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An analysis of the heterogeneity of mucins

No evidence for a self-association
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There are two possible contributions to the heterogeneity of mucus glycoproteins as
observed in the analytical ultracentrifuge: firstly, from associative phenomena, and,
secondly, from a polydisperse distribution of non-interacting species of different
molecular masses. It is shown from the non-superposability of plots of point-weight-
average relative molecular masses against concentration for differing initial cell-
loading concentrations that polydispersity must be significant. It is further shown, by
attempting to block any associative phenomena by competitive inhibition of
potential sites for hydrophobic inter-particle interaction, that the observed
heterogeneity is primarily a result of polydispersity and not a self-association.

It is evident from physical studies such as
analytical equilibrium ultracentrifugation and
light-scattering that mucus glycoproteins are
heterogeneous substances. [For convenience I
use the term ‘heterogeneity’ in its widest sense to
describe any system where the solute species do not
have a single value for the relative molecular mass,
no matter what the origin of the variation may be
(Creeth & Harding, 19824).] It has been suggested
(Creeth, 1980; Harding & Creeth, 1982) that the
observed heterogeneity might be due to a property
of mucins to self-associate, and, if so, possibly
isodesmically (i.e. with constant free-energy in-
crements). On the other hand, it might be due
to a polydisperse distribution of non-interacting
species of different molecular masses.

Is therefore the observed heterogeneity due to
association, polydispersity or significant contribu-
tions from both? A further complication to the
interpretation of physical measurements is that
mucins are highly non-ideal in the thermodynamic
sense. This arises from the very high affinity of
these substances for water, with resulting high
excluded volumes (corresponding to a molecular
expansion of about 100-fold in solution; Creeth &
Knight, 1967, 1968; Harding et al., 1983b).

In the present study the problem has been re-
examined for two well-characterized bronchial
glycoproteins: one from the sputum of a cystic-
fibrosis patient ‘CF PHI’ (M,, ~2x 10°) and the
other ‘BM GRE’ (M,, ~6 x 10°) from the sputum
of a chronic bronchitic, where M, is the weight-
average relative molecular mass. It is firstly shown
that the effects of polydispersity cannot be ignored
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for these substances, and, finally, by competitive
inhibition of possible sites for self-association, that
such an association cannot be verified for these
substances in the native state.

Materials and methods

Solvents

The primary solvent used throughout was a
phosphate/chloride buffer, pH 6.8 and 70.10, of the
following composition: 0.33M-NaCl, 16.5mMm-
Na,HPO,, 167mM-NaH,PO,, 2mM-NaN, and
1mM-EDTA. CsCl, NaCl, guanidinium chloride,
fucose and N-acetylglucosamine solutions were
prepared in this solvent. Before analysis by
sedimentation equilibrium all solutions had been
exhaustively dialysed against the relevant solvent
(>48h at 4°C; >72h for guanidinium chloride).

Glycoproteins

The preparation of the cystic-fibrosis glycopro-
tein CF PHI, involving several density separations
in caesium salts, has been described previously
(Harding & Creeth, 1983); the purified glycoprotein
was found to be free of lipid, protein or DNA
contaminants, as determined by the techniques of
analytical density-gradient ultracentrifugation or
polyacrylamide-gel electrophoresis.

The chronic-bronchitic glycoprotein BM GRE
has been separated and purified by using similar
procedures (see also Creeth et al., 1977). In this
case, however, the glycoprotein had been subfrac-
tionated on the basis of density in the final steps.
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Sedimentation equilibrium

A Beckman model E analytical ultracentrifuge
was used, and solute distributions were recorded by
using Rayleigh interference optics. In this work
3mm solution columns were used in both conven-
tional double-sector and also Yphantis-style
(Yphantis, 1964; Teller, 1973) multi-channel cells
(Fig. 1). In all experiments 30 mm-path-length cells
were used, except for the CF PHI high-concentra-
tion experiment (12mm). The intermediate-speed
method (Creeth et al., 1974; Creeth & Harding,
1982b) was used. The speed is sufficiently low in
this method so as to ensure complete resolution of
the fringes near the base of the cell, so that large-
molecular-mass components are not lost. Atequilib-
rium the concentration at the air/solution meniscus
remains finite, and is obtained by mathematical
manipulation of the data (see, e.g., Creeth &
Harding, 1982b). Point-weight-average relative
molecular masses, M,,, were obtained by employing
sliding-strip quadratic fits to the observed fringe
data. Whole-cell weight-average relative molecular
masses, M9, were extracted by using the limiting
value of a particularly directly determinable point
average (Creeth & Harding, 1982b): an indepen-
dent estimate for the initial concentration was not
required.

Results and discussion

Fig. 2(a) shows a typical solute equilibrium
distribution for a mucus glycoprotein recorded by
using Rayleigh interference optics. The solution
fringes are for the chronic-bronchitis glycoprotein
BM GRE, at a low initial loading concentration
(approx. 0.4mg/ml): the steep rise of the fringes
near the cell base without depletion of the
meniscus of solute is indicative of heterogeneity.
Fig. 3 gives the corresponding plot of InJ versus &,
where J is the fringe concentration and ¢ is a
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function of the square of the radial displacement,
re:

r:—a?
= b2 —_ aZ

where a and b are the radial positions of the
meniscus and base respectively. It was shown in
earlier communications (Creeth, 1980; Harding &
Creeth, 1982) that such plots could be represented
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Fig. 1. Contents of multi-channel cells corresponding to
Fig. 2

Solvent for (a), phosphate/chloride buffer contain-
ing 0.4M-CsCl; solvent for (b), phosphate/chloride
buffer containing fucose (5mg/ml); solvent for (c),
phosphate/chloride buffer containing N-acetyl-
glucosamine (5mg/ml). The solution channels con-
tained in addition inert fluorocarbon oil to provide a
sector-shaped bottom. Channels were filled to give
3mm columns. The initial glycoprotein loading
concentrations for all three solution channels were
approx. 0.4mg/ml.
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0ao

Direction of centrifugal field

y

Fig. 2. Rayleigh equilibrium interference patterns for the three glycoprotein solutions corresponding to the cell-channel contents
as shown in Fig. 1
(a) BM GRE in phosphate/chloride buffer containing 0.4M-CsCl; (b)) BM GRE in phosphate/chloride buffer
containing fucose (5mg/ml); (c) BM GRE in phosphate/chloride buffer containing N-acetylglucosamine (5 mg/ml).
The initial glycoprotein cell-loading concentration in each case was approx. 0.4mg/ml. The rotor speed was 1967

rev./min, and the temperature 20.31°C.
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Heterogeneity of mucins not due to self-association
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Fig. 3. Plots of the natural logarithm of the fringe
concentration (J) versus the square of radial displacement
Sfunction & (see eqn. 1) corresponding to the Rayleigh
equilibrium pattern (a) of Fig. 2 (namely glycoprotein BM
GRE in phosphate/chloride buffer containing 0.4M-CsCl)

in terms of an isodesmic self-association, the latter
paper (Harding & Creeth, 1982) taking into
account thermodynamic non-ideality. For such
simulations, however, the effects of polydispersity
could not be taken into account. This, in fact, is not
a reasonable assumption. Mucus glycoproteins are
inherently polydisperse by virtue of the process of
their biosynthesis (see, e.g., Silberberg & Meyer,
1982). Two types of polydispersity are to be
expected: firstly, ‘primary’ polydispersity arising
from a quasi-continuous distribution of carbo-
hydrate side-chain lengths (Roussel et al., 1975);
secondly, ‘secondary’ polydispersity arising from a
discrete variability of the numbers of fundamental
‘basic units’ (Silberberg & Meyer, 1982; Harding et
al., 1983a).

In Fig. 4 I have demonstrated the presence of
polydispersity for CF PHI by using the diagnostic
technique of non-overlap of M,-versus-c plots
(Roark & Yphantis, 1969) for two solute distribu-
tions corresponding to two different initial cell-
loading concentrations. The fall-off in the M,
values with increase in concentration for the
higher cell-loading concentration (approx. 2.0mg/
ml) is a result of thermodynamic non-ideality,
corresponding to a value for the second virial
coefficient, B, of at least 1.5x 10 *ml-mol-g~2
(Harding & Creeth, 1982).

With the added complication of such non-
ideality for these substances, it is a non-trivial
problem to evaluate the precise nature of polydis-
persity or self-association phenomena. However, it
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Fig. 4. Plots of point-average relative molecular masses
against concentration for two different initial cell-loading
concentrations, c°, of glycoprotein :
CF PHI: +c® ~0.2mg/ml; =*, ¢° ~2.0mg/ml.
Rotor speeds, 1967rev./min. Solvent: phosphate/
chloride buffer containing 1M-NaCl.

is possible at least to establish whether there is a
self-association present or not, just as we have
established that polydispersity is present. There
are two possible sites for self-association on a
mucin molecule: first of all, there may be hydro-
phobic patches on the glycosylated regions arising
from possible localized groups of fucose or N-
acetylglucosamine. This does not at first sight
appear unreasonable, since fucose is always pres-
ent as a terminal residue of a carbohydrate side
chain, and N-acetylglucosamine is normally the
most abundant carbohydrate residue (see, e.g.,
Silberberg & Meyer, 1982). If these residues do
provide sites for self-association, then it is reason-
able to assume that they may be blocked compet-
itively by having a swamping concentration of
fucose or N-acetylglucosamine in free solution.
Fig. 2 illustrates the results of such an experi-
ment involving the chronic-bronchitis glycopro-
tein BM GRE. An Yphantis-type multi-channel
cell was used (Yphantis, 1964), loaded as indicated
in Fig. 1 legend. The inner solution fringes (a)
correspond to the solute equilibrium distribution of
glycoprotein, at an initial loading concentration of
approx. 0.4mg/ml (= 0.2 uM) in a non-dissociating
solvent (phosphate/chloride buffer, as described
above, containing 0.4M-CsCl). The middle fringes
(b) correspond to the same glycoprotein loading
concentration in phosphate/chloride buffer con-
taining fucose (Smg/ml, =30mM) and the outer
fringes (c) to that in phosphate/chloride buffer
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containing N-acetylglucosamine (5mg/ml,
= 30mM).

No visible differences are apparent between the
three solution fringe patterns. Indeed, there is no
significant difference between the whole solute
distribution weight-average relative molecular
masses: for (a), M%{=6.2x10%; for (b),
M9 =6.0x108; for (c), M% =6.2x10° Simula-
tions showed that the concentrations of fucose and
N-acetylglucosamine remained virtually constant
throughout the solute redistribution: that is, the
redistribution of fucose or N-acetylglucosamine
caused by the centrifugal field was negligible. It is
therefore unlikely that fucose or N-acetylglucos-
amine residues are sites for self-association
phenomena.

The other possible sites on a mucin for self-
association phenomena are regions of naked
peptide, devoid of carbohydrate, that are known to
be present in mucins (see, e.g., Allen et al., 1982). A
similar experiment with the same initial loading
glycoprotein concentration on a similar fraction of
BM GRE in phosphate/chloride buffer but with
6M-guanidinium chloride present (to block com-
petitively any hydrophobic free peptide sites)
again yields a similar relative-molecular-mass
average for the distribution (M9, 5.5 x 10°).

It has to be concluded therefore that there is no
detectable self-association for this mucin. This
conclusion is supported by data (for experiments in
6M-guanidinium chloride and non-dissociating
solvents) for other mucins of smaller molecular
mass (Harding & Creeth, 1983). This conclusion is
also supported by observations done in parallel on
BM GRE and also pig gastric mucin by Creeth &
Cooper (1984). The observed heterogeneity of
mucins is evidently a manifestation of polydisper-
sity and not of self-association phenomena. In
order, however, to establish the nature of the
polydisperse distributions, for example, whether
they are log—normal or otherwise, will involve
curve-fitting with the use of the Rinde type of
equations (Rinde, 1928; see also Creeth & Har-
ding, 19825) but with due allowance for thermo-
dynamic non-ideality, which is a formidable
problem.
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