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SPIKE TRAIN ANALYSIS 

INTRODUCTORY WORKSHOP NOTES
[edition - RM 07.08.2015 School of Life Sciences UNMS] pre-release STA v0.991
OBJECTIVES:  

These notes accompany a series of two or three 30min teaching sessions followed by "hands-on" experience with data processing.  Aimed to give "student" a concise introduction and practical experience with some data and associated limitations in spike train analysis.

The notes include illustrations of some of these analyses using the NEX (NeuroEXplorer) programme and/or custom-written Matlab scripts with a sample recordings from a hippocampal monolayer network cultures or in vivo mPFC/hippocampal studies.

Appendices: include notes on 

PART 5: microionophoresis (microiontophoresis US)
PART 6: Ultra Sound Vocalisation recording

Spike sorting 

· Spike sorting algorithms not able to help improve on poor Signal:Noise ratios (i.e. <3:1)
· Level threshold crossing - unit activity > defined (e.g. 3.7) S.Ds. from mean considered separated from noise

· Voltage-Time boxes - manual experimenter assignment

· Template matching (within Voltage-Time boxes - automatic)

· PCA - use of first two PCs combined with spike amplitude ( segment waveform PCA space into number of waveforms (correlate with amplitude histograms & scope)

· Plexon web site has a useful video tutorial on spike sorting – 
Single-unit or not?

· Identify using on-line / off-line computation of ISIHs & autocorrelations - give e.g’s
· Single-units defined by waveform clearly distinguishable from background (noise) and exhibiting minimal variation, with refractory period > 2ms in autocorrelogram consider as single-units

· Examine ISIH - units with refractory period < 2ms suggests artefacts (c.f. unit clusters) procedure

Unit Cluster (multi-unit) Activity

· Single-units - allow functional characterisation of specific neuronal types, while unit cluster activity can provide reliable representation of information in a local neural ensemble.

· Unit clusters visualised as heterogeneous waveforms and random/even distribution in the autocorrelogram.
· Bullock's (1997) definition of "multi-unit" activity was used in this report. All threshold crossings, regardless of waveform size or shape, were considered part of the multi-unit activity. Threshold levels were arbitrary but held fixed for an entire experiment. Generally, it appeared that between 5 and 10 single units contributed to the multi-unit recordings.
Spike waveform

· Neuronal waveform shape parameters characteristic (+ve/-ve; width) of specific cells - use the lab's Matlab "waveform analysis" script entitled: (XXXXX)
· If high-pass filtering used (e.g. 300Hz-5kHz, to reduce movement artefacts in behavioural electrophysiology studies) then low-frequency components of long-duration APs (e.g. VTA DA neurones) effectively filtered out & appear as narrower AP width. [“unfiltered” signals often used at 0.1-10kHz]

· Characterise & view neuronal waveform profile as a 3D scatter display plot – potential use in physiological identification of pyramidal vs interneurones (e.g. Csicsvari et al 1999)
(e.g.  Y-axis: firing rate; X-axis: mean of autocorrelogram; Z-axis: extracellular spike

duration (@ 25 or 50% max spike amplitude).
Auto-correlation Histogram (ACH)

· Standardise parameters: e.g. 1000/5000 bins (bin width 1ms)

· Computes absolute refractory period - i.e. zero counts <2-4ms from time 0 – use in eliminating artefacts from spikes in records.
· Characterise patterns - e.g. peak pattern & increase pattern – regular vs. sporadic vs. burst firing? spectral density of spike train – aid to identify rhythmic firing patterns seen as multiple peaks in the ACH
· “Running ACH” (e.g. Science 2003 301, 847-850) – [3D plot X-axis expt time (0-20s); Y-axis ± 0-1s; Z-axis colour intensity]
[NEX hint: ]

Inter-Spike Interval Histogram (ISIH)
The basic firing properties of the recorded neurons were assessed by the interspike interval (ISI) distribution, mean firing rate, and coefficient of variation of the interspike intervals calculated for the entire recording session or for various epochs of each trial. Interspike interval histograms were computed using 20 ms time bins spanning 0–500ms. Mean firing rate was calculated as the inverse of the mean of all ISIs. 
The coefficient of variation was calculated as:

coefficient of variation  =  ISI standard deviation / ISI mean

Is frequency distribution of the intervals between all the successive discriminated APs - isolated unit display a minimum ISI = AP refractory period (i.e. 2-5ms). 

· Standardise - e.g. bin width 1ms / 1000bins only compute ISIs < 1s - alter for slower FR 

· Computes distribution of intervals between spikes - indication of regular, irregular or burst firing pattern (unimodal; bimodal; multimodal peaks in ISIH)
· Variability of ISIH determined by coefficient of variation (CV) - a measure of regularity of firing [defined as CV = (/ISIm x 100; where ( is S.D. of ISIs (for standard sample, e.g. 500 spikes) & ISIm is arithmetic mean of ISIs].  

· Could use ISIH CV as criterion to define discharge regularity, i.e. CV < 10 regular; CV ≥ 10 irregular. 

· ISI-Time histograms - examine change in neuronal ISI over time
[NEX hint: ]

CV2

Variability of spike train was measured using a metric CV2, a measure of spike train variability that is not sensitive either to mean firing rate or to slow changes in firing rate. CV2 is the average measure of the variance of two adjacent interspike intervals (ISI). CV2 is lower for regular spike trains and higher for irregular spike trains (Holt et al. 1996). 
Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75: 1806–1814.
Spike rasters display

· spike time stamps represent temporal sequence of firing – use of false colour representation (NEX: black-yellow-red) of increasing spike density

· single raster train 

· population raster train

[NEX hint: use of false hot-colour representation (black-yellow-red) of increasing spike density]

Presentation of raster plots in PowerPoint / hardcopy:


Annotate / change legends / axes in NEX first 

(i) draft quality

- export in NEX directly to PPT
(ii) good quality

- capture in prog like PaintShopPro  - save as *.tif file for

  import to PPT or print out.
PART 1: Single-unit Analysis 
DATA PRESENTATION
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Criterion for significant evoked response:

Recording sites were confirmed as being driven by a stimulus (or drug-evoked response) if at least one stimulus caused a mean firing rate >1 SD above the mean spontaneous firing rate.

 Significant firing peaks were identified by the maximum firing rate ± 0.5 s relative to the DMS event by the standard score (Z = [peak–baseline firing rate] ÷ standard deviation of baseline, z > 3.09 values indicated significant (p < 0.001) peak increase in firing rate). Firing rates for simultaneously recorded CA1 and CA3 neurons were analysed in 100 ms bins over ± 2.0 s relative to the time of initiation (0.0 s) of the sample and match phases of the task. Neurons were only included in the analysis if their firing rates were significantly elevated (Z-scores, ANOVA F test p < 0.01) relative to the pre-event screen presentation baseline period (−2.0 to 0.0 s). 

Firing Rate Histogram (FRH) analysis
· Standardise - integrated firing rate over successive sequential epochs with bin width 1s, 5s, 10s common; some analysis protocols use 1- or 5-min bins to calculate FR statistics
· Consider normalisation of firing rate data set with  respect to basal / baseline firing period
· Characterise overall firing rate/pattern - mean ( S.D.

· Consider changes (( as functionally significant if >20%  (~ ( n S.Ds.) in response to events, 
e.g. following drug application

[NEX hint: implement population (EDIT menu) vector to average firing rate histogram]

FIRING RATE DATA PRESENTATION
Fig 2: Firing rate histogram (plotted in Excel: mean ± SEM; n=17 mPFC neurones recorded simultaneously in a single rat) for 12 successive 5min time epochs during a recording session (epochs 1-4 = basal; at epoch 4 the antipsychotic drug olanzapine given i.v. which suppresses normalised firing rate).
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Fig 3: Same data set as Fig 2 plotted (using Prism v4) for each neurone with basal firing epoch 1 (impulses/sec; Hz) and a selected post-drug epoch (epoch 9). The diagonal dotted line represents values expected if no drug-induced change was observed. Scatter distribution above / below the diagonal indicates drug has increased / suppressed firing compared to basal firing.
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Neuronal ensemble unit spike train raster (firing rate) patterns 
A Matlab script with Signal Processing and Statistical Toolboxes (NeuronEnsemble Firing Rate Cluster Analysis; G Fenton & R Mason) was developed to provide a tool for a computer-based ‘objective’ evaluation of firing patterns of unit ensemble activity recorded with MEAs. Script uses algorithms (using K-means clustering & hierarchical clustering techniques) to “recognise” patterns in spike trains.
Z-score Firing Rate Analysis

Each firing rate time bin (e.g. 1 s) was transformed to a z-score (normalisation) by subtracting from it the mean and dividing by the SD for the basal epoch spike train of the neuron. Neurons were sorted/grouped by their average z-score value. The script initially produces: 
(i) ‘unclustered’ firing rate histogram (FRH)’ of the total unit population (Fig. 4F) and 
(ii) ‘unclustered’ colour-mapped spike raster firing rate plot’, with each raster line depicting individual unit activity with hot-colours (white-yellow) representing high firing and cold-colours (black-blue) zero/low firing z-score (not shown).
The data was then processed by parallel cluster analysis algorithms - ‘k-means cluster analysis’ (www.clustan.com/k-means_analysis) and ‘hierarchical cluster analysis’ (www.clustan.com/hierarchical_cluster_analysis) the computed results generate the following plots:

[image: image5.png]



x = raw score to be standardized, μ = mean of the population, σ = standard deviation of the population. 
To enable the comparison of firing rates across neurons with widely varying response rates, unit firing rates converted to z-scores. Neurons were sorted by their average z-score value for pre- and post-event epochs and plotted as spike rasters Figs. 4A (unclustered) & 4B (clustered); colour bar = z-score firing rates.

 K-means cluster/Hierarchical-cluster analyses of normalised (z-score) firing rate
(after Homayoun & Moghaddam (2006) Biol. Psychiatry)

· Firing rate computed over successive sequential epochs (e.g. bin width 1, 3, 5-min); normalise the data set to the mean basal (e.g. pre-treatment) firing rate – this allows comparison between populations with variable FRs.
· Transfer these normalised rate histogram bin data set from NEX spreadsheet to Statistica (Matlab; SPSS) to compute K-means cluster analysis (each unit is a variable). Set initial cluster number as 2 and increment to 10 (as steps of 1). 
· The isolated clusters can then be visualised by plotting average normalised FR to compare their response patterns – clusters with similar response patterns (>95% variability) are merged. - Data (mean / SD / number in each cluster) exported from Statistica spreadsheet into Prism for normalised FRH plot.

· Matlab implemented custom-written script entitled: Zscore-FRH Plot (2011v7/v8) by Georgina Fenton:
Following firing rate z-score & K-means cluster analysis of neuronal firing in a single (or series of) experiment(s); with various plots/visualisations available to the user, including spike rasters for individual units (sig00n) sorted according to their firing patterns. 
Script compares firing activity patterns during a basal period (e.g. -300s) with that after (e.g. 1200s) an event illustrated in Figure 4 by the GABA antagonist GABAzine (administered at Time = 0s; -300s pre-drug basal epoch & 1500s post-drug (event) epoch - Event marks application of a drug).
A cluster technique (K-means, SPSS) was used to sort neuronal responses based on the similarities in patterns of excitation or inhibition around stimulation events. Z-scores were arranged in clusters to visualize the response pattern of neuronal populations.

Hierarchical Cluster Analysis (HCA) 

Results of hierarchical clustering are usually presented in a dendrogram distance metric multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application, the height (distance) of the U-links indicates the distance between the objects 

Figure 4A: Unclustered (i.e. raw pre-processed data) z-score spike train firing rate raster plot for 16 simultaneously recorded Hpc units (sig001-016) with a 16-channel electrode array; channels 1-8 CA1, 
9-16 CA3.
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Figure 4B: K-means clustered processed z-score spike train firing rate raster plot from raw data displayed in Fig 4a.

[image: image7.png]



Figure 4C:  Cluster Verification plot 
Assists user in deciding if the original cluster number estimation was appropriate. Plot provides a confidence indicator (a silhouette verification value >0.5 = “good clusters”.) that the number of clusters reported (i.e. 3) are “valid”; each horizontal bar = a unit in the sample. Negative (-) values imply poor cluster matches for identified units [click on bar to identify unit #].
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Figure 4D: K-means cluster sorted z-score firing rate plot 
Assists in cluster verification of spike raster firing pattern sub-populations, the 3-D space plot of principal component analysis (PCA) of the first three PCs (PC1-3; eigenvalue variance statistics available in Excel spreadsheet), with each unit plotted in a different colour. This 3-D cube can be rotated by the user to improve data visualisation. 
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Figure 4E: Hierarchical clustered z-score plot 

Population spike raster display (y-axis = unit#; x-axis = epoch time; z-axis colour = z-score). The ‘hierarchical cluster plot’ displays colour-mapped spike raster firing rate plot, each horizontal raster line is a colour-coded representation of firing rate (black = low; white= high, as depicted by left scale.

If imported >1 experimental data sets then the column of numbers left of the hierarchical cluster tree may be expanded to reveal experiment dates (e.g. 20120524; year-month-day) and sorted unit numbers (e.g. sig001b). 
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Interpretation: dendrogram obtained after features. Units displayed on Y-axis according to their hierarchal clustering; level of U-link indicates distance between its children in the cluster, groups =  ?, length =   ? , colours = # clusters ? 

The associated dendrogram (right panel) links degree of homogeneity between objects represented as U-shaped lines (U-links); the height of the U-links indicative of the (similarity) distance between the objects.
Figure 4F: z-score unit population firing rate plot (n=16 units) 
Firing rate histogram plot for unclustered unit population (16 units) evoked by GABAzine treatment (at Time=0s); z-score = ± SEM.
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Figure 4G: K-means cluster sorted z-score firing rate plot 
This alternative plot shows evidence for 3 distinct response groups based on firing rate profiles evoked by GABAzine treatment, following k-means clustering analysis – activated units blue (n= 4 units), red (n= 5 units) & unresponsive units green (n = 8 units); z-score = ± SEM.
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Joint ISIHs (Poincare plot)

· Relationship between successive ISIs may be viewed by ISI Return Plots (i.e. a Poincare map / joint ISI plot) 

· In some preparations the shape/density of the jISI plot may be cell specific & reflect the synaptic inputs received by a neurone.

· Short ISIs (<0.1s) represent intra-burst spike events / long ISIs inter-burst spikes 

· Measure of synchrony – chaos

· Useful to plot sequential ISI over duration of experiment to visualise temporal variation or experimentally-induced changes in intra-burst and/or inter-burst intervals.
· Use of grey-scale/colour-scale contour density plot
[NEX hint: ]

Cumulative Activity Display

Burst Analysis

· "What is a burst?" - Rarely burst criteria defined in literature & often arbitrary, c.f. doublets, triplets or greater
· Empirical definition - experimenter-defined parameters - see NEX
formed from at least 3 spikes (i.e. two ISIs)

· Poisson surprise method  - detects bursts through counting consecutive ISIs < half mean ISI and tests if these would be expected if spike train  were a Poisson process with random temporal patterning (Legendy & Salcman 1985)
· % spikes in a burst - PSB = (/N x 100, where ( number of spikes occurring within the defined burst & N is total number of spikes counted
Examples of bursting pattern criteria:
A. (Mereu et al 1997 – VTA cells) In sample of 800+ spikes exhibit at least two bursts composed of 3 or more spikes with ISIs between 90-250ms for burst onset and termination.

B. (Sokal et al 2000 – hippocampal cells) 
C. (Fanselow et al 2001 – thalamus & cortex)  min 2 spikes; max ISI 10ms; IBI >100ms.
Firing pattern characterisation:

Regular (pacemaker-like) firing:
multiple peaks in ACH

Irregular firing: 


flat ACH & skewed ISIH
Bursting activity

  
“High bursting” cell: 
“early” peak in AC


  
“Low bursting” cell:

· Frequency distribution of % spikes in burst during period of recording (e.g. 10min) – may obtain multimodal distribution, i.e. high and low bursting

· Scatter plot of % spikes in burst as function of baseline firing rate

? What parameters/indices to look at 

[NEX hint: For Poisson surprise use S=5 to begin, p<0.001] 

Burst Firing Classification

“Spontaneously Silent” cells 
- revealed through sensory-evoked or drug-evoked firing
Irregular firing cells 

-

Sporadic bursting cells 
-
Regular cells 


-
· Examine firing in spike raster; ISIH; autocorrelogram; Poincare plot

	Bursting Cell Type
	ISIH profile
	Autocorrelogram profile
	

	
	
	
	

	Irregular
	Broad unimodal distribution
	Flat profile
	

	Sporadic bursting
	Unimodal distribution
	Flat profile
	

	Regular I
	Weak bimodal distribution
	Single peaks @ +/-  xxx ms
	

	Regular II
	Marked bimodal distribution
	Series of clear peaks
	

	
	
	
	


Illustration:  mPFC BURST ANALYSIS PROTOCOL

· Open required data set - view data in 1-D raster display - select/deselect  sig_00N channels required for analysis - select Burst Analysis 
· NEX Burst Analysis parameters (using interval algorithm):

[Use to reveal a cluster of bursting within an “episode” corresponding with a LFP UP-state]

Max interval 

= 0.01s

Max end interval
= 0.2s

Min inter-burst interval
= 0.5s

Min burst duration
= 0.05s

Minimum spikes

= 3 (or 4)
Burst-rate histogram bin

= 30s
Burst-rate histogram units
= bursts/min or second (as required)

· Using the NEX Surprise algorithm:
Min surprise 
= 2 or 3

[This reveals smaller periods of spike bursts within episodic clustered bursting behaviour]
· After running the analysis always visually review the 1-D raster display (with appropriate channel(s) sig000_bursts variable enabled) - this ensures that experimenter has set appropriate analysis parameters / min Surprise value.

Burst Data Visualisation:

· Following burst analysis select “view num. res. (Numerical Results)”  - view “summary” tab & export  into PRISM to plot following histogram representations:

burst rate (/s or /min)

burst duration (s or ms)

burst interval (s or ms)

spikes / burst

spikes in a burst

mean ISI in a burst (ms)

mean inter-burst interval (ms or s)

RM ? develop auto extraction into screen of histograms
1-D raster display of burst analysis using NEX

Illustration: of burst analysis with NEX, using a 20s recording (0-20s) from 3 mPFC single-units in a rat under isoflurane anaesthesia. Burst Interval algorithm parameters: 
· Computed bursts shown as (blue) horizontal bars overlaying spike rasters and/or as horizontal bars presented below the rasters.
(Fig 7A) Using an experimenter-defined INTERVAL algorithm
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· Useful to indicate the “episodic-bursting” in LFP trace corresponding to UP-state activity

(Fig 7B) Using SURPRISE algorithm value = 2
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· This approach reveals “micro-bursts” within an “episodic-burst”

(Fig 7C) Using SURPRISE algorithm value = 3
[image: image34.wmf]
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· Increasing Surprise value reveals additional structure, e.g. a    “micro-burst”

(Fig 7D) Using SURPRISE algorithm value = 10
[image: image16.png]Time | 11T T LU U UL

(sec) ) 25 512 768 1024 128 1536 1792 M4t
sigDta B LWL (omim 1 LN AT TR TR AT Y] 1
sighi2a Il woo TR B N R TN ) 1] 1 I
sig03a | WU LN T T ¥ T T T TR TR RV BT WU TR TR T

sigD1a_bursts ' H I H

sigh02a_bursts ' W H HH W oH I ' W HH

sig03a_bursts [ I I "
10

AD0
40

A e LAk A A R B S A LV L





· Increasing Surprise to higher values (e.g. Surprise = 10) results in a burst profile with a more stringent threshold for defining a burst, so fewer bursts are computed & displayed.

Burst Analysis Histogram plots
(i)
Burst duration (ms or s)
(ii)
Inter-burst interval (ms or s)
(iii)
Spikes per burst (  )
(iv)
Burst rate (/min)

(v) 
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Defining a burst:

· Spikes extracted offline using OLS (Plexon Inc.) & spike times (time stamps) sorted into bursts (this could be expanded/classified into “micro-bursts”, “episodes” and “bouts” using custom scripts written NEX & Matlab
· Consider if the bursting activity under study relates to spontaneous (bursting) events or might they correlate with some aspect of neural activity (e.g. epileptiform episodes; UP-/Down-state transitions) or to overt behaviour (e.g. fictive swimming in fish).

One research group (studying fictive swimming in Zebra fish) has used the following definition:

BOUT 

= interval in which >3 spikes occurred & followed by an ISI>10s

EPISODES 
= time interval during which >3 spikes occurred followed by ISI >100ms (<10s)

BURSTS 
= >1 spikes followed by ISI >10ms (<100ms)

Burst & episode periods were defined as the time between successive burst & episode start times respectively.

PART 2: Unit Pairs Analysis
1 Cross-correlation analysis multiple unit pairs

2 Cross-correlation analysis – grid plots

3 Joint PSTHs

Cross-Correlation Analysis (CCHs) between neuronal pairs
Used to quantify relationship between the firing of two neurones - with CCH depicting the probability of firing of one (reference) neurone relative to second (target) neurone. Correlated firing if directly or indirectly connected, or if they receive a common input.
· Standardise parameters: e.g. 1000 bins (( 500ms; bin width 1ms) – background calculation option


[NEX: chose between 
 (i) bins outside the central peak - set width between 1-51 bins (this may give aberrant value with broad peaks) or
 (ii) “shoulders” i.e. outer shoulders of CCH (e.g. outer (100ms)]

Quantitative indices:

- detectability index (D)*, >2 peak or trough exists 

[NEX: z-score]

- strength index (K)*, >1 excitatory; <1 inhibitory relation 

[NEX: max/mean]

- offset lag from centre 0ms indicative firing one cell driving the other

- synchronisation time (width of CCH peak @ half-peak amplitude [50% peak width - pw50] or at mean FR centred within 5ms of centre bin

narrow peak 
(<5ms) 

~ monosynaptic input

intermediate 
(5 -15ms)
~ common/shared input

broad peak
(>15m peaks) 
~ shared input/polysynaptic interactions

· Characterise pattern & associated putative interpretation:

Flat profile
- un-correlated (i.e. no relationship between firing of two neurones)

Central peak 
- ? common input 
[? monosynaptic connectivity]
Delayed peak
- ? lag from 0 time 
[? monosynaptic / polysynaptic coactivity]
Bilateral peaks 
- ? reverberating circuit

Central trough
- (target unit not firing when reference fires)

· Consider if response peaks via monosynaptic connectivity vs (coincidental) monosynaptic or polysynaptic coactivity

· Application of CCH shift predictor to help identify/remove confounding potential correlated firing time-locked to an external stimulus or event (see Tabuchi et al (2000) Hippocampus 10, 717- ).

Caveats: 

In comparing autocorrelograms or CCHs number spikes varies cell to cell, histogram normalised by dividing each bin by number of reference events.

Not suited where non-stationary processes (i.e. behaviour) change firing rate during data acquisition.
REFS: 

Sears & Tagg J. Physiol. (1976) 263, 357-381

Eblen-Zajjur & Sandkuhler (1996) Neurosci. 76, 39-54

Constantinidis et al (2001) J Neurosci. 21, 3646-3655

Wiegner & Wierzbicka (1987) 22, 125-131

Nowak et al (1995) J Neurophysiology 74: 2379-2400

* Algorithms:
D = max peak/trough / S.D. bin values from uncorrelated baseline computed from shoulders (e.g. outer ( 30-50ms) of the correlogram.



K = max peak/trough / arithmetic mean of bin values from baseline.

[NEX hint: implemented from NEX v3.142 are two “Peak Analysis options for background calculations (i)  bins outside the central peak (limited to 51 bins - this may give aberrant value with broad peaks) or (ii)  “shoulders” i.e. outer shoulders of CCH (e.g. outer 100ms)]

Time-Series Cross-Correlation Analysis (TS-CCH) Plot
A graphical plot which allows visualisation of the development of sequential temporal views (a 3-D time-frame series plot) of user-defined epochs/trials of CC between neuronal pairs – implemented with custom Matlab script Xcorr_TimeFrames.m
Script requires file saved a *.mat format – lab uses option in NEX to convert and export to Matlab.
Illustration: 
· Single Xcorr plot for Reference neurone 005a and Target neurone 003a

· Y-axis = time +/- 1000ms, 500bins; X-axis = trial number (each epoch period 3min); 
 Z-axis = colour-coded correlation magnitude 
· Visualise temporal dynamics in (a) lead/lag behaviour (b) correlation magnitude  (c) 

Figure 8: illustrative output plots from Xcorr time-series script
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       Single (epoch) trial CCH plot for epoch 12
Time series CCH plot for epoch trials 1-12
Neural Population Cross-Correlation Analysis Plot (p-CCHs) 

Problem with conventional CCH analysis is the astronomical combination of neuronal pairs available, e.g. just consider a 16-electrode array many neuronal pair combinations (Hpc units recorded under isoflurane anaesthesia).
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Development of grid/matrix plot a Matlab script (XcorrGrid (2014); Georgina Fenton & R Mason) allows visualisation of the entire recording array population of unit-pairs indicating which unit-pairs exhibit x-correlations.

The graphical (grid-matrix) plot which allows visualisation of neuronal pairs (y-axis = Reference units; x-axis = Target units; z-axis grey/colour scale = correlation magnitude) recorded during a single session.
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XCorrelation Grid Script output plots: 
Fig 10A: CCH plot
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Fig 10B: PW50 (peak half-width) plot (mean ± SEM) for each ROI

Fig 10C: PW50 K-index plot (mean ± SEM) for each ROI 

Fig 10D: CCH computed Peak Offset plots for each ROI; intra-region correlation (i.e. ROI1 & ROI  2) inter-region correlation offset values for each unit pair in the matrix grid.


Neural Population Synchrony Index (neural PSI)

Matlab script (SynchIndex(2012d): Dr Zachariou) to compute degree of synchronous spike activity between a population of unit pairs yielding a value 0 (no synchrony) to 1 (100% synchrony).

Interpretation Hint: user bin-size can lead to profound differences in result plot and its interpretation.
Figure 11A: Dual-site recording in mPFC (units1-8; blue) & HPC (units 9-16; green); lower panel unit spike rastergram & upper panel computed SI measure computed over a 300s epoch (1000-1300s), bin size = 1s.  
Mean SI over 300s epoch for neural cluster 1 (mPFC) = 0.174; neural cluster 2 (Hpc) = 0.265.
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Figure 11B: Repeat of analysis in Fig 11A (above) with SI measure computed bin size = 0.3s.  

Mean SI over 100s epoch for neural cluster 1 (mPFC) = 0.049; neural cluster 2 (Hpc) = 0.128.
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Peri-Stimulus(event) Time Histograms - PSTHs

· Event triggering - electrical stimulus (mimic natural path, e.g. electrical stimulation); natural stimulus (auditory stimulus); motor behavioural event (water spout lick; bladder void); 

· Event-triggered PSTHs - mean firing rate + 99% confidence intervals

· Cumulative frequency histograms - measure precise minimal response latency

Construct population latency histogram to reveal distribution for large sample  

· Cumulative frequency histograms (CFHs) - calculate one-way Kolmogorov-Smirnov statistic test probability that distribution of CFH different from average firing rate, an ellipse represents the confidence interval superimposed on each CFH.  CFH also a measure of precise minimal response latency (see Nicolelis et al 1997).
Construct population latency histogram to reveal distribution for large sample  

[NEX hint: ]

Peri-Stimulus(event) Time Raster-Histograms – PSTrHs

Is a variant of  PSTH mode in which the spike rasters are also displayed in the plot (usually above the histogram plot) –  this additional view allows a appreciation of any changes in firing pattern during sequential stimulus trials which otherwise might be lost in the “averaged histogram” plot.

The ordering of the rasters:
(i) By stimulus/event trial number, e.g. a sequence ordered from trial 1 to 16

(ii) By ordering the response latency from the stimulus event, e.g. a drug may have induced an increase in latency
· Event triggering - electrical stimulus (mimic natural path, e.g. VTA 5 pulses @ 20Hz); natural stimulus; motor behavioural event; 

· Event-triggered PSTHs 

[NEX hint: ]

SORT TRIALS:

SORT REFERENCE:

Joint PSTHs

Constructed by plotting PSTHs from two cells recorded simultaneously against each other.

· Each dot in the scatter plot represents coincidence of discharges discharged by the two cells during one stimulus period. Process is repeated for each stimulus presentation generating dot densities ("clouds"). 

Clouds lying on principal diagonal - coincident firing

Clouds aside diagonal - delayed firing one unit respect to other

[NEX hint: ]

Population (ensemble) PSTHs

· 3D plots / animations using routines in NEX, MatLab or Statistica
e.g. X-axis peristimulus time; Y-axis response amplitude (actual, %, ( S.D.s above mean); 

-axis neurone number Z

Z-score ensemble PSTH plots : (after Tsai et al 2004 Pain 110 : 665-674)
Illustration : cortical recording in rat to noxious mechanical (100g) stimulation of tail presented at time=0 for 5s, repeated 20 times; bin width 100ms. 
· Use NEX to generate PSTH histogram (perievent histogram analysis: 100ms or 10ms; boxcar filter width 3 bins post-processing). Obtain an (population vector – summing all the sorted unit activity) ensemble single-unit PSTH (use pull-down tab “add population vector”  - view numerical results – export population vector data to spreadsheet (Excel; Prism; other). 
· Ensemble (population vector data) normalised as Z scores – the mean and SD of the bins in the basal period (e.g. 1s period prior to stimulation – 10 bins 100ms (or 100 bins 10ms) bin resolution). All the bins (-1s to 10s) converted to Z scores according to the baseline mean and SD – computed by subtracting mean basal value from the data set then dividing by the basal SD value. This form of plot allows comparisons between different experimental animals.
Figure 10: NEX plot of stimulus-evoked PSTH responses for 8 single-units and ensemble (population vector) and associated LFP; 100g (noxious) pressure stimulus applied for 5s to the tail at time 0 for 16 presentations.

[image: image23]
Figure 11: Z score plot of ensemble data set from Figure 10 (graph generated and plotted using Prism v5)
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Local Field Potentials (LFPs)

· Characterisation of frequency bands: 

Slow oscillation
<1Hz 


"slow"

Delta ( 

1-4Hz


"slow-wave complexes"

Theta (
 
4-8Hz


"intermediate spindle-waves"

Alpha (

8-12Hz 


"intermediate spindle-waves"

Beta (

12-24Hz 

"fast"

Gamma (
24-100Hz

"fast"

“ripple”
  120-250Hz

· LFP (usually signal examined between 1-100Hz with A/D sample rate of 1kHz) reflects the average transmembrane currents of neurones in a volume of few hundred (m radius around electrode tip - negative values correspond to neuronal activation.

· Event-triggered LFPs (+ spike PSTHs) - single continuous & averaged trials

[NEX hint: use OLS to generate “event spikes” use these LFP events for analysis]

· Mean LFP amplitude & 99% CI - [Statistica]

· Use custom-written Matlab script LFPanlyser2006 – on lab web site for download
Power Spectral Density (PSD) Fourier transform of non-overlapping epochs (1s Hanning window) - log transform

Evaluated using fast Fourier transform (FFT) and relative power in a given frequency band

· Coherence (measures strength of linear relationship between two signals at every frequency. Values lie 0-100% estimates degree to which phases at frequency of interest are dispersed; 0 = evenly dispersed / 100% total phase-locked at given frequency) & 95% confidence limits computed.

· Unit-LFP cross-correlation 

spike-triggered average (STA), spike event used as the reference time to select window for averaging gives estimate the LFP waveform preferentially associated to spike events.
- waveform-triggered averages, negative peak (threshold level) of LFP used as trigger 
[NEX hint: use OffLine Sorter use LFP as "spike waveform" to generate event synchronised to LFP] 

· Spatial Coherence Analysis 
· Bicoherence & power correlation

[NEX hint: ]

Spectrogram Plot

Time-Frequency analysis

· Allows visualisation of changes in LFP frequency bands over time – c.f.  PSD is average over a temporal epoch.
(Fig 12A) spike raster four mPFC units:
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(Fig 12B) Spectrogram analysis of LFP recording over same epoch:
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[NEX hints:  
Ensure frequency resolution in spectrograms is 2048 or higher in order to see peaks (as seen in PSD analysis). The number of frequency values for spectrograms get spread over the complete spectrum -from 0 to 0.5*digitizing frequency. 

Edit colour scales and set minimum to local - log scale may be negative.

Check summary of numerical results in spectrograms - contains some computational parameters used in analysis.]
Coherence Analysis

AutoCorrelogram Plot

· “Running ACH” (e.g. Science 2003 301, 847-850) – [3D plot X-axis expt time (0-20s); Y-axis ± 0-1s; Z-axis colour intensity]
PART 3: Analyses of Neuronal Ensembles

Definition of population activity vs. Ensemble activity

Principal Component Analysis (PCA) (low order statistics)

· Allows reduction of large numbers of original variables in data sets into a smaller number of derived "components" which represent most of the variables in the data set.

(see Nicolelis et al 1995; Chapin 1999 - use of PCA to compute / reconstruct a 
"neuronal population function - NPF")

· Graphical display of PCA
3D scatterplot of distribution of component PC1, PC2 & PC3 weights - visualise clusters

of similar correlates – use Statistica to plot / can use Klusterwin to visualise 3-D scatter plot.
Time series plot (NPF) for PC1, PC2 & PC3 indicate trend in +ve or -ve coefficients compare with averaged responses.

· PC1 reflects more global functions – resembles a summed or average of the recorded unit population (as a “ratemeter” histogram or PSTH); 
· Higher numbered PCs (>PC1) encode factors characteristic of the neuronal population as opposed to single neurones, (?local) neural activity more specific to particular brain areas or sensory stimulation etc.

· Statistics summary in NEX provides eigenvalues & %variance for each PC

[NEX hint: 
Run PCA first, then implement via “Edit pull-down” as "add population vector" through “sum of all neurons” 
pca1_01 is a weighted sum of rate histograms of all neurones used in PCA, are coordinates of the first eigenvector; pca_02 gets weights from the second eigenvector, etc….]

NEX calculates rate histograms (FRHs) for selected neurones - pairwise correlations between rate histograms - calculates eigenvalues & eigenvectors of correlation matrix. 
Eigenvectors may be used as "population vectors" in FRHs or PSTHs analyses.
- suggestion run FRHs as 10 or 20ms bin interval, 2 bin smoothing]
Partial Directed Coherence (PDC)

· T

Taxidis J, Coomber B, Mason, R. & Owen M (2010) Assessing cortico-hippocampal functional connectivity under anaesthesia and kainic acid using  generalized partial directed coherence Biol. Cybernetics 102: 327-340.
Matlab script FunCAT v2_2010 (custom-written by Jiannis Taxidis, PhD student) PDC
Granger Causality

Causal Connectivity Analysis script Dr Anil Seth (Department of Informatics, University of Sussex UK) - This toolbox provides MATLAB routines to implement causal connectivity analysis, based on Granger causality.
Seth, A.K. (2005) Causal connectivity analysis of evolved neural networks during behaviour. 
Network: Computation in Neural Systems 16(1):35-54  

Seth, A.K. (2010) A MATLAB toolbox for Granger causal connectivity analysis J Neuroscience Methods [image: image27.png]


doi:10.1016/j.jneumeth.2009.11.020    
Independent Component Analysis (ICA) (high order statistics)

Discriminant analysis
A linear discrimination method was employed in the analysis. Firstly, principal component analysis (PCA) was performed for all neurons recorded in each rat. The first twelve principal components (PC1 to PC12) with 10-ms bin sizes for data from -1 s to 1 s around the stimulus were exported to MATLAB. A moving-window technique was used with a 20-bin window (200 ms) and a 1-bin step (10 ms) to calculate the mean component scores. A leave-one-out cross-validation procedure, in which a kernel Fisher discriminant classifier was constructed excluding a single trial from the data which was then used to test the classifier, was performed to estimate the correct rates for each data set. This procedure was repeated N times (N is the number of the total trials) and the results were pooled to estimate the general correct rate (R all). Secondly, the firing rates of all the recorded neurons in the medial/lateral pathway were set to zero to get R -m/R -l, which is the correct rate of discrimination without the contribution from neurons in the medial/lateral pathway. The contribution of the medial/lateral pathway neurons to the discriminant analysis (Rm and Rl) was then be calculated as:
Rm=Rall−R−mand Rl=Rall−R−l
The means and standard errors of these contributions from all rats were computed over time. Then the mean values of Rall, Rm and Rl from 0 to 1 s post-stimulation were compared using one-way ANOVA

Linear Discriminant Analysis (LDA)

· Wavelet-based discriminant pursuit (DP) algorithm
Canonical Discriminant Analysis (CDA)

Gravitational Transformations

Multiple Discriminant Analysis (MDA)

PART 4: Microiontophoresis – drug application
Microionophoresis electrodes:
Typical 5-barrel / 7-barrel micropipette – centre barrel 2M NaCl (saturated with Fast Green (FG) or Pontamine Sky Blue (PSB)); one side-barrel contains 4M NaCl used as a current-balancing channel; the remaining side barrels contain drug solutions.
At end of experiment 10uA cathodal (-ve) current passed through recording barrel to deposit dye (e.g. 2.5% Pontamine Sky Blue in 2M NaCl: micropore (22um) filter when filling barrel) at recording site for histological verification of recording site. 
Drug barrels: contain agonist/antagonist substances solutions, e.g. 
L-Glutamate sodium salt - 100mM in 165mM NaCl, pH 8; -ve ejection current); 
5-HT creatitine sulphate - 0.02M in 165mM NaCl, pH 4; +ve ejection current  

GABA –
Acetylcholine HCl -
Picrotoxin (GABAA receptor/chloride channel blocker) – 5/10mM in 165mM NaCl, pH 3.5

Bicuculline methioiodide (GABAA receptor antagonist) – 5/10mM in 165mM NaCl, pH 3.0

Gabazine HCl (GABAA receptor antagonist) – 5/10mM in 165mM NaCl, pH 3.0

Corticosterone sodium hemisuccinate – 10mM pH7.0; ejection –ve current 5-50nA
17B-estradiolsodium hemisuccinate – 25mM pH7.2; ejection –ve current 5-50nA
Ejection currents: 1-50nA

Retaining current: retained by passage of -8-15nA (+ve for glutamate) between drug ejection periods.
One side-barrel filled with 2M (or 165mM/0.9%) NaCl used for automatic current-balancing
Multi-barrel electrode manufacture: (Scott & Mason, 19xx)
Glass capillary glas (1.5mm OD) containg inner glass filament to aid rapid filling
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Use of silicon in hexane (Sigma) to reduce capacitance 
Pressure Ejection:
Steroids (20mM) dissolve in EtOH and d water (adjust to pH 7 with NaOH; final EtOH concentration 1-2%) 
Single-unit Recording: 

Extracellular signals amplified, band-pass filtered (300Hz-3kHz), single spikes discriminated, sampled at 20-40kHz and stored on a PC connected via a A-D interface (e.g. CED 1401; Plexon MAP; etc) Unit firing rate plotted as integrated firing rate histograms (accumulated over successive 5s or 10s epochs); also useful to examine interspike interval histograms (ISIHs), autocorrelation histograms & drug ejection-evoked responses in PETHs.
To obtain stable-evoked activity in irregular/low firing neurones such unit can be evoked by pulsed glutamate ejections, e.g. 30nA, 30s ejection pulse duration, repeated using a 30-60s inter-pulse interval.
Physiological index of NT receptor sensitivity (IT50): 
Determination the charge (C) [i.e. current (I) nA x Time (T50) sec] required to obtain a 50% suppression from “spontaneous” firing rate in the recorded cell; T50 usually in the order of 10-40s. Suggest use of pulsed ejections (i.e. 30-60s duration repeated every 1-3min) since it is during the initial phase of ejection that log concentration of the drug in the tissue increases linearly (Simmonds, 1974)
Charge C50 carries a number of moles (M50) determined from:
M50 = N C50 / zF
N = Transport number of drug solution, z = equivalent per mole, F = Faraday’s constant

As similar electrodes are used in control and treatment groups, can consider N, z & F as constant; thus M50  ( C50, so the more sensitive a neurone to a drug the smaller the C50 value.
Index of recovery time (RT50): 
Reflects the presynaptic component of the neuronal responsiveness, may be defined as time elapsed for a 50% recovery to occur after termination of drug ejection. For 5HT/NA synapses this appears to correlate with the activity of 5HT/NA reuptake process as is prolonged by reuptake blockers (e.g. desimipramine) or neurotoxin (5,7-DHT / 6-OHDA) lesioned terminals (Wang et al, 1979)
Discussion points:

· Changes in NT receptor binding sites measured by radioligand methods may not reflect physiological (? functional) measures of receptor sensitivity.
· NT terminal (e.g. raphe 5HT) innervation of target neurones (e.g. hippocampal pyramidal cells) may exert influence on dendritic tree rather than soma; there may be spatial disparity in sensitivity of NT receptors across the cell.

· Intra-synaptic vs. extra-synaptic NT receptor sites, mediated via  electrically evoked release of endogenous NT compared to exogenously (iontophoretically) applied NT.
· Non-specific local anaesthetic effects of ejected substance – c? clarify by examination of spike waveform
· Indirect effects on presumed target neurones via action of agent on interneurone(s)

· GABAA (bicuculline) receptor antagonists eject with incremental currents to obtain optimal response (i.e. maximal increase – excessive doses of these drugs may induce ‘spontaneous’ activity or high-frequency discharges, leading to spike decrement & non-synaptic mechanisms (? Ca2+ mobilisation). Use GABA-evoked responses to estimate bic dose (ejection current x time) which prevents these response to ensure response-selective effect.
REFERENCES (microiontophoresis):

De Montigny c & Aghajanian GK (1978) Science 202: 1303-1306 – IT50 measurement
Wang RY et al (1979) Brain Res 178: 479-487 – RT50 measurement
Simmonds (1974) Neuropharmacology 13: 401-406
Scott & Mason R (19xx) J Neuroscience Methods – multibarrel electrode fabrication
Palmer et al (1980) Neuropharmacology 19: 931-938 – micropressure-ejection (pL volume) of drugs
Heyer et al (1981) Neurology 31: 1381-1390 - bicucilline
Integrated FRH of a rat hypothalamic SCN neurone recorded in an in vitro hypothalamic slice preparation (Mason & Brooks, 1988; Mason, 1988, 1991) in a urethane anaesthetised rat illustrating sustained responses to ionophoresed
 glutamate receptor agonists AMPA & NMDA (ejection current 40nA) during the dark (100 lux), followed by a slow photic ramp increase in ambient light intensity (to 3000 lux). During the sustained light-evoked firing ionophoresed AMPA and NMDA receptor antagonists (CNQX & APV/AP5) partially block the light-evoked response.  
?BDZ figure
Integrated FRH of hypothalamic SCN light-activated neurone (Groos & Mason, 1980) in a urethane anaesthetised rat illustrating sustained responses to ionophoresed glutamate receptor agonists AMPA & NMDA (ejection current 25nA) during the dark (100 lux), followed by a light-evoked response (circle) increase in ambient light intensity (to 3000 lux). During the sustained light-evoked firing ionophoresed NMDA receptor antagonist (APV/AP5) partially block the light-evoked response.  
[image: image29.png]IMPULSES [Hz]

20

—_
(6]

—_
o

TIME [min]

APV [25nA] 7
i s e e e |
AMPA [25nA] NMDA [20nA] visual
= — ] ] —] O i
: : ! , , ! !
20 40 60 80 100 120 140 160 180




Integrated FRH of hypothalamic SCN light-activated neurone (Groos & Mason, 1980) in a urethane anaesthetised rat illustrating sustained responses to ionophoresed glutamate receptor agonists AMPA & NMDA (ejection current 40nA) during the dark (100 lux), followed by a slow photic ramp increase in ambient light intensity (to 3000 lux). During the sustained light-evoked firing ionophoresed AMPA and NMDA receptor antagonists (CNQX & APV/AP5) partially block the light-evoked response.  
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PART 5:  Wireless Recording Technology

Reference:
Rolston J, Gross R & Potter S (2009) A low-cost multielectrode system for data acquisition enabling real-time closed-loop processing with rapid recovery from stimulation artifacts. August 2009 issue Frontiers in Neuroengineering 2:12. doi:10.3389/neuro.16.012.2009
PART 6:  Ultra Sound Vocalisation (USV) recording
Reference:
ESSENTIAL REFERENCES

Multichannel data processing & analysis:

* = essential must read

BOOKS

* Methods for Neural Ensemble Recordings (Ed. Nicolelis MAL) CRC Press (1999)

*Methods in drug abuse research: Cellular and circuit analyses  (Ed B D Waterhouse)

 CRC Press (2003) - chapters 5, 6,7 & 8 on electrophysiology 

Neuronal Ensembles - Strategies for recording and decoding (Eds. H Eichenbaum & JL Davis) 

Wiley-Liss (1998)
Advances in Neural Population Coding (Ed. Nicolelis MAL) Elsevier (2001)
The Somatosensory System -Deciphering the Brain's Own Body Image (Ed Randall J. Nelson) 

CRC Press (2002)
Neural Prostheses for Restoration of Sensory and Motor Function (Eds J.K. Chapin and K.A. Moxon)

 
CRC Press (2001)

Some useful overview papers:

* Special Issue of Journal of Neuroscience Methods 94 (1) 1-154: (1999) - Methods for recording and analysing neuronal ensemble activity ~ a must read.

Nicolelis MAL et al. (1997) Reconstructing the Engram: Simultaneous, multisite, many single neuron

recordings - Neuron 18: 529-537


Deadwyler SA & Hampson RE (1997) The significance of neural ensemble codes during behaviour

 and cognition - Annual Review Neuroscience 20: 217-244
 

Nicolelis MAL et al (2003 Chronic, multisite, multielectrode recordings in macaque monkeys – PNAS 100: 11041-11046 (also addition material on surgery, MEAs and unit tracking at PNAS site).

Brown EN et al (2004) Multiple neural spike train data analysis: State-of-the-art and future challenges – Nature Neuroscience 7: 456-461

SPIKE TRAIN ANALYSIS - SEMINAL PAPERS

Moore et al (1966) Ann. Rev. Physiol. 28, 493-

* Perkel et al (1967) Biophys J. 7, 391-418

* Perkel et al (1967) Biophys J. 7, 419-440

* Moore et al (1970) Biophys J. 10, 876-900

Aertsen et al (1989) J Neurophysiol. 61, 900-917

* Gerstein & Perkel (1970) Biophys J. 12, 453-
Gerstein et al (1978) Brain Res. 140, 43-
SELECTED PAPERS

General

Bullock TH (1997) Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc Natl Acad Sci USA 94:1-6
Single-unit doctrine

Spike Sorting

* Wheeler BC & Heetderks WJ (1982) IEEE Trans. Biomed. Eng. 29, 752-759. 

* Lewicki MS (1998) Network. Comput. Neural Syst. 9, R53-R78

* Abeles & Goldstein (1977) Proc IEEEE 65

Schmidt (1984) J Neurosci Methods 12, 95-

Salganicoff et al (1988) J Neurosci Methods 25, 181-187
Spike Waveforms

Fee MS et al (1996) J. Neurophysiol. 76, 3823-3833
JISIHs

Segundo JP et al (1998) Neuroscience 87 741-766

Surmeier et al (1989) J Neurophysiol. 61, 106-115

Szucs A et al (2005) Europ.J Neuroscience 21 763-772
CCHs 

* Kirkwood (1979) J Neurosci Methods 1, 107-132

* Sears & Tagg J. Physiol. (1976) 263, 357-381

Konig (1994) J Neurosci Methods 54, 31-37

Hilaire et al Brain Res. 302, 19-31

Gerstein & Perkel (1969) Science 164, 828-

Aertsen & Gerstein (1985) Brain Res. 340, 341-354

Schwark & Ilyinsky (2001) Brain Res. 889, 295-302

Nowak et al (1995) J Neurophysiol. 74, 2379-239

Tabuchi et al (2000) Hippocampus 10, 717-

Eblen-Zajjur & Sandkuhler (1996) Neurosci. 76, 39-54

Constantinidis et al (2001) J Neurosci. 21, 3646-3655

Wiegner & Wierzbicka (1987) 22, 125-131

· CCH simulator - download software from web site (see paper):

Duffin J Neurosci Methods (2000) 99, 65-70

Veredas et al J Neurosci Methods (2004) 136, 23-32 

Burst Analysis

Legendy & Saleman J Neurophysiol. (1985) 53, 926-939

Kaneoke Y & Vitek JL J Neurosci Methods (1996) 68, 211-223 
Peri-Stimulus Time Histogram (PSTH)

Nicolelis MA et al (1997) J. Neurophysiol. 78, 1691-1706

Population PSTHs

Nicolelis MA et al Science 268, 1353-1358

Joint PSTH

Aertsen et al (1989) J Neurophysiol. 61, 900-917

Principal Component Analysis

Jackson EJ (1991) “A user’s guide to principal component analysis” Wiley

Nicolelis MA et al Science 268, 1353-1358

Independent Component Analysis

Brown G et al (2001) “ICA at the neural cocktail party” TRENDS in neuroscience 24 54-63

Stone JV (2002) “ICA: An introduction” TRENDS in cognitive Sciences 6: 59-64

Canonical Discriminant Analysis 
Local Field Potentials 

· Logothetis NK (2003) J Neurosci. 23, 3963-3971 - excellent review of LFPs & their relationship to BOLD fMRI

· Spike-triggered averaging of LFPs: 

Murthy VN & Fetz EE (1996) J. Neurophysiol. 76, 3949-3967; 3968-3982

Fries P et al (2001) Science 291, 1560-1563

Destexhe A et al (1999) J Neurosci. 19, 4595-4608 
Coherence
Halliday DM et al (1995) Prog. Biophys. Mol. Biol. 64 237-278. 
PDC / Granger Causality
Taxidis J, Coomber B, Mason, R. & Owen M (2010) Biol. Cybernetics 102: 327-340.

WEB SITES:
http://www.nottingham.ac.uk/neuronal-networks/ 

http://mulab.physiol.upenn.edu/analysis.html#Introduction
Joint PSTHs

http://mulab.physiol.upenn.edu/jpst.html
CCHs

http://mulab.physiol.upenn.edu/crosscorrelation.html
Gravity Transformation

http://mulab.physiol.upenn.edu/gravity.html
Independent Component Analysis (ICA)

EEG TOOL BOX for MatLab:

http://www.cnl.salk.edu/~tewon/ica_cnl.html
Makeig S, Westerfield W, Enghoff, S., Jung. T-P., Townsend J, Courchesne E, and Sejnowski, (2002) Science 295, 690-694.

FAST-ICA Tool Box:

http://www.cis.hut.fi/projects/ica/fastica/  [FastICA package is a free (GPL) MATLAB program that implements the fast fixed-point algorithm for independent component analysis and projection pursuit -features easy-to-use GUI & computationally powerful algorithm.]
Jarno M.A. Tanskanen, Jarno E. Mikkonen and Markku Penttonen (2005) J Neuroscience Methods
Graphical presentation, Mathematics & Statistics software:
NeuroEXplorer: http://www.neuroexplorer.com
MatLab: http://www.mathworks.com/
Statistica: http://www.statsoft.com/
Prism: http://www.graphpad.com/welcome.htm
Origin 7: http://www.OriginLab.com
SigmaPlot: http://www.spss.com/spssbi/sigmaplot/
UNMS NNLAB Web Site: http://www.nottingham.ac.uk/neuronal-networks/
Tutorial EXAMPLES CD with data examples & DATA FLOW ANALYSIS CHARTS
 – in preparation
Multiple Microelectrode Array (MEA) technology
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Figure 1: Unit spike train raster plot of basal activity for 7 VTA units (upper spike raster set) and 7 mPFC units (lower spike raster set) spike time stamps (vertical ticks) = temporal occurrence of unit action potentials.





- Lower two traces are simultaneously recorded representative LFP waveforms from VTA (upper black) and mPFC (lower blue). 














Computed indices/parameters for CCH:


		


+/- 1s; bin width 1ms (=1000 bins)


+/- 200ms “shoulder” specified in computation





Peak height (K-index)	 ~ strength of correlation


Half-peak width (PW50)	 ~ ”variance/jitter” in spike firing timing (“correlation”)


Peak Offset (PO)	 ~ shape & skew from centre zero (0) =  lead + / lag - time in firing between unit pairs





Reference:  Eblen-Zajjur & Sandkuhler (1996) Neuroscience 76, 39-54





mouse cursor on unit-pair pixel of interest





“left click” generates CCH plot
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Figure 9: Cross-correlation Grid/Matrix plot – outlining three Regions of Interest (ROIs 1 2 3) 


illustrated for dual-site MEA recording in VTA & mPFC
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