viscosity is a much
more sensitive function of bead geometry than translational friction (from sedimentation
and translational diffusion measurements). However, also in common with rotational
frictional coefficients, its calculation is more difficult compared to the translational fric-
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tional property (Garcia de la Torre and Bloomfield, 1981) because the calculation is ori-
gin sensitive: in the case of [¢] the so-called “viscosity centre” of the particle (the point
which gives the minimum energy dissipation in the calculations—cf. Section 4.5) has to
be calculated (Garcia Bernal and Garcia de la Torre, 1980). Furthermore, as with the
derivation for ellipsoids (Section 4.5) the calculation must be orientationally averaged {in
terms of Euler angles (Nakajima and Wada, 1977, Garcia de la Torre and Bloomfield,
1978), or other procedures (Yamakawa ez al., 1977)}. Like the Rallison (1978) procedure
for triaxial ellipsoids a numerical matrix inversion is required: in this case it is a so-called
“supermatrix”’, Q containing N x N blocks (N = the number of beads) each of dimen-
sion 3 x 3. In the inversion procedure, Garcia de la Torre and Bloomfield (1981) have
shown that the modified interaction tensor of Rotne and Prager (1969) and Yamakawa
(1970) {later modified by Garcia de la Torre and Bloomfield, 1977 for beads of different
size} need to be used rather than the original Oseen (1927) interaction tensor (which fails
to take into account the finite sizes of the beads) to avoid singularities.

Tsuda (1969, 1970a.b) gave the first expression for [#] for a bead array, but his
calculation was based on the original Oseen tensor together with a simplified, approxi-
mate hydrodynamic treatment that avoids the inversion matrix. This resulted in a loss of
accuracy to an extent that depended on the particular geometry of the model (Garcia de
la Torre et al., 1983). The first expression, without singularities, for [5] and using the
modified Rotne-Prager-Yamakawa interaction tensor was given by Nakajima and Wada
(1978) which, after a small correction given by Garcia de la Torre and Bloomfield
(1981), and a volume correction, Ay subsequently added by Garcia de la Torre (1989):
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where {; = 6m5,0; is the Stoke’s law friction coefficient for a bead i of radius g;. S;; are the
elements of the inverse of the supermatrix Q, R; is the distance vector between the vis-
cosity centre of the particle and the centre of the ith bead, and x¥ and v* are, respect-
ively, the coordinates of bead 1 and the viscosity centre in a body-fixed frame of
reference. From the energy minimisation criterion referred to above the position of the
viscosity centre is obtained by imposing the condition

aln}
ov*

=0(x=123), (4.14)

which gives a set of three simultaneous linear equations with coefficients combinations of
the x7, s and Syj’s. Substitution into eqn (4.13) then gives [#].

An approximate form of this has been given by Garcia de la Torre and Bloomfield
(1981), again with a volume correction Ay (Garcia de la Torre, 1989):
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where a;,0; are the bead radii for particles i, J, Ry is the distance vector between the

centre of beads i and j, and the a; = (cr +0; )/R”,cosa,, = R R /R R
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The viscosity increment v is simply (1/v;) = M/VN, times equation (eqn (4.13)) or
(eqn (4.15)) (where I is the hydrated volume of the particle) and as we explained in
Section 4.1, is dependent only on the shape and not the size of the particle or model (i.e.
it is a ““universal” shape function). The PC routine HYDRO (Garcia de la Torre et al.,
1994), and a parallel routine BEAMS (Spotorno e al., 1997) evaluates [} for a given
set of (absolute) bead coordinates, whereas the routine SOLPRO (Garcia de la Torre
et al., 1997) evaluates v and other universal shape parameters (including P, 1,/t,, 7i/7,
(1= 1-5) B, R, G, Ay, A)) described in Section 4.6 above (apart from u.q and IT which
are not yet available for the bead approximation).

The volume correction term,

Ay~ (5/2YNLV /M) (4.16)

with V' as before the (hydrated) volume of the particle, = v,M /N4 = (¥ + 3/p,)M /N4 on
the RHS of equations (eqn (4.13)) and (eqn (4.15)) which had been inspired by a similar
correction for rotational coefficients (Garcia de la Torre and Rodes, 1983), is essential in
models in which one or a few beads have a large fraction of the particle size: e.g. oligo-
meric protein structures consisting of two or more approximately spherical subunits.
Without this correction for example, for a single sphere, a value of v = 0 is returned
instead of the correct Einstein value of (5/2). Garcia Bernal and Garcia de la Torre
(1981) had earlier suggested that each subunit should itself be represented as an array of
8 smaller spheres arranged as a cube. Lopez Martinez and Garcia de la Torre (1983)
then showed that bead model representations of prolate ellipsoids, with the central
spherical bead replaced by such a cube gave reasonable agreement with the exact values
known from the Simha formula (eqn (4.3)) (to no worse than ~12% for a range of axial
ratios a/b from 1 to 6): much better agreement was found for the translational frictional
coefficient modelled in this way. The ‘‘eight-sphere cube” approach also gave similar
results (but requiring dramatically less computer time) to the ‘“‘raspberry” or “shell”
model approach of Swanson et al. (1980) who modelled the surface of each subunit as
an array of 126 small spherical beads. For models with many beads of similar sizes
(chain hke structures), this correction term is insignificant. Table 2 shows results for
various modes of assembly of spherical subunits based on eqn (4.13). Nonetheless,
epresentations of known ellipsoidal shapes is still not exact and usually leads to over-
estimations of v. An improved method incorporating a better volume correction is
currently being developed (Garcia de la Torre, 1997).

These models are shown pictorially in Fig. 13. Similar calculations have been per-
formed for the translational and rotational frictional properties (Garcia de la Torre,
1989).

Bead modelling has also been extended to the case of segmental and partial flexibility.
There are many interesting biological macromolecules (Yguerabide et al., 1970), whose
function critically requires movement between relatively rigid parts of a macromolecule:
the classical examples being antibodies, myosin and tRNA. There are three approaches
(Garcia de la Torre, 1994): one, the most pertinent for the calculation of intrinsic vis-
cosity is the so-called “rigid-body approach” in which the macromolecule is taken to
have rigid domains linked together by a flexible swivel. Each rigid domain could be a
single sphere, an ellipsoid, a rod or an array of spheres. The procedure is that intrinsic
viscosity or other hydrodynamic properties are calculated for each domain and the
relative orientations between them averaged, according to (Garcia de la Torre, 1994)

j. . JX(qlan, . »)eﬁV(QLQZ‘.,‘)/deT
() = (4.17)
f. . Je‘V(QI~QZ~--~)/de.C

with the “property” X in this case being the intrinsic viscosity (or viscosity increment),
q1, q2... are the internal coordinates of the domains, V(q,qz...) the potential energy of
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Table 2. Intrinsic viscosity {#] (normalised
to a spherical particle of the same
(hydrated) volume) and viscosity incre-
ment v for oligomeric structures of
Fig. 13. Eq. (4.13) with the volume cor-
rection of eq. (4.16) as described in the
text had been used. The values for v in
column 3 must be regarded as
approximate rather than prescriptive as
further improvements to the volume cor-
rection are being made. Based on values
given in Garcia de la Torre {1989)

Oligomer ["]//[ﬂsphere] v
Monomer:

sphere 1.0 2.5
Dimer:

linear 1.6 4.1
Trimers:

linear 2.1 5.3
triangle 1.9 4.7
Tetramers:

square 2.0 5.1
tetrahedron 2.0 49
linear 2.7 6.6
Pentamers:

pentagon 2.2 55
bipiramid 2.0 5.1
Hexamers:

hexagon 24 6.0
octahedron 2.0 5.1
trigonal prism 2.1 53
linear 39 9.8
Octamer:

cube 2.2 5.5

the system and dr the differential of volume. [#] or v can be calculated to good accuracy
using this approach (Wegener, 1985; Garcia de la Torre, 1994). The treatment of more
general cases of flexibility will be considered in Section 5 below.

It should be stressed that, even with the improved Rotne-Prager-Yamakawa inter-
action, tensor bead modelling is only an approximation on two counts. (i) In an array
of N spheres hydrodynamic interaction is in fact a many-body problem—the
pairwise description is an approximation, although fortunately higher order interactions
tend to cancel each other (Garcia de la Torre, 1989): this is in contrast to the calculation
regime for “whole-body” ellipsoid representations which are exact; (i) in common with
whole-body modelling a calculated structure is only a model for the true structure in sol-
ution, although bead modelling does permit a much closer representation, and is the
only valid approach for complex shapes such as immunoglobulins.

Despite its greater sensitivity to conformation the [5] appears however to be the
“most” approximate of the shape predictions for bead representations compared with
the translational and rotational frictional based properties, although improvements
to the volume correction in equations (eqn (4.13)) and (eqn (4.15)) are being
made (Garcia de la Torre, 1997). This, together with the more serious issue of the
“hydration” problem of Section 4.6, should serve as a clear warning to those who regard
hydrodynamic methods as a potential high-resolution probe as a parallel to X-ray
crystallography or nuclear magnetic resonance: this is not the intention, even with bead
modelling. Rather, the correct philosophical approach is to use hydrodynamics
to give better representations of molecular morphology in solution with the bead
approach to oligomeric or complex structures where ellipsoid/triaxial representations are
inadequate.
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Fig. 13a-h

V. GENERAL CONFORMATION AND FLEXIBILITY ANALYSIS

For many biological macromolecules the rigid particle approach involving ellipsoid or
bead analysis is inapplicable. Both types of modelling require stringent assumptions con-
cerning the monodispersity of the macromolecular system being represented. This dis-
counts molecules like polysaccharides and related glycopolymers such as nucleic acids
and mucus glycoproteins (mucins), although for fairly rigid systems thereof-—for
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Fig. 13. Bead models for various oligomeric structures with approximately spherical subunits.
(a) Monomer sphere, v = 2.5; {(b) Dimer, v = 4.1: (¢) Trimer-linear. v = 5.3; {d) Trimer-triangle.
v = 4.7 (e) Tetramer-square, v = 5.1; (f) Tetramer-tetrahedron, v = 4.9; (g) Tetramer-linear,

il

v = 6.6; (h) Pentamer-pentagon, v = 5.5; (i) Pentamer-bipiramid, v = S5.1; (j) Hexamer-hexagon,

v = 6.0; (k) hexamer octahedron v = 5.1; (1) hexamer trigonal prism, v = 5.3: (m) hexamer linear

v = 9.8: (n) octamer cube, v = 5.5, Values for v are based on eq. 4.13 with the volume correction

of eq. (4.16). An improved volume correction is currently being developed (Garcia de la Torre,
1997)

example highly charged rod-shaped polysaccharides—ellipsoidal axial ratios can still be
applied in a ball-park sort of way. For molecules where approximate rigidity in the over-
all molecular morphology cannot be reasonably assumed such as these we have to use
intrinsic viscosity and other hydrodynamic probes in a general sort of way. We can how-
ever take advantage of molecular polydispersity—especially if it is of a quasi-continuous
type—and use relations describing the dependence on molecular weight with intrinsic vis-
cosity (and other hydrodynamic properties) known as the Mark-Houwink-Kuhn-
Sakurada relations, together with the Wales-Van Holde ratio k4 /[#] = R to distinguish
between classes of particle conformation (for example, between the three extremes of
compact sphere, rigid rod and random-coil). The [#]-molecular weight dependency can
then be further developed to give a more quantitative description of particle flexibility.
As a very approximate guide, the Huggins constant itself, Ky, has been used as a rough
guide to the general conformation of a biopolymer: for solid uncharged spheres it can be
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as high as ~2 (Guth and Gold, 1938; Tanford, 1961) with lower values for more
extended shapes, whereas for flexible biomolecules a value of ~0.35 can be expected, a
value which is slightly higher in poor solvents.

5.1. Mark-Houwink-Kuhn-Sakurada and Wales-Van Holde Relations

For molecules which can exist with a variety of molecular weights, the relation
between [n] and M is one of the most important properties (Tanford, 1961). The follow-
ing relation was first suggested by Mark (1938) and independently by Houwink (1940) as
an empirical relation between the two parameters:

) =K'M* 3.1

where K’ and « both depend of the polymer conformation, with the latter more easy to
define. Similar relations exist for other hydrodynamic properties:

200 = K'M?
Doy = K"'M™*

Ry=K"MF* (5.2)

These relations are collectively known as the “Mark-Houwink-Kuhn-Sakurada™
relations (Mark, 1938; Houwink, 1940; Kuhn and Kuhn, 1943; Sakurada, 1940, 1941;
see also Bohdanecky and Kovar, 1982) and the exponents a, b, ¢, -¢ are known as the
“Mark-Houwink Kuhn-Sakurada™ exponents (or just “MHKS” or “Mark-Houwink”
exponents) and can be obtained from simple double-logarithmic representations. The
values of the viscosity exponent ¢ are 0, 0.5-0.8 and ~1.8 for spherical, random coil and
rod conformations respectively, as described, for example, in the monograph’s of
Tanford (1961), Smidsred and Andresen (1979), Tsvetkov et al. (1971) and Bohdnaecky
and Kovar (1982). Values for the other parameters are given in Table 3, along with the
Wales-Van Holde ratio (Wales and Van Holde, 1954; Creeth and Knight, 1965;
Lavrenko et al., 1992), R, of the concentration dependence parameter of the sedimen-
tation coefficient, ks to [x].

It can be seen from Table 3 that the relation between & and ¢ is trivial (because of
their common relation with the frictional coefficient):

b+e=1 (5.3)

(Elias et al., 1973). Relations between b or ¢ with a have also been proposed but these
are model dependent (e.g., non-draining random coils) and not universally valid (Kurata
and Stockmayer, 1963; Reddy et al., 1990).

It has also been pointed out (see e.g., Manaresi ez al., 1988; Guaita er al., 1991) that
the MHKS relation for viscosity (5.1) is only rigorous where each [5] value corresponds
to a monodisperse polymer. The same of course applies to the other MHKS relations
(5.2). Most of the biological macromolecules to which equations of the type (eqn (5.1)
and eqn (5.2)) have been applied are themselves polydisperse—such as polysaccharides,
heavily glycosylated protein systems (mucins and glycosaminoglycans) and nucleic
acids—and evaluation of the coefficients K’ and a would be done after prior fraction-
ation of the sample: each fraction however is likely to have a residual polydispersity, so

Table 3. MHKS coefficients and the Wales-Van Holde ratio for general conformation types

Conformation a b € ¢ R = k/[n]
Compact sphere 0 0.667 0.333 0.333 ~1.6
Rigid rod 1.8 0.15 0.85 1.0 ~0.2*%
Random coil 0.5-0.8 0.4-0.5 0.5-0.6 0.5-0.6 ~1.6

*Depends on axial ratio
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some caution needs to be expressed. This feature of polydispersity is particularly import-
ant since eqn (5.1) has been used as a “relative” method for obtaining molecular weight.
A molecular weight obtained from direct application of equation (eqn (5.1)) is often
referred to as a “viscosity average” (Tanford, 1961), M,. For values of ¢ < 1 (Tsvetkov
et al., 1971) M, <M, < M,, where M, and M, are the number and weight average mol-
ecular weights respectively. For a>1, M, > M,,. More recently, attempts have been made
to correlate [n] directly with M,, M, M, etc (Dobkowski, 1981, 1984; Bareiss et al.,
1982; Manaresi et al., 1988). For example, Manaresi et «/. (1988) have proposed a
relation:

7] = K'M (M, /M, M-/ M.} (5.4)

which has been shown to work for synthetic polymers (polystyrenes in various solvents)
provided that the ratio M,/M,, is not too high (Guaita er al., 1991).

For most practical purposes, eqn (5.1) is taken to be a reasonable approximation, with
M taken as M,, and is particularly popular with the use of microviscometers coupled
on-line to size-exclusion chromatography separation systems, a concentration detector
and an absolute molecular weight detection system (rulti-angle laser light scattering), as
described in Section 3.3 (Haney, 1985a,b; Dutta et al., 1991; Jackson et al., 1991): each
volume “slice” leaving the column has its weight average molecular weight (by the light
scattering detector) and intrinsic viscosity (via the microviscometer and appropriate ap-
plication of eqn (2.15)) simultaneously determined. The exponent a thus found along
with the exponent ¢ from the R, relation of eqn (5.2) {which can also, within certain
limitations (see Yau, 1990) be found from the same set of measurements if the light
scattering detector is of the multi-angle type, Wyatt, 1992} can be used to specify the
conformation either in terms of conformation type (Table 3) or the use of the more
refined models described in Section 5.5 below. The inclusion of the light scattering detec-
tor on-line also permits the testing of so-called “Universal calibration procedures” for
obtaining molecular weights from size exclusion chromatography for use on an on-line
viscometer and concentration detector alone. The principle of Universal calibration (see,
e.g., Harding et al., 1991) is that, for example, separation is based on a relation ¥V, and
the product [#] x M (where V. is the elution volume) rather than being based on just M
alone. Other refinements have been suggested (see for example Horta et al., 1986).

5.2. Representations of Conformation Type

Various graphical ways of representing the relation between the three conformation
extremes (sphere, rod, coil) have been presented. One, the Haug triangle (seemingly
popular most in Norway and Nottingham) places the extremes at the three corners of a
triangle—the conformation of a given macromolecules can then be represented by a
locus along the perimeter of the triangle (see Smidsred and Andresen, 1979). A more
recent improved alternative has been given in terms of “Conformation Zones™ (Pavlov
et al., 1997a,b) A-E, with A = extra rigid rod, B = rigid rod, C = Semi-flexible coil,
D = random coil, E = compact sphere or heavily branched macromolecule. The current
assignment of a zone based on sedimentation analysis alone (Pavlov et al., 1997a) is now
being extended to a complementary procedure based on measurement of [#] and M and
mass per unit length, M| alone (Pavlov et al., 1997b).

Having established the conformation type (sphere, rod, coil or a conformation “zone”
A-E) via simple application of the MHKS or Wales-Van Holde relations, more detail
about the conformation can be sought. For example, if it is rod-like, its length and
dimensions can be sought; if it is sphere-like, its radius; if it is a coil, its flexibility; if its
conformation is between a sphere and rod or disk (an ellipsoid) its axial ratio. We have
already considered in detail in Section 4 the analysis of the solution conformation of
rigid macromolecules using [#] in conjunction with other hydrodynamic parameters. We
now consider the case of the flexibility of linear biopolymers, such as polysaccharides,
mucins, glycosaminoglycans and nucleic acids.
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5.3. Smidsrod-Haug Stiffness Parameter, B

This is probably the simplest index for flexibility of a biopolymer, but applies only to
polyelectrolytes. For polyelectrolytes Pals and Hermans (1952) had proposed the follow-
ing relation between intrinsic viscosity and ionic strength:

(1] = Mla + (S 717 (5.5)

where [n],, is the intrinsic viscosity at infinite ionic strength and with S, a parameter
which could be used as a comparative criterion of stiffness for polymers, but only for
those of the same molecular weight, M and solvent counterion environment (Smidsred,
1970; Smidsred and Haug, 1971). To avoid this restriction, Smidsred and Haug (1971)
suggested the use of a modified parameter, B (not to be confused with the 2nd thermo-
dynamic virial coefficient, B): by comparing stiffnesses at a fixed ionic strength [
(typically 0.1 M NaCl) the necessity of comparing biopolymers of the same M and even
the necessity of knowing M is avoided. The “Smidsrad” stiffness parameter B is defined
by

S = B.(nl;—0.) (5.6)

a relation which seems to fit the experimental data for glycopolymers and nucleic acids
very well (see Section 6) with the exponent v (also not to be confused—this time with
the viscosity increment of Section 3) fitting within the range (1.3 + 0.1): B can thus be
evaluated from measurement of S (via an [n] versus [ plot and eqn (5.5)) as well as
[nl; = 0.1 and using a value of v = 1.3 in eqn (5.6).

5.4. Polyelectrolyte Behaviour at Low Ionic Strength

For polyelectrolytes—such as a nucleic acid or a polyanionic polysaccharide in a
solution where the concentration of low molecular weight electrolyte (salt etc.) is too
small to suppress charge effects (see Section 4.3), the conventional reduced viscosity
versus concentration plot can depart from its conventional positive slope characteristics
(Fig. 2) and the reduced viscosity can decrease with increase in polymer concentration c.
A good example is the glycosaminoglycan hyaluronic acid (Fig. 14)

The classical Fuoss-Strauss relation (Fuoss and Strauss, 1948a.b. Fuoss and Strauss,
1949) relation empirically describes this behaviour in the limit ¢> > ¢, where ¢ is the
salt concentration (g/ml):

’71‘(’(/~Cvl/z (57)

At lower (biopolymer) concentration ¢ the condition (¢> >¢) clearly does not hold
for the case of Fig. 14 and a maximum is observed: such maxima have been observed for
other systems (Malovikova et al., 1994; Antonietti er al., 1996). A much better represen-
tation of the behaviour is the Hess-Klein relation (Hess and Klein, 1983) which in simpli-
fied form (Malovikova et al., 1994) is given by

Hyea ~¢/1(c/A) + ]2 (5.8)

where / is a function of the charge (valency) of the biopolymer. Equation (eqn (5.8)) is
clearly consistent with the appearance of a maximum. Both Rinaudo and coworkers
(Malovikova et al., 1994; Roure et al., 1996; 1998; Rinaudo et al., 1997; Miles and
Rinaudo, 1997) and Antonietti and coworkers (Antonietti et al., 1996) have recently
examined the nature of this maximum in some detail, the former for polysaccharides. the
latter for spherical synthetic macromolecules.

5.5. [n]-M Dependencies and the Flexibility of Linear Biopolymers

Early attempts on the representation of a linear coil were based on a so-called “free
draining coil” model (Debye, 1946; Kramers, 1946; Peterlin, 1948, 1950; Hermans, 1949;
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Fig. 14. Reduced viscosity versus concentration plot for a hyaluronic acid preparation in
I = 0.0001 m NaCl solution. The arrow indicates the position of the maximum. From Roure ef
al. (1996)

Kuhn et al., 1951) in which a macromolecule is represented by a linear chain of inter-
connected beads acting essentially independently of each other, followed by a summation
of all their effects (see Tsvetkov er al., 1971; Yamakawa, 1971). This approach, which led
to an estimate of a of ~1, was later modified to incorporate hydrodynamic interaction
(Brinkman, 1947a.b.c; Kirkwood and Riseman. 1948, 1949; Debye and Bueche, 1948;
Kirkwood, 1967) and led to a range of possible values for a of 0.5-1.0, a range which
represents the extremes of inpenetrable coil (i.e. non free-draining where the solvent in
the interior of the coil moves with the biomolecule) and a completely permeable free
draining coil. Essentially the same result was obtained by Zimm (1956) based on a bead-
spring or sub-chain model which took into account Brownian motion effects. Flory and
coworkers (Flory and Krigbaum, 1950; Flory and Fox, 1951; Krigbaum and Flory,
1953) questioned the interpretation of values of a>0.5 for a coil as due to partial or
complete permeability, and proposed instead an alternative explanation in terms of
swelling or (intramolecular) exclusion volume effects. Based on this theory the predicted
range for a for coils is 0.5 < @ < 0.8, a range subsequently vindicated experimentally
(Flory, 1953; see also Ahn et al., 1993). The concept of ““theta™ solvents was also devel-
oped. In opposition to intramolecular exclusion volume effects are attractive effects: a
“good solvent™ is one in which solvent-biopolymer interactions are preferred over inter-
actions between different parts of the biopolymer, whereas a “*poor solvent™ intrachain
(and inter-chain) biopolymer interactions predominate: this serves to effectively “shrink™
the molecule in opposition to the excluded volume effect. Under certain solvent con-
ditions, known as “0-temperature” or “‘f-solvent’ conditions these effects can effectively
cancel giving rise to pseudo-ideal behaviour. The intrinsic viscosity at these *‘theta con-
ditions’ is represented by the symbol [y],. {The reader is warned that the same symbol
has also been used in the literature to denote the intrinsic viscosity at zero ionic strength,
and also the intrinsic viscosity of the equivalent spherical particle of the same mass}.
Flory and coworkers (Flory and Krigbaum, 1950; Flory and Fox, 1951; Flory., 1953)
also provided the basis for estimating the characteristic ratio C,, of a linear biopolymer
which is a measure of the conformation restriction or *stiffness™ of a linear molecule:

Coo = <h* > /0l (5.9)

where (/zz) is the mean square end to end distance, » is the number of segments in the
chain and / the length of each segment or residue (e.g. for DNA / would represent the
distance between intrachain base pairs, which is ~0.34 nm). C,>1, with the equality
holding only for a perfectly flexible chain. In practical terms, flexible coils appear to
have values of C,.~1-10 whereas very stiff polymers have C, > ~ 25-400 (Lapasin and
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Fig. 15. The persistence length L, and contour length L. of a linear macromolecule. L, corre-
sponds to the average projection (onto a line of the initial direction projected from one end of the
macromolecule) that L. would have in the hypothetical limit that L.—o0

Pricl, 1995). Following Stockmayer and Fixman (1963) C,, can be estimated from the
intercept of a plot of [yl/M 12 versus M'? together, with knowledge of the residue length
[ and residue molecular weight (see e.g. Robinson et al., 1982).

Arguably, a more useful representation of linear flexibility is in terms of the persist-
ence length of the equivalent worm-like chain, a representation first proposed by Kratky
and Porod (1949): see also Ptitsyn and Eizner (1959); Peterlin (1950); Peterlin (1952);
Peterlin (1960) and more recently Bohdanecky and Kovar (1982) and Fujita (1990). In
this model, developed largely to give better representations of the conformation of
DNA, the polymer chain is taken as continuous: effectively the segment length / — 0 and
the number of segments # — oc. The persistence length Ly, is the principle parameter,
defined (Tvetskov et al., 1971; Yamakawa, 1971; Fujita, 1990; Freire and Garcia de la
Torre, 1992) as the average projection length along the initial direction of a chain of
(contour) length L, and in the limit of L.—oo (Fig. 15). Thus in the limits L./L,—0 and
L./L,—0oc correspond to a perfectly rigid rod and a perfectly random coil respectively.
Alternatively, just L,—0 and L,—occ correspond to a perfect coil and perfect rod
respectively. As Freire and Garcia de la Torre (1992) have said ““apart from its precise
definition, the persistence length, L, gives an indication of the length scale for which
correlation between separate parts of the chain begin to disappear—it takes a given
value for a given macromolecule (say DNA) independent of chain length or molecular
weight”. An alternative but equivalent parameter (see Tsvetkov er al., 1971 and Fujita,
1990) is the *“Kuhn statistical segment length” (= 2L,).

Hearst (1963, 1964) and Hearst and Tagami (1965) provided expressions for [y} for
both extremes: for the random coil (L¢/Ly,—00):

[7] =100 x 2.19 x 10%*.(1/M ).(L.A~"H? {1 — 0.89[In(x/2~")
+2.431 — x/d L./~ V1 (5.10)

and for the rigid rod (L/L,—0):

[7] =100 x [AN L} /(Q0MOL[1/{In(L./x) — 2.72 + 0.66(x/d )}
+3/{In(L./x) — 2.72 + 1.33(x/d)}] (5.11)

with [5] in ml/g and where d is the hydrodynamic diameter of a segment of length x.
More general relations have been given by Eizner and Ptitsyn (1962), Ptitsyn and Eizner
(1962) and Sharp and Bloomfield (1968).

Such worm-like modelling is referred to as “two parameter’” representations of flexi-
bility—that is to say in terms of the contour length L. and the persistence length L. The
desire to represent a wider range of conformations and flexibilities—particularly helical
structures—was noted by Yamakawa (1971) and in response to this, the helical worm-
like coil model was developed by Yamakawa and coworkers (Yamakawa and Fujii, 1976;
Yamakawa, 1977, Yamakawa, 1984; Yamakawa and Yoshizaki, 1980). The helical
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worm-like coil model involves five conformation parameters: the contour length L., a
bending force constant, a twisting force constant, and two parameters representing the
centroid helix. Extraction of so many parameters provides, however, a considerable
strain on the experimental data. Consequently limiting cases with a reduced number of
parameters have been developed. For example Bohdanecky (1983) gave an approximate
form in terms of three conformation parameters: L. (or the mass per unit length
M =M/Ly), 27" {or 2L, use of either 27 or L, seems to be one of personal preference
(Fujita, 1990)} and the hydrodynamic diameter of the cylinder or chain, d. In simplified
form, the Bohdanecky (1983) relation is:

(M?*/Inp)"” = Ay + B,M ' (5.12)
where
Ay = AoM @, (5.13)
and
B, = Bo®; P ((Ry /M) (5.14)

D, o, =2.86 x 102 and A, and B, are tabulated functions of d/i~' (Bohdanecky,
1983). Thus a plot of (M?/[#])"/® vs. M2 provides the basis for obtaining M, A" and d.
The mass per unit length M| can either be used as a variable parameter in the analyses
or used as a fixed parameter on the basis of other measurements such as from *‘static”
(i.e. classical or “total intensity”) light scattering or from electron microscopy (see
Stokke and Elgsaeter, 1994). Table 4 lists some useful values of M.

An even simpler version of eqn (5.12) has been proposed by Bohdanecky and
Netopilik (1993), and using this type of treatment Bohdanecky in a very recent paper
(Bohdanecky, 1996) addressed an anomaly raised by Fujita (1988, 1990) as to why under
theta solvent conditions, it is observed experimentally for many polymers that the MHKS
coefficient ¢ remains constant at ~0.5 (i.e., the non-draining coil limit) over a broad
range of molecular weights, instead of increasing from 0.5 to 1 as the chain length
decreases.

Table 4. Mass per unit length M, for various biopolymers

Biopolymer Biopolymer type M; Danm™' Method Reference
pullulan single chain 340 a Kawahara et al. (1984)
polysaccharide
methyl cellulose single chain 360
polysaccharide
cellulose nitrate* single chain 500-600 a,b Bohdanecky (1983);
polysaccharide Yamakawa and Fujii
(1974)
amylose single chain 790-1400 a,b,c Yamakawa and
polysaccharide Y oshizaki (1980); Stokke
et al. (1987)
Poly (y-ethyl-L-glutamate)* single chain 980-1040 a Bohdanecky (1983);
polypeptide Terbojevich et al. (1967)
Poly (¢-carbobenzoxy-L- single chain 1450-1680 a Bohdanecky (1983);
lysine)* polypeptide Matsuoka et al. (1973)
xanthan double helical 1700-2000 a,b,c Sato et al. (1984);
polysaccharide Coviello et al. (1986);

Stokke er al. (1989a,b);
Kitamura et al. (1991)

DNA double helical 1950
nucleic acid
schizophyllan triple helical 1900-2100 ab Bohdanecky (1983);
polysaccharide Yanaki et al. (1980)

*non-aqueous solvent
a: Viscometry or sedimentation analysis. b: Light scattering. c: Electron microscopy
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The parameter @, , as given by Bohdanecky (1983) is actually a limiting form of the
parameter @ in the well-known fundamental relationship between [5#] and the dimension
of a flexible polymer coil of Flory and Fox (1951):

M M
= W = m (5.15)

The nature of the parameter @ has been considered in detail by, for instance, Schmidt
and Burchard (1981), Bohdanecky er al. (1983), Garcia de la Torre er al. (1983) and
more recently by Garcia Bernal ef al. (1991).

Close to the rod limit, Freire and Garcia de la Torre (1992) have highlighted the limi-
tations of the worm-like coil theories and provided the motivation for the elucidation of

theories for rigid cylinders. The most recent equation is that of Garcia-Molina er al.
(1990)

M= Q.NsM?*/{M;(InM — InM; — Ind)} (5.16)
with Na Avogadro’s number and the coefficient Q = 0.015 ([5] in ml/g; M in Da nm™').

5.6. Critical Overlap Concentration, C*: the Dilute Solution Limit

In connection with the behaviour of coil shaped molecules, the critical overlap concen-
tration ¢* has been used as a parameter representing the upper limit of dilute solution
behaviour. Above this concentration the influence of overlapping molecular domains
becomes significant. Vidakovic et al. (1982) have proposed the approximation

c*~x/n (5.17)

with ¥y = 0.58. Launay et al., (1986) based on polysaccharides and Papanagopoulos and
Dondos (1995) for polystyrene in ethyl acetate gave the same formulae differing only
relatively slightly in the value of y (0.33 and 0.5 respectively). Grassley (1980) gave a
somewhat higher value (1.08). This formula (with the lower three values for the coeffi-
cient x) also seems to be valid for stiffer structures. For example, it accurately predicts a
discontinuity at ¢ ~0.4-0.8 mg/ml in the Huggins plot for the bacterial polysaccharide
xanthan (Fig. 16). Discontinuities for this substance were observed at the same approxi-
mately concentration in plots of the sedimentation coefficient and apparent molecular
weight versus concentration.

VI. PROTEINS AND POLYPEPTIDES

Table 5 gives a comprehensive list of the intrinsic viscosities of proteins with a clearly
defined molecular weight. The table also includes polypeptides (include different molecu-
lar weight fractions), collagen sonicates (again of different molecular weight) and glyco-
proteins such as ovalbumin of modest degree of glycosylation (< 15%)—more heavily
glycosylated systems are considered in Section 7.

6.1. General Conformation Studies

Table 5 illustrates the principles concerning []-general conformation relationships
discussed in Section 5 quite well, and in Table 6 we have collected together data for
an homologous series of proteins and polypeptides and their corresponding Mark-
Houwink-Kuhn-Sakurada (MHKS) a (and K’) coefficients (eqn (5.1)). From Table 5,
globular proteins are seen to have relatively small [#]’s in the range 2.5-6 ml/g with little
dependence on molecular weight (corresponding to an MHKS exponent a = 0 of
Table 6). Sonicates of the triple-helical protein collagen (Nishihara and Doty, 1958) yield
an a of ~1.8 (from a plot of log[y] versus logM), consistent with a rigid rod confor-
mation, whereas the protein in its gelatin state adopts a random coil configuration



Viscosity of biological macromolecules and measurement 241

— N N (&3]
w (@) &) (@)

PURT RO (TS T ST SN NN YA U G N0 NNV S T S VAT SN WA S S WY S Y
4

TR B NI S G T A S

*
1

1073 x n,,, (ml/q)
)

w

PRI B SR a |

o

O

e}
.

0.1 0.2 0.3

107 x 7, (ml/g)

T ~T T T T T T |

0.0 0.2 OT4 0.6 0.8
¢ (mg/ml)

Fig. 16. Reduced viscosity versus concentration, ¢, plots for xanthan (Keltrol RD), (a) in dilute

solution (¢ = 0—0.35mg/ml); and (b) in the region ¢ =0—09mgml. From (a),

[7] = (7500 + 2700) ml/g. Predicted ¢* from eq. (5.17) = 0.4-0.8 mg/ml. Reproduced with per-
mission from Dhami ez al. (1995)

with @ = 0.45-0.88 (Veis, 1964). Gelatin intrinsic viscosity has been subjected to a
recent thorough investigation for a range of different preparations and temperatures
(Krasovskii et al., 1993).
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Table 6. MHKS parameters for proteins and polypeptides

10°< K’
Conditions/ (for [n]
Protein Comments in ml/g) a Reference
Collagen 1.8 Nishihara and Doty (1958)
Gelatin 0.45-0.88 Veis (1964)
Water at the isoelectric 1660 0.885 Pouradier and Venet (1950)
point
Globular proteins — 0
Denatured proteins 6 M GuHCl or 8 M 7160* 0.67 Tanford (1967)
urea, +0.1 M
B-mercaptoethanol
0.64 Van Kleef et al. (1978)
Hyperhemoglobin 0.46 Potschke et al. (1996)
0.39 Pétschke er al. (1996)
Poly-L-glutamate 0.2 M NaCl, pH 4.3-7.3 1.0 Morcellet and Loucheux (1976)
Poly (y-benzyl-L-glutamate) in m-cresol solvent 1.6 Rha and Pradipasena (1986).
dimethyl formamide 0.14 1.75 Van Holde (1985)
dichloroacetic acid 28 0.87 Doty ez al. (1956)
Spectrin 0.1 M NaCl, pH 7.5 0.93 Dunbar and Ralston (1981)

*: this equation is given in the form {] = K/, where # is the number of amino acid residues

A similar value is obtained (¢~ 1.6) to that for collagen if log[y] versus logM is
plotted for the data of another helical molecule, poly (y-benzyl-L-glutamate) in m-cresol
solvent (Rha and Pradipasena, 1986). A similar value is also obtained in dimethyl forma-
mide as solvent (a ~ 1.75) and also corresponds to the helical form (Van Holde, 1985)
whereas in dichloro-acetic acid (Doty et al., 1956) the polypeptide adopts a coiled con-
formation (a ~ 0.87). Data for the glycoprotein human spectrin also corresponds to a
coil, with a~0.93 (Dunbar and Ralston, 1981). Poly-L-glutamate (Morcellet and
Loucheux, 1976) has (stiff) coil like properties (a ~ 1.0) in contrast to poly (y-benzyl-L-
glutamate). Data collected for globular proteins denatured by 8 M urea or 6 M guanidine
hydrochloride (Tanford et al., 1967, Van Kleef et al., 1978) yield an a ~ 0.68, consistent
with a random coil conformation, as shown earlier by Yang (1958a,b). Tanford (1967)
suggested the following relation for proteins in the random coil state:

[n)(ml/g) = 0.716n"%7 (6.1)

where # i1s the number of amino acids in the protein.

The sensitivity of intrinsic viscosity measurement for monitoring denaturation or more
subtle changes of conformation of proteins has long been known, as illustrated in
Fig. 17. In Table 5 and Table 6 data for the polypeptide poly (his-ala-glu) has been
included at three different pH’s: 2.97, 4.99, 9.70: it can be seen that the intrinsic viscosity
dramatically changes with corresponding [#]’s of 8, 33 and 55 ml/g respectively: this

[M] mi/g

TR 50
T(°C)

Fig. 17. Increase in [#] during thermal denaturation of ribonuclease at pH 2.8. The process is re-
versible. From Van Holde (1985)
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Fig. 18. MHKS [#] versus M plot for cross-linked “hyperpolymers™ of myoglobin. a = 0.39.
From Potschke ef al. (1996)

shows the dramatic effect of ionisation of the COOH group in the glutamic acid residues
whose pK,~4.3 and deionisation of the histidine NH3 " residue (pK,~6). The increase in
charge leads to much stronger repulsive forces through the tertiary electroviscous effect
(Section 4.3), with the polypeptide adopting a more rod shape conformation. For globu-
lar proteins the effect is much less dramatic as shown in the classical data of Tanford
and Buzzell (1956) where over a wide range of both pH (from 4.3-10.5) and ionic
strength /, (from 0.01-0.5 M) the [#] remains approximately constant at a value of
(3.9 +£0.3) ml/g.

An interesting observation is that of Gennaro et al. (1996) who demonstrated by using
electron-paramagnetic resonance correlation time t. measurements of re-sealed erythro-
cytes incorporating a 4-maleimido-2,2',6,6'-tetramethyl-piperidine-oxyl spin-label (after
suitable calibration studies on the 7. of the label in the presence of sucrose solutions of
known viscosity) that the [#] of hemoglobin in the erythrocyte is comparable to the 4] of
hemoglobin in free solution which had been measured over half a century earlier
(Table 5, Table 6).

In the desire to develop artificial oxygen carriers in humans, Potschke et al. (1996)
have constructed “hyperpolymers” of myoglobin, and also hyperpolymers of hemo-
globin. These hyperpolymers consist of multiple units of the native protein chemically
cross-linked together. Both hyperhemoglobin and hypermyoglobin give MHKS «a expo-
nents consistent with a random coil (0.46 and 0.39 respectively). Figure 18 shows the
MHKS plot for myoglobin polymers in the molecular weight range 17 100-180 000.

Another interesting recent study was that of Shinagawa et al. (1993), who re-examined
the classical work of Reynolds and Tanford (1970) on the extent of binding of SDS to
proteins and its affect on protein conformation as manifested by both reduced and
intrinsic viscosity. Their data showed that the amount of SDS binding to protein under
saturation conditions was not in fact fixed at 1.4 g/g protein, but was in the range 1.0 to
2.2 g/g; depending on the concentration of buffer used. Increases in the ionic strength of
the buffer caused a decrease in the value of the Huggins constant Ky, a decrease ascribed
to an increase in flexibility of the linear complex and down to an 7~ 45 mM typical [#]
dependence on I~'? was observed (cf. Section 5.3).

6.2. Ellipsoid Modelling Studies

The earlier modelling of macromolecular conformation of proteins from measure-
ments of [#] was largely based on simple ellipsoids of revolution and using v directly
from eqns (eqn (4.1)) and (eqn (4.2)) with eqn. (eqn (4.3)) or (eqn (4.4a)—eqn (4.5a))
together, with an assumed value for the hydration é of ~0.2-0.35 g/g (Tanford, 1961).
Garrigos et al. (1983) for example, have examined the conformation of the S1 heads of
myosin using a prolate ellipsoid model and showed that the [5], along with the sedi-
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Table 7. Axial ratios of proteins from &, and intrinsic viscosity [#] measurements

Protein ks (ml/g) [#] (ml/g) R {=kyn} axial ratio (a/b)* Reference
ovalbumin 545 349 1.56 1.5 a,bc
bovine serum albumin 54 3.9 1.38 23 de
B-lactoglobulin (B) {dimer} 4.6 2.86 1.61 1.0 fg
collagen (374 kDa) 265 1250 0.212 > 100 h.i
sonicates: 336 kDa 250 1075 0.232 100 h
297 kDa 227 865 0.262 70 h
250 kDa 202 625 0.323 43 h
217 kDa 182 495 0.368 33 h
192 kDa 166 400 0.415 25 h
170 kDa 154 325 0.474 18 h
149 kDa 142 245 0.580 14 h

* of the equivalent prolate ellipsoid. k; values are normally corrected for “radial dilution” and to *‘solution
density” (see Rowe, 1977, 1992; Harding and Johnson, 1985b).

a: Miller and Golder (1952); b: Holt (1970); c: Harding (1981b); d: Baldwin (1957); e: Tanford and Buzzell
(1956); f: Advani et al. (1997); g: Townend et al. (1960); h: Nishihara and Doty (1958); i: Creeth and Knight
(1965).

mentation coefficient could be represented by the extremes of axial ratio (a/b) of ~2.5
(hydration 6 = 1.24) and ~1.0 (6 = 2.02). These workers have attempted to combine
this information with images of “pear shaped molecules” from electron microscopy and
with solution X-ray scattering data to propose a prolate ellipsoidal molecule with the
hydration unevenly distributed into a hole at one end.

Use of the hydration independent shape functions that avoid & through the combi-
nation of [y] with another hydrodynamic parameters has involved the R, T and
Ap (Section 4.6), rather than the S-function because of the latter’s insensitivity to
shape. Table 7 shows a number of proteins whose shapes have been determined using
the R-function.

Since we know from the MHKS a exponent (= 1.8) that collagen is approximately a
rigid rod, we can model the molecule as a rigid prolate ellipsoid of large axial ratio, and
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Fig. 19. Axial ratio of collagen sonicates estimated from the Wales-Van Holde ratio, R as a func-
tion of molecular weight (Reprinted with permission from Harding, 1995)



248 S. E. Harding

Table 8. Axial ratios of three proteins from the IT function

Protein I1 axial ratio (a/b)* Ref.
hemoglobin 3.20 1.0 Tanford and Buzzell (1956)
ovalbumin 3.18 1.0-2.0 Harding (1981b)

myosin 0.47 80 Harding (1987)

*of the equivalent prolate ellipsoid.

use the known dependence of R on axial ratio (a/b) to evaluate the change of (a/b) with
molecular weight and Fig. 19 shows the increase in axial ratio is approximately linear
with molecular weight for M < 260 000.

Table 8 shows the axial ratios (a/b) of three proteins worked out by the II function
(Harding, 1981a). It is particularly interesting to note that the overall shape of the
ovalbumin molecule from both the R- and Il-functions found in 1981 (Harding, 1981b)
is almost exactly as found some 10 years later by X-ray crystallography (Stein et al.,
1991) (Fig. 7b)

Table 9 gives three examples of the application of the A, function, which involves
a combination of [#] with the steady state fluorescence anisotropy harmonic mean
relaxation time, 7,,. The first example is applicable to the tryptic subfragment of fibrino-
gen: combining the value for [#] of 7.2ml/g with that of 178 ns for 7, (giving
Ap=4.74 +0.17) Harding (1980a) deduced a value for (a/b) of 6.8 for the equivalent
prolate ellipsoid. Incidentally, if the v function had been used directly assuming no
hydration a value for (4/b) of approximately 8 would have been predicted (Mihalyi and
Godfrey, 1963). In further examples, Rholam and Nicolas (1981) obtained values of
Ap=3.16 and 2.69 respectively for both monomers and dimers of the neural protein
neurophysin. Corresponding values of the (a/b) are 4.2 and 2.8 respectively showing that
in going from monomer — dimer, the association of the subunits is likely to be side-by-
side rather than an end-to-end process.

The ellipsoid of revolution approximation to hydrodynamic structure assumes a
protein can be reasonably modelled by a three dimensional shape with two of the per-
pendicular axes equal axes (length 2b), and the final perpendicular longer axis (length
2a), a shape specified by a single axial ratio (a/b). As noted in Section 4.3, a much better
representation of molecular shape can be obtained if the restriction of two equal axes is
removed to give a general tri-axial ellipsoid of semi-axes a > b > ¢ and 2 axial ratios (a/b,
b/c). Harding and Rowe (1982b) have applied the graphical intersection method of
Section 4.3 using the A;, and R functions for triaxial ellipsoids to neurophysin monomers
and dimers and essentially confirmed the conclusions of Rholam and Nicolas (1981) who
used the cruder prolate ellipsoid of revolution model to represent the mode of associ-
ation of the subunits: the association is a side-by side rather than end-to-end process.
Figure 20 shows the A;-R intersection plots for monomer and dimer with axial ratios
(a/b, bjc) ~ (4.1, 1) for the monomer and (a/b, b/c) ~ (2.5, 2.7) for the dimer. A small
correction to the original value of [5] given by Rholam and Nicolas (1981) for the neuro-
physin dimer was necessary, and was obtained by using a more realistic value for the
Huggins constant Ky in the extraction of [#] for monomer (unaffected) and dimer
(Harding and Rowe, 1982b).

In another application of the triaxial model Harding (1987) has used the intersection
of TI with the radius of gyration shape function G to show that despite the segmental

Table 9. Axial ratios of three proteins from the A, function

Protein An axial ratio (a/b)* Ref.
Fibrinogen: tryptic subfragment  4.74 6.8 Harding (1980)
Neurophysin monomer 3.16 42 Rholam and Nicolas (1981)
Neurophysin dimer 2.69 28 Rholam and Nicolas (1981)

*of the equivalent prolate ellipsoid.
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(a)
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(b)
J\ i
4 ($2)-ez29
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Fig. 20. A,—R intersection plots for (a) neurophysin monomers, and (b) dimers. After Harding
and Rowe (1982b) and using the PC routine ELLIPS3 of Harding et al. (1997)

flexibility of myosin (dimers), the overall conformation of a rod of axial ratio (a/b, b/c)~
(80, 1) is faithfully reproduced.

6.3. Bead Modelling

Although it is encouraging that general ellipsoid modelling reproduces the overall rod-
shape conformation of the myosin molecule, it does not provide any information about
the nature of any kinks or bends in the rod and nothing about possible flexible regions
in the macromolecule: myosin is in fact, a good example where bead modelling can be
successfully applied to viscosity data and is indeed more appropriate for representing
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(a) (b)
ST sy

S2

LMM

Fig. 21. (a) Simple “broken rod” model for a myosin molecule. (b) Broken region between the S2
and LMM regions can be modelled as an array of beads and inter-arm angle «. From Garcia de
la Torre (1994)

molecular flexibility compared with rigid triaxial ellipsoids (Byron, 1995), with two
potential regions of flexibility (Garcia de la Torre, 1994) as Fig. 21a illustrates: the link
between the LMM and S2 regions (LMM and S2 are collectively referred to as the
“myosin rod”") and the link between S2 and the S1 heads. The rigid parts can themselves
be modelled as an array of spherical beads (Fig. 21b).

There is still, however, considerable disagreement in terms of the extent of myosin
flexibility, with some works suggesting there may be a large flexibility within the rod
(Highsmith et al., 1982; Cardinaud and Bernengo, 1985; Iniesta et al., 1988), whereas
others indicating that the rod is nearly rigid (Hvidt ef al., 1982; Curry and Krause,
1991). There is also uncertainty as to whether the flexibility—if present—is largely loca-
lized to one or two flexible joints (Section 4.7) or whether it is more evenly distributed as
a worm-like cylinder (Section 5.5). Garcia de la Torre (1994) has given three sources for
uncertainty, (i) the length of the rod is a sensitive parameter needed for the modelling,
and values ranging from 144 to 156 nm have been assumed; (ii) large discrepancies with
relaxation times from rotational frictional measurements (birefringence or fluorescence
anisotropy); (iii) the existence of two different theoretical approaches (the “‘rigid body”
and “Wegener” (Wegener, 1985) approaches of Section 4.7) and some confusion as to
notation. In an attempt to reconcile these difficulties, Garcia de la Torre (1994) has
examined data from [n] and R, for which there is general acceptance (unlike the ro-
tational data) and shown that the flexibility parameter Q for the myosin rod is approxi-
mately 0.50 (Table 10) and the optimum rod (contour) length, L. is indeed 144 nm.

Fibrinogen is another example of an elongated protein molecule whose conformation
has been represented by viscosity-based bead models. Lopez Martinez et al. (1984) have
taken advantage of the excellent agreement in published values for [#] (Table 5)
and combined this information with rotational diffusion and translational frictional
information to examine the validity of molecular models proposed for fibrinogen. Both

Table 10. Broken rod modelling of myosin (from Garcia de la Torre, 1994)

Predicted for  Predicted for  Predicted for  Flexibility
Property Experimental  L.=144 nm L.=150 nm L.=15nm parameter Q

Intrinsic viscosity, [»] (ml/g) 265 290 355 370 0.42
Radius of gyration, R, (nm) 38 41 43 45 0.70
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the “dodecahederon” model of Koppel (1966) and the “‘three nodule” model proposed
by Hall and Slayter (1959) on the basis of electron microscopy were ruled out, whereas a
cylindrical model gave the best agreement with the data.

VIL. GLYCOPOLYMERS AND NUCLEIC ACIDS

As the extent of glycosylation of a protein increases, the departure from classical rigid
particle hydrodynamics to the realm of flexibility and semi-flexible conformations, and
the relations described in Section 5 (MHKS exponents, Wales-Van Holde parameter,
flexible coil theory) become relevant. Although there are no glycosidic bonds present, we
make no apologies for regarding nucleic acids as “glycopolymers™ because of their large
repeating sugar content (deoxyribose or ribose), and indeed application of a worm-like
coil theory has enabled us to obtain a fairly detailed picture of the conformation and
flexibility of these molecules in solution. The most fundamental parameter describing the
general conformation is the MHKS a exponent and Table 11 gives a comprehensive list
for a range of polysaccharides, mucin glycoprotein and DNA. The parameter K is
included as well, since the MHKS expression is often used to obtain molecular weights
from measured intrinsic viscosities.

It can be seen that the bulk of the glycopolymers represented in Table 11 have MHKS
a values in the random coil range (0.5-0.8). This includes not only the classical random
coils such as pullulan, but also mucin glycoproteins, and is consistent with the analagous
“linear random coil” or “swollen coil array’” models proposed for general mucin struc-
ture in solution (see Sheehan and Carlstedt, 1989). This contrasts with the conformation
of the native mucin backbone peptide from the “MUC-1" gene {the [#] of 7.71 ml/g
(Table 5) is consistent with a rod-shape}. Like mucins, DNA also appears to adopt a
coil shape conformation with the value from Crothers and Zimm (1965) of a = 0.66,
based on collected data. These workers also observed that a better representation of the
[#]-molecular weight relation could be obtained by a slight departure from the MHKS
relation of eqn (5.1):

(7] = 0.1371M1 9655 5 (7.1)

with [n] in ml/g (and M of course in Da or g/mol). A similar relation was presented for
the sedimentation coefficient, s:

s=0.01517M %% 127 (7.2)

with s in Svedbergs.

Low values of a (<0.5) tend to indicate significant branching or an approach to the
compact sphere limit of @ = 0 for the glycopolymers of Table 11. There are very few
reported values significantly below the lower limit for completely random coils (a = 0.5),
two exceptions being hydroxyethyl starch (@ = 0.35) and DIT-(di-iodotyrosine) dextran:
with the latter, the effect of incorporation of the label appeared to make the molecule
effectively more compact by accentuating the affect of branching of the native dextran.
At the other end of the scale, a number of charged and particularly helical saccharides
have a values > 1, particularly succinoglycan, xanthan and the triple-helical schizophyl-
lan. With the latter, the a value illustrates the effect of chain length on the overall con-
formation, with the “extra-rigid rod” characteristics at lower chain length (M,, < 50 000),
with ¢ = 1.7, reverting to a more flexible rod at larger molecular weights (a = 1.2).
Similar behaviour has been observed for xanthan (Milas et al., 1985; Liu and Norisuye,
1988).

In support of conclusions on a molecular structure based around the MHKS a
coefficient, other MHKS coefficients can be used such as the sedimentation b coefficient
(see Harding, 1995 for a review) and the Wales-Van Holde parameter R (=k/[5]). as
described in Section 5.1, with values of ~1.6 signifying a spheroidal domain (either
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Table 12. Glycopolymer gross conformation from the Wales-Van Holde relation

Glycopolymer R(=ky/[n)) Conformation Reference
Alginates 0.6 Extended Ball (1989)

Amylopectin (in DMSO) 1.5 spheroidal Fronimos (1991)

B-glucans 0.4 Extended Woodward et al. (1983)
Chitosan 0.2 Rigid rod Errington et al. (1993)
K-carrageenan 0.9 Extended coil Harding et al. (1997a)
Mannan (yeast) 1.3 Random coil Pavlov et al. (1994)

Mucin glycoprotein (human cervical) 1.5 Random coil Sheehan and Carlstedt (1994)
Pullulans 1.4 Random coil Kawahara e? al. (1994)
Xanthan 03 Rigid rod Dhami et a/. (1995)

DMSO: dimethylsulfoxide.

a compact sphere or random coil) and low values (—0.2) indicating a rigid rod con-
formation. Table 12 summarizes some findings.

Once the general conformation has been determined for a glycopolymer by MHKS
and/or the Wales-Van Holde treatments, more sophisticated analyses can then be
applied. If the glycopolymer is a rigid rod like structure (such as schizophyllan or
xanthan) then the rigid particle ellipsoid or bead theories of Section 4, although derived
mainly for protein work, can be applied. For example in a recent study on xanthan by
Dhami et al. (1995) a rod of aspect ratio ~70:1 was inferred on the basis of both the Il-
(eqn (4.10)) and the R-functions (eqn (4.11)). Or in the case of more coiled structures,
more detailed information about the flexibility of the molecule in terms of the character-
istic ratio, C, the persistence length L, (or the Kuhn statistical segment length, 7Y for
a worm-like coil, the helical parameters from the Yamakawa-Fujii helical worm-like coil
model or the polyelectrolyte stiffness parameter B can be sought, as described in Section
5.4. The least popularly applied appears to have been the characteristic ratio, C,,. and
measurements have largely been based on radius of gyration rather than from intrinsic
viscosity measurements. C,, (Section 4.5). For example, for uncharged polysaccharides
C for the randomly coiled pullulan has been shown to be ~4 (Buliga and Brant, 1987,
Kato et al., 1984), whereas the more stiffer guar was shown to have a value of ~13
(Robinson et al.,, 1982) {corresponding a values are ~0.65 and ~1 (Table 11)}.
For polyelectrolytes the Smidsred stiffness parameter, B has had popular application
(see Lapasin and Pricl, 1995)—with low values of B indicating a stiff backbone and
vice versa. Use of B has demonstrated for example, the variable effect of the degree of
substitution of charged groups on a glycopolymer chain. For example the extent or
“degree” of substitution (DS) by CH;COO™ groups had little effect on carboxymethyl-
cellulose (B ~ 0.045-0.065) for DS (degree of substitution) values 0.5 — 1.0, whereas for
pectin the chain became considerably stiffer as DS changed from 0.58 — 0.89 with B
decreasing from 0.052 — 0.005 (Smidsred and Haug, 1971). By far however, the most

Table 13. Persistence lengths L, for Glycopolymers

Glycopolymer L, (nm) Reference

Pullulan 1.2-19 Muroga et /. (1987)

Heparin 2.0-2.1 Stivala et al. (1968)

Amylose 2.8 Ring et al. (1985)

Cellulose* 7.0 Whittington and Glover (1972)

Pectin (DE = 0.69) 30 Plaschina et a/. (1985)

Pectin (DE = 0) 34 Plaschina et af. (1985)

DNA 45 Gray et al. (1967)

Xanthan (M = 1.8 x 10® Da, I = 0.1 M) 40 Muller et al. (1986)

Xanthan (M = 1.8 x 10°Da, I = 107> m) 210 Muller er al. (1986)

Schizophyllan 115-200 Plaschina er al. (1985); Yanaki et al. (1981);
Richardson and Ross-Murphy (1987);
Murphy (1987); Carriere et al. (1986);
Norisuye er al. (1980); Yanaki et al. (1980)

Scleroglucan 180 + 30 Biver et al. (1986)

*: in cadoxen; DE: degree of esterification (of COO" groups); I: ionic strength.
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10° x M /D"

10° x M

Fig. 22. Three-parameter Bohdanecky worm-like coil plot of (M/[n])'*3 vs. M for schizophyllan.
My =1900 Danm™; i™'=274 nm; 4 = 1.6 nm. From Bohdanecky (1983)

popular parameter representing chain flexibility has been as noted above the persistence
length, L,, with the theoretical limits of 0 for a completely random chain and oo for a
completely rigid rod (practically the range goes from ~1 — 200 nm). Table 13 gives the
L, for a collection of glycopolymers ranging from the randomly coiled pullulan
(Lpy~1.2-1.9 nm) to the extra-rigid triple-helical schizophyllan (L,~185-200 nm). In an
extensive study on the latter, Yanaki ez a/. (1980) showed that the polysaccharides schi-
zophyllan and scleroglucan have essentially the same triple-helical structure in solution.
In an extensive study using intrinsic viscosity with electron microscopy data Stokke et al.
(1996) showed that the L, for xanthan was only consistent with a double-helical struc-
ture (see also Stokke and Elgsaeter, 1994).

In the case of DNA, Sharp and Bloomfield (1968) extended the fundamental MHKS-
based work of Crothers and Zimm (1965) to evaluate the Kuhn statistical segment
length A" (=2L,) and the hydrodynamic or “Stokes” diameter of, 4, from the [7}-M
data: values of A~'=54nm (L,=27 nm) and d~ 8 nm were obtained, although these
differ from estimates from the s-M dependence: Gray et al. (1967) obtained values of
A7'=90 nm (L,=45nm) and d~ 2.7 nm and Hearst and Stockmayer (1962) obtained
values of A™' =72 nm (L,=36nm) and d ~ 3.5 nm using equations for the sedimentation
coefficient s analagous to eqn (5.10) for [#].

Using the simplified 3 parameter” representation for worm-like cylinders,
Bohdanecky (1983) has applied equations (eqns (5.12), (5.13) and (5.14)) and the plot of
(M/[n)'? vs M'? to data for the rod-shaped molecule schizophyllan (Yanaki er al.,
1980) (Fig. 22).

VIHI. VIRUSES

The classical demonstration of Markham (1951) that the large tomato bushy stunt
virus, TBSV (M = 10.7 x 10°) had a value for the intrinsic viscosity, [#] of 3.44 ml/g,
comparable to those for globular proteins of three molecular weight magnitudes smaller,
confirmed that [] was completely independent of molecular weight (MHKS a = 0) for
quasi-rigid spheroidal macromolecules and macromolecular assemblies. In another classi-
cal study, Boedtker and Simmons (1958) found a value for [5] of 36.7 ml/g for the rod-
shape tobacco mosaic virus, a value though significantly less than rod-shape polysacchar-
ides such as xanthan (~7000 ml/g) and also DNA (~5000 ml/g). In a later study on
turnip yellow mosaic virus, TYMV (M = 5.7 x 10° Da), Harding and Johnson (1985b)
obtained a value of (5.3 4+ 0.3) ml/g, in which they used the incorporation of a small
amount (3%) of glycerol suggested by Szuchet-Derechin and Johnson (1966) to facilitate
measurements below 5 mg/ml (Section 3.1). This gave a Wales Van Holde ratio R = k/
[7] = 1.5, in good agreement with R values for other spherical and globular particles
(Creeth and Knight, 1965; Harding and Rowe, 1982a; Rowe, 1977). The higher value of
[#] corresponds to a significant degree of solvent association, as confirmed by measure-
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ments of the sedimentation coefficient s, the translational diffusion coefficient, D and the
second thermodynamic virial coefficient, B {from both combining k; with the corre-
sponding coefficient k4 from diffusion measurements (Harding and Johnson, 1985a), and
sedimentation equilibrium reciprocal apparent molecular weight versus concentration
plots}, which all yielded an estimate for the swollen specific volume (eqn (4.1))
v¢~1.8 ml/g, once again expounding the virtue of combining more than one hydrodyn-
amic measurement together.
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