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Introduction 
Thermodynamic non-ideality can lead to serious 
problems in terms of the analysis of macro- 
molecular behaviour in solution, particularly in 
molar mass and mass action measurements 
based on the principles of thermodynamic equili- 
brium. The  term ‘molar mass’ (in g/mol) 
favoured by the physical chemist is of course 
equivalent to the molecular mass in daltons, and 
by ‘mass action’ we mean interaction pheno- 
mena, whether they be self-association or 
so-called heterologous associations between dif- 
ferent molecular species. By the phrase, ‘those 
procedures for examining these phenomena 
based on thermodynamic equilibrium’ we mean 
osmotic pressure, static light scattering and also 
sedimentation equilibrium in the ultracentrifuge. 

Consequence of non-ideality 
The consequence of thermodynamic non-ideality 
is that if we measure the molecular mass at a 
finite concentration c (g/ml) the measurement 
will be an underestimate, i.e. we are measuring 
only an apparent molecular mass Mapp. If the 
solution is dilute enough this underestimate for 
techniques based on the number average molec- 
ular mass, namely osmotic pressure, is repre- 
sented by a single extra term: 

( 1 )  l/(MJapp = l/M,, +Bc + . . . 
and for static light scattering and sedimentation 
equilibrium in the ultracentrifuge (recorded by 
using uv absorption or Rayleigh interference) the 
primary average is the weight average: 

l/(Mw)app = 1/M, +2Bc + . . . (2) 
where B is the second thermodynamic virial 
coefficient (the first is simply l/M). By the way, 
the form of notation that we prefer is to use the 
traditional B [ l ]  rather than A2 for the second 
virial coefficient. Although the latter seems to be 
preferred by the light scattering community (see 
[2]), this causes an inconvenience for the study 
of interacting systems of molecules: the sub- 
script 2 is generally associated with dimer, which 
is not what is meant here. The  classical way of 
avoiding non-ideality is to measure the apparent 
molecular mass at a series of concentrations and 

extrapolate to zero to get the correct value [l] ,  or 
just to work at very low concentration where the 
Bc or 2Bc term is negligible. 

Non-ideality obscures interpretation of 
molecular interaction phenomena 
The difficulty comes, however, when we want to 
probe phenomena that themselves depend on 
concentration, namely interactions between 
macromolecules: to investigate interaction stoi- 
chiometries and interaction constants it is neces- 
sary to probe the concentration dependence; 
particularly for weaker interactions, higher con- 
centrations are necessary. To illustrate this con- 
sider the simplest situation, a non-ideal 
dimerization under dilute solution conditions 
[31: 

l/(MJap,, = 1/M, + [B ;I - (K2/M$] c + . . . (3) 
l/(Mw),pp = 1/M,+2[R;,-(K,/Ml)Z]r+ ... (4) 

where the monomer molar mass is M I ,  R is the 
monomer-monomer non-ideality (expressed in 
ml*mol*g-2)  and K2 is the association constant 
in ml/mol. 

B { ,  in m l . m o l . g ~ 2  is simply related to the 
Wills and Winzor [3] B l l  (in ml/mol) by 

Bll = B I I M : .  (5) 
The problem is clear in eqns. (3) and (4): it is 
impossible to predict association constants 
properly unless the non-ideality is known or is 
definitely negligible. Merely allowing BII and K2 
both to float as variables is clearly futile. 

The  subject of this paper is the prediction 
of R (or B{,)  for quasi-rigid structures (struc- 
tures that might include globular proteins and 
some rigid polysaccharides such as many of the 
polyanionics and polycationics, and the double- 
and triple-helical ones), but not flexible coil-like 
molecules: for the latter the reader is referred to 
the seminal works of, for example, Flory [4] and 
Tsvetkov et al. [5]. 

Contributions to the second virial 
coefficient, 6 
So to be able to predict B for quasi-rigid types of 
macromolecule we need to look at the contribu- 
tions to the virial coefficient for a macromole- 

I998 



Biochemical Society Transactions 

738 

cule; there are two: Be,, from excluded volume 
effects deriving from the large size of the macro- 
molecular solute molecules compared with the 
surrounding solvent molecules in a solution, and 
the other, Bz, from polyelectrolyte behaviour if 
the macromolecule has a net unsuppressed 
charge. The  total virial coefficient is just the sum 
of these two terms: 

B = Be,+Bz. (6) 

Exclusion volume term 
Let us first take the excluded volume term. The  
excluded volume of a macromolecule is simply 
the volume blocking or excluding the free move- 
ment of another macromolecule into a region of 
solution because of its presence, averaged (in the 
case of Brownian solutions) over all possible par- 
ticle orientations. There will in turn be two con- 
tributions to this: a shape term, in which the 
more asymmetric a structure is the greater the 
spatially averaged effect, and a hydration term, in 
which the greater the macromolecule’s own 
volume (swollen by association with solvent), the 
greater the effect. The  simplest shape for which 
the excluded volume is available is the sphere, 
where the excluded volume or molecule co- 
volume, u, in ml is just eight times the hydrated 
volume, V [ 11. 

Because volumes and excluded volumes of 
macromolecules are very small, we tend to work 
instead with a quantity known as the molar co- 
volume, U,  in mVmol, which is just u times Avo- 
gadro’s number, N A ,  so for a sphere the molar 
covolume is just 8NAV. 

The  virial coefficient term is just: 

Be, = U/(2M2).  (7) 

For more complicated shapes it is convenient to 
separate the contributions to U (and Be,) from 
volume and shape: 

U = (a + 6 / p )  Mured (mVmol) (8) 
where ( 8 + 6 / p ) M  is the volume term, being 
the partial specific volume, p the solvent density 
and 6 the ‘hydration’ (amount of solvent associ- 
ated either chemically or physically with the 
macromolecule); the shape term is the ‘reduced 
excluded volume’ defined by: 

u red = u / v  = u/wA (9) 

so, for a sphere, u,d = 8. 
The  most general shape for which u,d has 

been worked out exactly is the general triaxial 
ellipsoid (Figure 1) (of semi-axes a > b > c  and 
axial ratios alb, b/c) according to the Rallison- 
Harding relation [6], applicable to dilute Brown- 
ian solutions averaged over all particle 
orientations where only two-particle interactions 
are relevant: 

u,,d = 2 + ( 3 / 2 m b ~ )  SR (10) 

where S and R are complicated double integrals 
[6], which although not solvable analytically can 
be easily solved using numerical routines. This 
formula identically reduces to the value of 8 for a 
sphere and to formulae given for prolate and 
oblate ellipsoids of revolution (ellipsoids with the 
restriction of two equal axes) of Isihara [7] and 
Ogston and Winzor [8], for the case of two equal 
axes. 

Figure I 

Schematic representation of a rigid macromolecule as a triaxial ellipsoid in 
which all three semi-axes (a, b, c) can differ in length 

l ts  shape is characterized by the two axial ratios (alb, blc). 
‘1, 
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Charge term 
In studies of charged macromolecules such as 
proteins and polyelectrolytes in aqueous solution, 
the effective distance of closest approach is 
greater than that based on geometrical consid- 
erations because of the repulsive force opposing 
the approach of two particles bearing net charge 
(valence) Z .  This additional contribution to the 
second virial coefficient, Bz, has been evaluated 
explicitly only for impenetrable spheres. For 
such systems the expression for the second virial 
coefficient, B, is given by [9,10]: 

B = Be,+BX =uNA/(2M2) + [1000Z2/(4M2Z)] 

x [(1+2Kr,)/(l+Kr,)2+ ... (11) 
where the factor of 1000 is introduced to accom- 
modate the conventional definition of ionic 
strength Z (moV1); ~ r ,  is the product of the 
inverse screening [ l l ]  and the solvated radius 
(r,) of the particle. The  Stokes radius provides 
an acceptable estimate of r, (cm), irrespective of 
macromolecular shape; and the magnitude of K 

(cm-’) can be evaluated from the expression 
K = 3.27 x lo7& at 20 OC. 

The COVOL algorithm 
COVOL is simply a program that builds in the 
Rallison-Harding excluded volume formula [eqn. 
(lo)] with the Winzor-Wills charge formula 
[eqn. ( l l ) ] ;  it is written in FORTRAN 77 and 
runs in PC DOS mode: because it involves some 
serious number crunching it has to be run in a 
DOS rather than Windows environment. It evalu- 
ates Be, by enumerating S, R and hence ured from 
user-specified values of the three semi-axes a, b 
and c (or, alternatively, u/b and b/c because of 
the sole dependence of Ured upon shape), via eqn. 
(10). The  double integrals S and R of eqn. (10) 
are evaluated by using the NAG [12] numerical 
integration routine DOlDAF. 

The  next stage is the evaluation of the molar 
covolume U from U,,d and user-specified values 
for the molecular mass ( M )  and the unsolvated 
partial specific volume (6), the solvation (6) and 
the solvent density ( p )  [eqn. (S)], or a combined 
parameter known as the ‘swollen specific 
volume’, z), ( = 6 + 6/p) .  The routine prints out 
the molar excluded volume ( U ) ,  the molecular 
excluded volume u ( = U/NA), and Be, [eqn. (7)]. 
At that stage the program asks whether there is 
an additional contribution to B from charge 
(polyelectrolyte) behaviour. If so, the user enters 
the ionic strength (moV1) and net charge 

(valence) of the macroion, 2. After evaluation of 
B according to eqn. ( l l ) ,  the routine concludes 
by printing out the charge-charge contribution 
(Bz) as well as the magnitude of the second virial 
coefficient, B = Be,+BZ [eqn. (6)]. 

Availability 
The FORTRAN 77 compiler (Salford [13] 
FTN77/486 system) and the NAG [12] numeri- 
cal integration routine DOlDAF are built in to 
the program: no separate FORTRAN or NAG 
compilers are required. COVOL is available in 
pre-compiled form from Steve.Harding@ 
nottingham.ac.uk. 

Input of shape information (alb, blc) onto COVOL 
An objective method for evaluating the triaxial 
shape from an inertial ellipsoid fit to the atomic 
coordinates of a protein (from X-ray crystallo- 
graphy or high-resolution NMR) has been pro- 
vided by Taylor et al. [14] in the FORTRAN 
routine ELLIPSE. The  usefulness of this 
approach for COVOL has been described else- 
where [15]. 

Application of COVOL 
We illustrate the application of COVOL for pre- 
diction of the magnitude of second virial coeffi- 
cients by consideration of ovalbumin, a protein 
whose high-resolution crystal structure was 
recently published [ 161. Fitting the crystal 
coordinates from the relevant Protein Data Bank 
file to the inertial ellipsoid with the FORTRAN 
routine ELLIPSE [14] yielded axial ratios (ah,  
b/c) of (1.87, 1.08) [15]; entry of these respective 
values for u/b and b/c into COVOL yields a 
reduced covolume, &d,  of 8.996. Conversion of 
this reduced covolume to Be, depends on the 
magnitude assigned to the solvation parameter 
(6) for this protein with a partial specific volume 
(6) of 0.748 mug [17] and a molecular mass of 
45 kDa [18]. The  effect of the extent of solvation 
on the magnitude of Be, calculated via eqn. (8) is 
summarized by the solid line in Figure 2, where 
the intersecting horizontal broken lines denote 
the estimates of Be, deduced experimentally from 
sedimentation-equilibrium [ 181 and size-exclu- 
sion chromatography [ 191 studies of isoelectric 
ovalbumin (upper and lower lines respectively). 
It is noted that the consequent estimates of 0.49 
(k0.05) and 0.39 (k0.18) for the extent of oval- 
bumin solvation (6) are at the upper end of, or 
greater than, the usually accepted range 
(0.3-0.4) for globular proteins [2,20,21]. Experi- 
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mental support for a higher value is provided by 
concordance of estimates (2.92 nm) for the 
Stokes radius and the effective radius deduced 
from the molar covolume, U = (32/3)mVAr3. A 
similar conclusion about the extent of solvation 
stems from size-exclusion chromatography 
studies [ 191 in phosphate/chloride buffer, pH 
7.4, I = 0.156, conditions under which a net 
charge (2) of -16 results in a polyelectrolyte 
contribution to B [eqn. ( l l ) ] .  The  upper 
dependence (dash-dotted line of Figure 2) sum- 
marizes the calculated variation of B with 6, 
whereas the intersecting horizontal line denotes 
the experimental value of B obtained by exclu- 
sion chromatography. On this basis ovalbumin is 
also hydrated to the extent of 0.42 (kO.09). 

An obvious difficulty with calculation of the 
second virial coefficient in this way is the pro- 
nounced dependence of B on the magnitude 
assigned to 6, a parameter for which the value is 
often very subjective. Indeed, this sensitivity of B 
to the value of 6 relegates to secondary import- 

Figure 2 

Effect of the extent of solvation (6) on the magnitude of 
the second virial coefficient (B)  calculated by COVOL 

The basis used for triaxial ellipsoid semi-axes of ratios I .87 (olb) 
and I .08 (b/c) for isoelectric ovalbumin (solid line), and for the 
same axial ratios under conditions (pH 8.5, I = 0.156) where the 
protein bears a net charge (valence) of - I 6  (dot-dashed line); 
the dotted line shows the corresponding dependence for iso- 
electric ovalbumin modelled as a sphere. Horizontal lines denote 
experimental estimates of 6 from sedimentation and exclusion 
chromatography studies of ovalbumin. 
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ance the relative magnitudes of the triaxial ellip- 
soid semi-axes, a factor evident from the dotted 
dependence in Figure 2, which refers to isoelec- 
tric ovalbumin modelled as a sphere 
( u , , ~  = 8.000): values of 0.47-0.57 for the extent 
of ovalbumin hydration are obtained from this 
model and the exclusion-chromatographic [ 191 
and sedimentation-equilibrium [ 181 estimates of 
B. 

Conclusion 
This investigation has demonstrated the use of 
COVOL to calculate second virial coefficients for 
macromolecules that can be modelled as impene- 
trable triaxial ellipsoids, but it has also identified 
the feature that realization of its full potential 
must await more definitive means of assessing 
the magnitude of 6, the extent of macromolecule 
solvation. In that regard the extent of solvation 
has usually been considered to be in the range 
0.3-0.4 for globular proteins [2,20], whereas 
experimental measurements of B for ovalbumin 
signify a higher value (0.4-0.6) for 6. Measure- 
ments of B for a range of proteins with known 
axial dimensions are clearly required to shed fur- 
ther light on the likely magnitude of 6, and 
hence on its prediction on the geometrical basis 
of an assigned thickness to the solvation layer 
extending over the surface of the protein mole- 
cules (see, for example, [22]). 

It is therefore hoped that this investigation 
will also stimulate renewed interest in the accu- 
rate measurement of osmotic virial coefficients, 
parameters for which the major use in the past 
has merely been to guide the elimination of non- 
ideality by extrapolation of data to infinite dilu- 
tion. 
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Introduction 
In recent characterizations of interactions 
between dissimilar macromolecular reactants by 
sedimentation equilibrium [ 1-31, the binding 
constant has been evaluated by iterative simula- 
tion of sedimentation equilibrium patterns to 
identify the best-fit description of the experi- 
mental distributions for the two solute constit- 
uents. A problem with such analyses has been 
their inability to accommodate realistic allowance 
for the effects of thermodynamic non-ideality in 
either self-associating or heterogeneously assoc- 
iating systems. Encouraged by the successful 
development of a direct analysis of solute self- 
association that incorporates rigorous statistical- 
mechanical treatment of thermodynamic non- 
ideality [4], we have looked into the feasibility of 
employing a similar approach for the characteriz- 
ation of interactions between dissimilar macro- 
molecular solutes. 

Theoretical considerations 
T h e  use of sedimentation equilibrium to charac- 
terize the interaction(s) between an acceptor, A, 

possessing several binding sites for a macro- 
molecular ligand, s, entails ultracentrifugation of 
a mixture with defined molar concentrations of 
the two reactants, (CA)" and (Cs)o, at angular 
velocity w and temperature T. Upon attainment 
of chemical as well as sedimentation equilibrium, 
the distribution of each individual species (i =A, 
S, AS, AS2, etc.) is given by the expression [5,6]: 

z, (r) = 2, (YF) exp [MI 4, (r2 - 4 3 ( 1 4  

4I = (1-z ' ,p)02/(2RT) (1b) 

which relates the molar thermodynamic activity, 
z,(r) ,  of a species at any radial distance r to its 
value at a chosen reference radial position rF: M, 
and 6, are the respective molecular mass and 
partial specific volume of species i. Although p 
was considered initially [7] to be the density of 
the solution, it has now been identified 
unequivocally as the solvent density [8,9], a con- 
clusion that at last allows the treatment of sedi- 
mentation equilibrium data in rigorous 
thermodynamic terms. Because the distributions 
of individual species are not recorded separately, 
the method of analysis depends on the combina- 
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