Introduction

The UK based company Camtech has developed the Actiwave™ range of ‘miniature biomedical waveform recorders’ which are specifically designed to record EEG and EOG. They are intended to allow ambulatory recordings without the need for bulky units and reels of wire. The Actiwave range includes one, two and four channel devices that fit into a docking station (figure 1). In the course of our research the two and four channel units were used.

Considering their small size and weight it was proposed that the devices were feasible for use in performing inexpensive, discrete sleep studies. At present the AASM and R & K sleep scoring manuals require EEG, EMG and EOG to properly score sleep. The 2 channel device can only record EEG whereas the 4 channel device can record both EEG and EOG. As a result, manual sleep scoring to produce hypnograms proved difficult. Spectral density analysis was therefore also applied to the signal in an attempt to automatically score the data.

Materials and methods

Optimising Electrode Position and Attachment

The small number of channels available made it essential that the electrode positions were correct and that their attachments were secure. The best electrode positions to best utilise the small number of channels was determined by the use of trial and error over practice recordings.

Results

The trials with different electrode positions showed that optimal recordings for the 2 channel device were obtained using C3-M2 and O2-M2. Figure 3 shows a hypnogram constructed using EEG data from one night’s recording with the smaller, 2 channel device.

Conclusions

Manually scoring sleep using information provided by only two EEG channels was difficult, particularly when defining REM from wakefulness. This however is not a reflection of the Actiwave device and more a consequence of sleep scoring manuals. To accurately score sleep they require additional information from EOG and EMG channels which were not always at our disposal.

With our level of expertise, the 4-channel device was the only feasible option for producing accurate hypnograms because of its key ability to measure EOG. Simple spectral analysis of the EEG signals from both devices showed that power in the delta frequency range to some extent depicted the NREM-REM sleep cycle. This indicates that the use of the Actiwave range in a ‘simplified’ sleep study using delta power can feasibly deduce whether the subject is in REM or NREM sleep.

Figure 1: A three channel device loaded into slot 1.

Figure 2: Screen capture of the frequency decomposition of a 60-second EEG epoch performed by ‘LPF AnalysingSoftware 2009’, showing the raw signal and power (%) in each frequency band (delta 0.5-4.0Hz); theta (4-8Hz); alpha (8-12Hz); beta (13-30Hz) and gamma (30-100Hz).

Figure 3: A hypnogram using 2-channel device (W=awake, P/p=polysomnographic scored, R=REM sleep, M=Movement, 1=Stage 1, 2=Stage 2, 3=Stage 3).

Figure 4: A hypnogram using 4 channel device (W=awake, P/p=polysomnographic scored, R=REM sleep, C=REM sleep, M=Movement).

Literature cited


Acknowledgments

We’d like to thank Rob Mason, our supervisor for helping us with the project and Dr. Kinnear for making us aware of this opportunity and for funding the conference.

For further information

Please contact rcy08yl@nottingham.ac.uk. More information on this and related projects can be obtained at www.camtech.com.