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Using a model first introduced by Simha (J. Phys. Chem. 44, 25 (1940)), an explicit expression 
for the viscosity increment of  a dilute suspension of  general triaxial ellipsoidal particles is derived 
assuming that Brownian motion is dominant  and that the particles are on average at rest in the 
referential frame. By comparison with a recently published numerical procedure (Rallison, J. Fluid 
Mech. 84, 237 (1978)) it is shown th~lt this latter assumption leads to no significant errors for "globular" 
particles (axial ratios < 3) and to only very small errors ( - 1 % )  for the worst  case. The use of the 
viscosity increment,  together with o ther  hydrodynamic parameters,  for estimation of  unique values 
for the three principle axes of  globular particles is briefly discussed. 

INTRODUCTION 

One way in which the biologist hopes to 
use theoretical results from the rheology of 
suspensions is in trying to infer the shape 
of biological macromolecules from experi- 
ments on suspensions of the molecules. In 
contrast with the detailed picture of molec- 
ular structure that emerges from X-ray 
studies of the crystalline state, such an ap- 
proach can hope to do little more than select 
the best approximation to the gross struc- 
ture from a limited range of simple shapes 
such as rods, disks, and ellipsoids. Never- 
theless the study has considerable impor- 
tance since the conformation of the mole- 
cule in its crystalline state may differ signifi- 
cantly from its conformation in vivo where 
it is surrounded by fluid. 

Within the class of ellipsoidal models only 
ellipsoids of revolution have been used 
hitherto, and although the advent of the 
modern high-speed computer has rendered 
possible the use of the general ellipsoidal 
model, it seems to have been widely con- 
sidered that no great gain would be obtained 
from doing so. Obviously the structure of 
some molecules is such that no ellipsoid can 

remotely approximate even their hydrated 
shape, but many biological macromolecules, 
in particular, globular proteins, will be well 
modeled by an ellipsoid, and it seems likely 
to us that the extra degree of freedom avail- 
able in a general ellipsoidal model would 
lead to more useful results. 

To obtain an estimate of shape for an as- 
sumed model requires a number of different 
types of measurements to be carried out on 
the suspension (3)--experiments on trans- 
lational diffusion, sedimentation, viscosity, 
and electric birefringence, for example. 
Small and Isenberg (4) have recently tabu- 
lated the Perrin equations (5) for diffusion 
in the case of general eUipsoidal particles by 
computation, and in this paper we derive an 
explicit formula (Eq. [9]) for the viscosity 
increment of a dilute suspension of rigid 
ellipsoidal particles subject to overwhelm- 
ing Brownian motion which generalizes the 
widely used classical formula for ellipsoids 
of revolution first proposed by Simha (I). 
Although the derivation of this formula in- 
volves an approximation, no difference at 
levels likely to be experimentally signifi- 
cant for the range of axial ratios in question 

Journal of Colloid and Interface Science, Vol. 79, No. 1, January 1981 

0021-9797/81/010007-07502,00/0 
Copyright © 1981 by Academic Press, Inc, 
All rights of reproduction in any form reserved. 



8 HARDING, DAMPIER, AND ROWE 

is noted from values yielded by a general 
numerical procedure recently published by 
Rallison (2). We are able to restrict our  in- 
vestigation to dilute suspensions and to 
the very simplest flows since, for the applica- 
tions in which we are concerned, the dilution 
will be within the control of the experi- 
menter while the flows of  interest will be the 
simple viscometric ones such as Couette  or 
Poiseuille flow. Indeed, in practice,  the ex- 
periments are conducted so that the results 
may be extrapolated to infinite dilution and 
zero shear rate. 

BROWNIAN MOTION 

Although the forces and torques exerted 
upon a suspended particle by a viscous fluid 
are all ultimately of molecular origin, it is 
convenient  to distinguish those that can be 
explained by continuum hydrodynamics  
from those,  due to molecular fluctuations, 
that give rise to Brownian motion. I f  we first 
completely neglect the Brownian motion, it 
is clear that,  once a steady state has been 
attained, suspended particles free of  any 
external impressed forces must move  in 
such a way as to make the hydrodynamic  
force and torque acting upon them zero. 

Let  us consider a steady, simple-shearing 
flow. The motion of  the fluid in the neighbor- 
hood of  any point can be decomposed into 
three components :  a translational velocity 
which varies from point to point, an angular 
velocity which for this type of  flow is the 
same at all points, and a pure straining 
motion which again is the same at all points. 
If  now a single neutrally buoyant ,  rigid 
ellipsoidal particle is introduced the flow 
will be disturbed, although at large distances 
from the ellipsoid the disturbance will tend 
to zero. We shall assume that the motion of  
the ellipsoid and of  the fluid is such that the 
Reynolds number  is very small. Then it is 
possible on the basis of the work of  Ober- 
beck (6) and Jeffrey (7) to say what the 
hydrodynamic forces and torques acting on 
the particle are. In particular it is known 
that the force will be zero when the trans- 
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lational velocity of the particle is the same 
as the translational velocity of  the point in 
the undisturbed flow at which the particle is 
suspended. The situation for angular velocity 
is more complicated since two factors  come 
into play: one gives a torque if the angular 
velocity of  the particle differs f rom the 
angular velocity defined by the undisturbed 
flow (or, equivalently,  by the actual  flow at 
infinity), while the other  gives a torque if 
the principal axes of  the ellipsoid have a 
different orientation from the principal  axes 
of  the straining motion defined by the undis- 
turbed flow. Taken together  these  mean that 
the angular motion of  the part icle under  
zero torque conditions is ve ry  complicated 
(7, 8) and a complete solution for  it is not 
known. 

Turning to the Brownian mot ion  which is 
in the nature of  a fluctuation the simplest 
question we can ask is, what is the average 
velocity and the average angular veloci ty of  
the particle? By the average we mean in the 
first instance the time average,  al though in 
practice this will be assumed equal to a vol- 
ume average taken over  an ensemble  of  a 
very  large number  of  particles suspended 
in unit volume (see (9) for  a detai led discus- 
sion of  various methods of averaging). Ignor- 
ing for the moment the hydrodynamic  forces,  
we can answer the question by saying that 
on average the particle is at res t  in the local 
frame of  reference defined by  the undis- 
turbed flow. In other  words it is on average 
moving with the translational veloci ty  of  the 
point in the undisturbed flow at which it is 
suspended and with the angular  veloci ty 
defined by the undisturbed flow. 

When we come to consider  the combined 
effect of  the hydrodynamic  forces  and the 
Brownian motion no problem arises with the 
translational motion of  the particle since 
both effects tend in the same d i r ec t i o n - -  
motion With the translational veloci ty  o f  the 
flow. But for the angular mot ion the situa- 
tion is less simple, the two effects  do not 
have the same tendency,  and we must  con- 
sider a range of  possibilities depending upon 
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the relative strengths of the two. We shall 
only be considering the case of overwhelm- 
ing Brownian motion in which the hydro- 
dynamic effects are completely negligible 
compared with the Brownian motion effects. 
Thus we shall take it that on average the 
particles are rotating with the local angular 
velocity of the ambient flow. This latter 
condition has been proved for axisymmetric 
particles (10-14). We here make the as- 
sumption that it will be true to an adequate 
approximation for general ellipsoids of low 
axial ratios (a/b 1.0 ~ 3.0, b/c 1.0 ~ 3.0)--  
i.e., for a typical globular protein. As will 
be apparent later (see Discussion) the mag- 
nitude of the uncertainty introduced by this 
assumption can be ascertained by compari- 
son of values from our formula with those of 
Rallison' s numerical procedure (2). We may 
additionally assume that the orientation of 
the particles will be random. This last fact 
would not be so if hydrodynamic forces and 
torques were not negligible for they intro- 
duce systematic motions and hence pre- 
ferred orientations. 

THE SIMHA MODEL OF OVERWHELMING 
BROWN/AN MOTION 

We consider a homogeneous dilute sus- 
pension of identical rigid ellipsoids randomly 
oriented in an incompressible Newtonian 
fluid in which they .are neutrally buoyant. 
The ambient flow is taken to be a slow 
simple-shearing flow, while the suspended 
particles are taken to be moving with the 
velocity and the angular velocity of the 
ambient flow appropriate to the point at 
which each is suspended. Near each particle 
this ambient flow is disturbed but is taken 
still to be a slow (low Reynolds number) 
flow so that we may apply the classical re- 
sults of Jeffrey (7). This model, which is 
taken to be appropriate for the case of over- 
whelming Brownian motion, derives from 
Simha (1), although in his original work 
doubt is left about whether or not the par- 
ticles are rotating with the local angular 
velocity of the fluid. 

The key simplifying feature of the model 
introduced by Simha is that it eliminates 
the complicated statistical problem pre- 
sented by the Brownian motion by sub- 
stituting an assembly of particles all moving 
with the average motion. This, together 
with the assumptions of diluteness and ran- 
dom orientation, allows us to compute the 
effect of the suspended particles by simply 
summing their individual effects. The sym- 
metry of the particle distribution in the 
model means that non-Newtonian behavior 
will not appear, and also allows us to use 
the energy dissipation method of computing 
the viscosity (9, 15). 

The simplifications of the model are 
achieved, however, at a price. Non-New- 
tonian and concentration-dependent ef- 
fects, which to the theoretical rheologist are 
of the greatest interest, have been deliber- 
ately discarded; and the model can say 
nothing about lesser degrees of Brownian 
motion. In effect we shall be calculating 
only the first term of a series; nevertheless 
even this is of great value to the experimen- 
tal biochemist. In applications, of course, 
one must distinguish the question of what 
results follow from the model from the ques- 
tion of the conditions under which the model 
is applicable. 

THE VISCOSITY INCREMENT 

We let H* be the viscosity measured in an 
experiment on a dilute suspension of par- 
ticles in a fluid of viscosity H- Ifc is the con- 
centrat ion--the total volume of the particles 
in a unit volume of the suspension--then 
the viscosity increment, v, is defined by 

H*/H = 1 + vc, [1] 

where, when v is independent of c, the linear 
dependence of H*/H upon c gives the empiri- 
cal characterization of a dilute suspension. 
From the theoretical point of view, how- 
ever, a dilute suspension is one in which 
there are no hydrodynamic interactions 
between the particles and thus in which 
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FIG. 1. A p lo t  of  ~, as  a func t ion  of  a / b  w h e n  b / c  = 10.0 (a > b > c). Th is  ag rees  c l o s e l y  to  t h a t  

g iven  by  Ra l l i son  (2, Fig.  7). (N .B . ,  Ra l l i son  has  c > a > b . )  

02 

each particle independently contributes to 
the viscosity the same amount  it would were 
it alone present. This contribution for a 
general ellipsoidal particle was first calcu- 
lated by Jeffrey (7) using considerations 
of energy dissipation, and it is a straight- 
forward matter to extend his results to cover 
the case of ellipsoids rotating with the local 
angular velocity of  the ambient flow as re- 
quired by our model. 
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Taking a rectangular Cartesian coordinate 
system (x0 with origin at the center of  the 
ellipsoid and aligned along its principal axes, 
the velocity field of the fluid far from the 
particle is given up to terms of  order r -3 by 

u i  = d i j x j  - 4A~kxjxkx~r -5 

-(4/3)(Aij - Aj~)x~r 3, [21 

where (du) are the components of  the veloc- 
ity gradient tensor of the ambient flow and 
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TABLE I 

Values of v as a Function of (a:b:c)  for a General Triaxial Ellipsoid (a > b > c) a 

11 

Prolate ellipsoid blc 
Oblate ellipsoid 

a/b 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1,7 1.8 1.9 2.0 

1.0 2.500 2.507 2.524 2.550 2.583 2.620 2.661 2.706 2.753 2.803 2.854 
1.1 2.507 2.520 2.544 2.576 2.614 2.656 2.702 2.751 2.803 2.857 2.913 
1.2 2.525 2.545 2.575 2.612 2.655 2.703 2.754 2.808 2.865 2.923 2.983 
1.3 2.553 2.579 2.615 2.658 2.706 2.759 2.815 2.874 2.935 2.998 3.063 
1.4 2.588 2.621 2.662 2.711 2.764 2.822 2.883 2.947 3.013 3.081 3.151 
1.5 2.630 2.668 2.716 2.770 2.829 2.892 2.958 3.027 3.098 3.171 3.245 
1.6 2.677 2.722 2.775 2.834 2.899 2.967 3.039 3.113 3.189 3.267 3.346 
1.7 2.729 2.779 2.839 2.904 2.974 3.047 3.124 3.204 3.285 3.368 3.453 
1.8 2.785 2.842 2.907 2.978 3.053 3.132 3.215 3.300 3.386 3.475 3.565 
1.9 2.844 2.908 2.978 3.055 3.137 3.222 3.310 3.400 3.492 3.586 3.681 
2.0 2.908 2.977 3.054 3.137 3.224 3.315 3.408 3.504 3.602 3.702 3.803 

o On the basis of Eq. [9]. 

(A~j) are coefficients independent of position 
but depending upon the (d~j)and the angular 
velocity of the particle (see (7, Eqs. 25, 26), 
noting A~I is Jeffrey's A ,  Aj2 is his H, A21 his 
H ' ,  etc.); the usual summation convention is 
used in our equations. The additional rate of 
dissipation of energy, A, due to the presence 
of the particle is found to be 

A = (32/3)zrl~Aijdo, [3] 

(compare (7, Eq. 58)). For the particular 
case of a particle rotating with the fluid the 
(A~) are homogeneous linear functions of 
the (d,~), 

A i j  = C i k j l d k l ,  [4] 

where the coefficients (C~kj~) can be read off 
from Jeffrey's formulas. For a simple-shear- 
ing flow of the suspension there will be 
orthogonal unit vectors (nO, (m0 such that 

d i j  = Knimj ,  [5] 

where K is the shear rate, the components 
of these vectors being time dependent since 
the coordinate system we are using is rotat- 
ing in space. Thus we obtain 

A = (32/3)¢r~K2ninjCimmkm~. [6] 
At any given instant the components of (nO 
and (m0 will differ according to which par- 
ticle of the suspension we consider, but, 

subject only to the condition that the two 
vectors be orthogonal, all directions will be 
equally likely by our assumption on the 
Brownian motion. We thus calculate the 
total rate of dissipation of energy by all the 
particles in unit volume by taking the vol- 
ume average of [6] over all directions (nO, 
(m0 subject to the restriction of orthog- 
onality. This calculation is straightforward 
and gives 

Atot = (32/3)7rftK2NZ, [7] 

where N is the number density of suspended 
particles, and where 

Z = _ _ 

1 !  r io+  yo 
+ , 

40[ Cto(b2ro + c2T0) 

+ T o  + ~ 0  

r~(cZT0 + aZ~0) 

O~o + [3o ] 
+ , [8] ! ~/~(aRcto + b2flo) 

b, c are the semiaxes of the where a, 
ellipsoid, and where ao etc, which depend on 
a, b, c are defined by certain elliptic inte- 
grals given by Jeffrey (7). Equating Atot with 
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FIG. 2. Contour  diagram showing curves of constant  u as a funct ion of  the semiaxial  ratios a / b ,  b / c ,  

on the basis  of  Eq. [9]. 

(k~* - /Z)K 2 gives the resul t  

1.; = - -  

abc [ 15(fl~yg + y~a~ + agile) 

I f  ~__~0 + y0 
+ _ j  , 

5Lao(bZ/3o + CZTo) 

To + a0 + 
/3~(c2T0 + a2c~0) 

, T6(a2c~o + b2/30) 
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W h e n  b = c this formula  r educes  to the 
classical  equa t ion  first der ived  by  S imha  
(1), and w h e n  a = b = c it r educes  to the 
value ~, = 2 .5  der ived  by Einste in  (16, 17). 
Had  S imha  real ly been  cons ider ing  a mode l  
in which  the ell ipsoids had ze ro  ro ta t ion  as 
his words  m a y  have  suggested ,  the fo rmula  
should  have  r educed  in the case  o f  a sphere  
to v = 4 as s h o w n  by  Brenner  (18). Tha t  it 
in fact  gives 2 .5  is sufficient to rule ou t  that  
in te rpre ta t ion  a l though indeed it has been  
k n o w n  since the w o r k  of  Saito (12) tha t  the 
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classical formula held only on the assump- 
tion that overwhelming Brownian motion 
implied that the particles were rotating with 
the local angular velocity of the fluid. 

DISCUSSION 

A general analysis using the full statistical 
t rea tment  of  the angular motion has recently 
been  given by Rallison (2). His results for 
the case of overwhelming Brownian motion 
show that to first order  in the shear  rate, the 
non-Newtonian  stress effects vanish which 
is consistent  with our assumption of  New- 
tonian behavior  for very low shear rates.  He 
also gives an expression for v correct  to 
first order  in the shear rate,  al though not in 
the form of a simple formula like [9], but by 
using numerical methods Rallison is able to 
give a plot of v for various axial ratios. The 
results are clearly very close to those ob- 
tained from [9]; compare  our  Fig. 1 with 
Rallison's Fig. 7. 

However ,  an exact compar ison (J. M. 
Rallison, personal communicat ion)  shows a 
very  slight discrepancy be tween values 
f rom our  formula and from Rallison's pro- 
cedure,  although this d iscrepancy is not 
apparent  within four significant figures for 
the range of asymmetry  which we are con- 
sidering (Table I). The values given in Table I 
are therefore  definitive. It has been indi- 
cated to us (J. M. Rallison, H. Brenner,  
private communications of  unpublished 
work) that our formula requires the addition 
of  a small extra term related to the deviation 
from our  assumed condit ion of  particles 
rotating on average with the local angular 
veloci ty  of  the fluid. The numerical  results 
show our approximation to be extremely 
accurate  for "g lobular"  particles, as noted 
above,  but for certain particles of  higher 
asymmet ry  calculations suggest that devia- 
tions of  up to 1% in v can arise. 

For  the determination of shape parameters 
for  globular particles, the extension to the 
general  ellipsoidal case by using Eq. [9] 

should provide a much more powerful ap- 
proach, but  is not without difficulty since 
a given value of v does not uniquely fix the 
two independent  axial ratios of the ellipsoid. 
This is illustrated in Table I and Fig. 2. We 
are investigating the possibilities of apply- 
ing our newly derived relationship to macro- 
molecular suspensions using computer- 
based numerical inversion techniques treat- 
ing the two axial ratios and the molecular 
volume as parameters  to be simultaneously 
determined from experimental data obtained 
from a range of  techniques,  including vis- 
cosity. The results of  these investigations 
have been encouraging and will be described 
elsewhere (3). 
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