

University of Nottingham

University of Nottingham Nanoscale and Microscale Research Centre

nmRC CASE STUDY

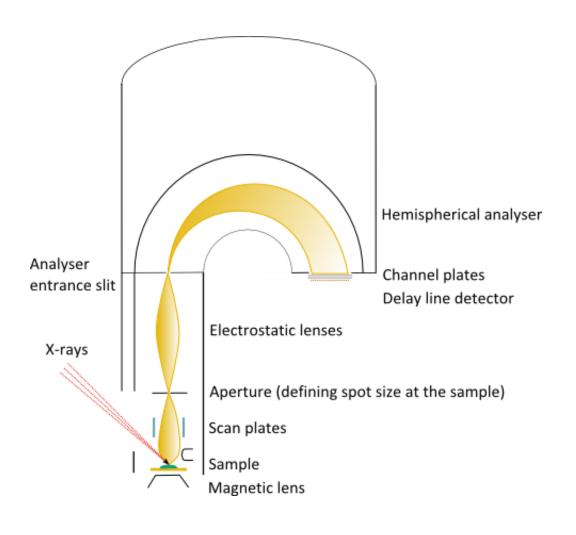
POLYMER COMPOSITION AND SPATIAL DISTRIBUTION

nmRC_CS_09

Polymer Composition and Spatial Distribution

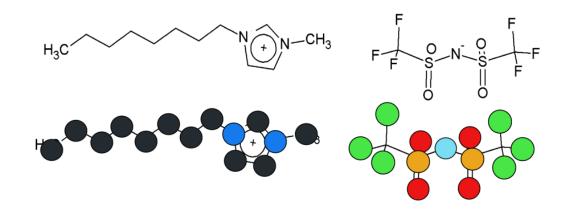
X-ray Photoelectron Spectroscopy (XPS) Case Study

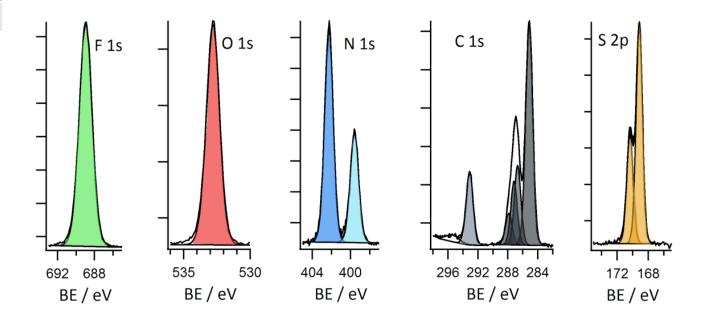
- Polymers are not always directly or easily identifiable at the surfaces of materials.
- Macro distributions and thicknesses may be of interest, but how can they be assessed?
- X-ray photoelectron spectroscopy (XPS) is a means of chemical analysis sensitive to light elements.
- XPS is also a highly surface sensitive technique (~ top 10nm), ideal for studying thin films of polymers or liquids*.


* Analyse ionic liquids with the liquid phase photoelectron spectroscopy instrument (LiPPS) at the NNNC.

XPS PRINCIPLES

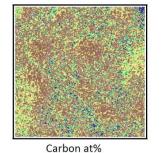
- X-rays excite electrons out of the sample surface.
- These are collected and their energy analysed.
- Electron energies depend on the element they originated from.
- The resulting spectrum is dependent on what elements are in the surface layer and in what abundance.

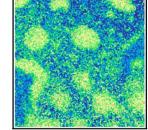


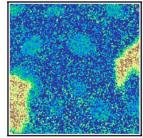

SPECTRAL IDENTIFICATION

- XPS Identification of polymers possible by elemental spectra.
- Example analysis of an ionic liquid:

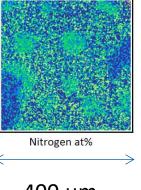
	Fluorine	Oxygen	Nitrogen	Carbon	Sulphur	Total
No Atoms	6	4	3	14	2	29
At% Expected	20.7	13.8	10.3	48.3	6.9	100

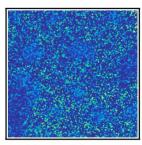


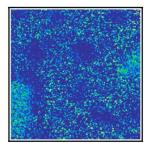



SPATIAL LOCALISATION

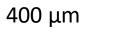
- Parallel imaging of a sample surface can be performed.
- This can provide the spatial distribution of elements, and therefore surface components
 e.g. polymers
- Example XPS mapping of ionic liquid droplet distribution on a gold surface.

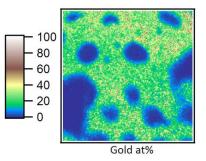






Oxygen at%





Sulphur - sulphate at%

Sulphur - sulphide at%

- XPS is a highly surface sensitive technique capable of chemical identification localisation, and quantification.
- Sensitive to light elements with ~0.1% atomic sensitivity it can play a key role in thin film polymer and liquid characterisation.
- Potential applications:
 - Polymer identification.
 - Surface enrichments of one polymer constituent.
 - ***** Drug entrapment and depth and coverage with protective layers.
 - ✤ Micron scale polymer spatial segregation or coating distributions.
 - Chemical stability of coatings.
 - Polymer mixing in cross section.

For more details on the work showcased in this case study see the following publications:

E. F. Smith, D. Briggs, and N. Fairley, "Further developments in quantitative X-ray photoelectron spectromicroscopy: preliminary results from the study of germanium corrosion," Surf. Interface Anal., vol. 38, no. 2, pp. 69–75, 2006.

E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs, and P. Licence, "Ionic Liquids in Vacuo: Analysis of Liquid Surfaces Using Ultra-High-Vacuum Techniques," Langmuir, vol. 22, no. 22, pp. 9386–9392, Oct. 2006.

The X-ray photoelectron spectroscopy (XPS) analysis documented here was performed at the Nanoscale and Microscale Research Centre (nmRC) at the University of Nottingham. www.nottingham.ac.uk/nmrc

- We hope the information provided in this case study is of interest.
- If you wish to get in touch with us to discuss any of the information provided, raise a query/concern or provide feedback then please use any of the methods listed below:

nmRC Commercial Services Nanoscale & Microscale Research Centre University Park Nottingham NG7 2RD

Telephone:+44(0)1159515046Email: nmcs@nottingham.ac.ukFax:+44 (0)1158467969Website:www.nottingham.ac.uk/nmrc-commercial