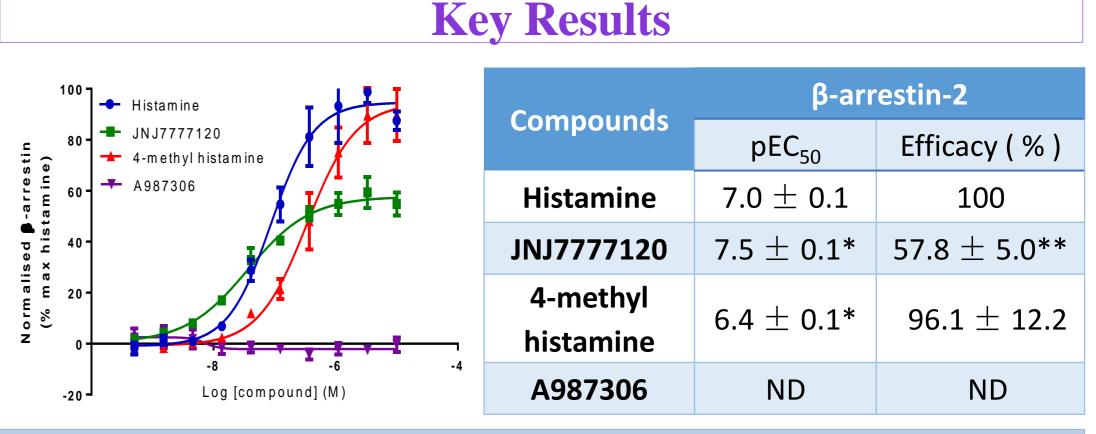
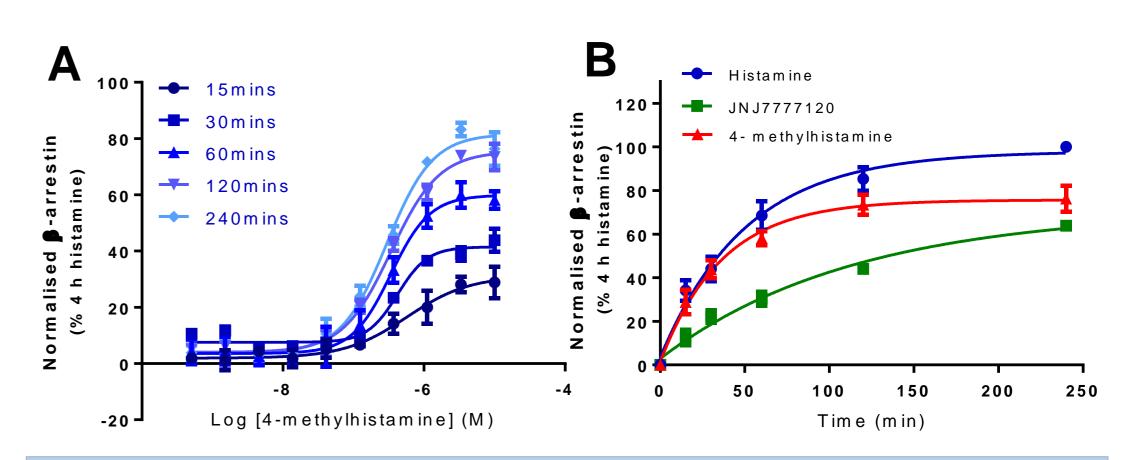

UNITED KINGDOM · CHINA · MALAYSIA

6-ARRESTIN-2 RECRUITMENT TO MONITOR HISTAMINE H4 RECEPTOR ACTIVATION OVER TIME

Louis Chan Hong Nian | Supervisors: Dr Elizabeth M. Rosethorne & Professor Steven J. Charlton | School of Life Sciences


Introduction

Histamine is a biogenic amine which synthesised by the pyridoxal phosphate-containing L-histidine decarboxylase from histidine. It is stored as intracellular vesicles in hematopoietic cells, including mast cells, eosinophils, and T cells. This indicates that they are playing a significant role in inflammatory response.^[1] Histamine exerts its effect onto histamine receptor which is a family of GPCRs. There are 4 distinct histamine receptor subtypes: H1, H2, H3 and H4 receptors (H4R). Recently, the histamine H4R has been elucidated to also signal via β -arrestin-2 recruitment pathway apart from G-protein activation. β -arrestin-2 is recruited to H4R following its activation and phosphorylation.^[2] This uncouples G-proteins from H4R, promotes their internalisation and results in receptor desensitisation.


Objectives

The aim of this study is to fully categorise a range of ligands given at the

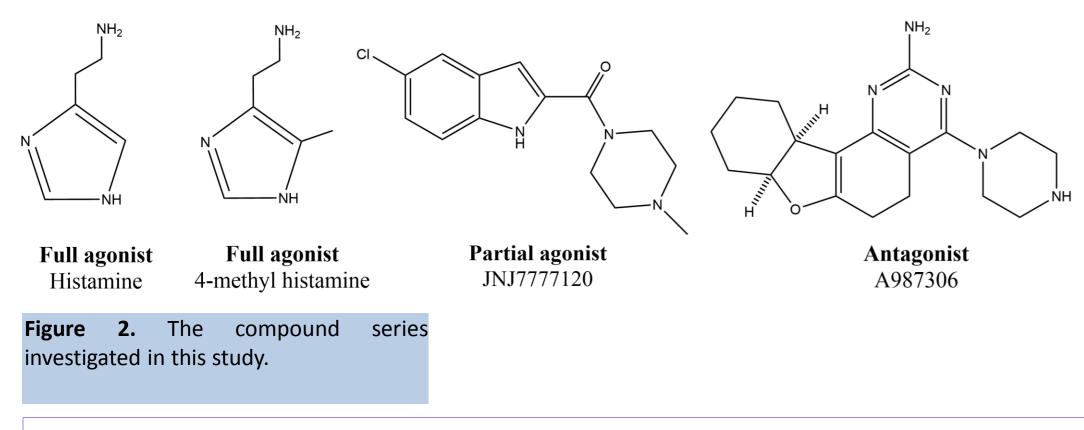


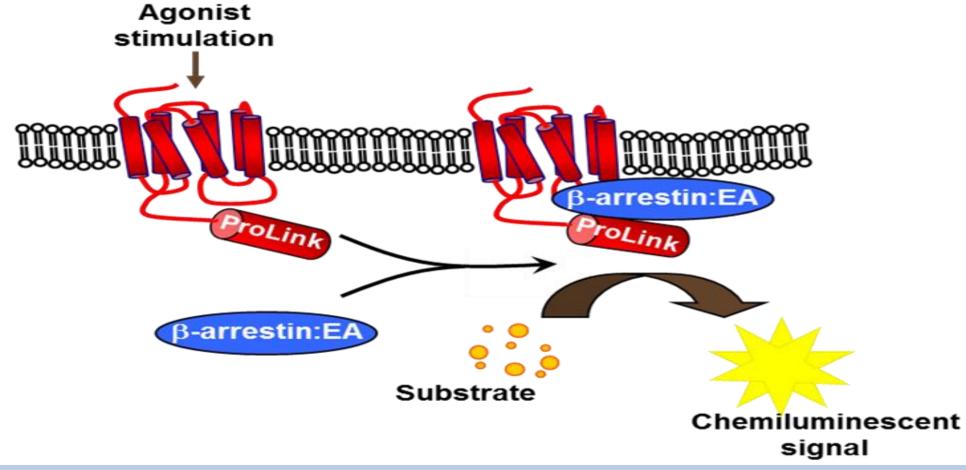
Figure 4. Ligand-mediated β -arrestin-2 recruitment in U2OS-H4 cells. Concentration-dependent increases in β -arrestin-2 recruitment were assessed after stimulation with the indicated concentrations of ligands for 1hr. The data is normalised at 10 μ M Histamine at time 1hr.

Table 1. Efficacy (%) and potency (pEC₅₀) of agonists in β -arrestin-2 recruitment are expressed as mean ± S.E.M, n=3 and performed in duplicate. Significant differences from histamine were quantified by one-way analysis of variance (ANOVA), followed by Dunnett's post-test analysis. **P<0.01, *P<0.05.

histamine H4R in terms of their potency and efficacy for recruiting β -arrestin-2 to the receptor. In addition, the rate of β -arrestin-2 recruitment will be determined for different classes of compound.

Methods

U2OS-H4R cell culture and DiscoveRx PathHunterTM β-arrestin-2 assay (DiscoveRx) were performed to monitor β-arrestin-2 recruitment. DiscoveRx uses β-galactosidase enzyme fragment complementation to measure the recruitment of β-arrestin-2 to a GPCR after phosphorylation and activation. Recombinant U2OS-H4R cells were engineered to co-express the ProLink[™] (PK) tagged GPCR and the Enzyme Acceptor (EA) tagged β-Arrestin-2. Cells were then incubated with full agonist (Histamine and 4-methyl histamine), partial agonist (JNJ7777120) and antagonist (A987306) at concentration of 10⁻⁵M-10⁻⁹M for up to 4 hours. Upon receptor activation by ligands, β-arrestin-2 was recruited to H4R, this resulted in interaction of two β-galactosidase enzyme fragments (EA and PK). Thus, it produced a functional enzyme, whose activity can be measured by addition of hydrolysable substrate and generation a chemiluminescent signal. The luminescent signal was then read by EnVision plate reader.^[3] Respectively, concentration-response curves were plotted using Graphpad Prism 6.


Figure 5. (A) The time course of concentration dependence increase of β -arrestin-2 recruitment of 4-methyl histamine **(B)** Comparison of rate of β -arrestin-2 recruitment between 10 μ M 4-methyl histamine, 10 μ M JNJ7777120 and 10 μ M Histamine over 4 hours. Data are expressed as mean ± S.E.M, n=3 and performed in duplicate. The data is normalised at 10 μ M Histamine at time 4 hour.

Compounds	β-arrestin-2 (4 hr time course)				
	Half-life (min)	Efficacy (%)			
Histamine	32.9 ± 6.7	100			
JNJ7777120	83.5 \pm 22.2	63.9 ± 1.1			
4-methyl histamine	25.3 \pm 2.8	76.1 \pm 4.7			

Table 2. Efficacy (%) and half-life (min) of agonists in β -arrestin-2 recruitment over 4 hours. Data are expressed as mean ± S.E.M, n=3 and performed in duplicate. The data is normalised to 10 μ M Histamine at time 4 hour.

- Histamine and 4-methyl histamine showed the greatest efficacy in βarrestin-2 recruitment (Table 1).
- The efficacy of JNJ7777120 was significantly lower than that of histamine. The order of efficacy among ligands was Histamine > 4methyl histamine > JNJ7777120 (Table 1).
- 4-methyl histamine significantly showed the lowest potency for H4R among all compounds with pEC_{50} values of 6.4 ± 0.1 (Table 1).
- JNJ7777120 had the longest half-life in β-arrestin-2 recruitment over 4 hours (Table 2).
- The efficacy of β-arrestin-2 recruitment of 4-methyl histamine was lower than maximal response of histamine over 4 hours (Table 2).

\sim	•			
	• •			

Figure 3. Principles of DiscoveRx PathHunterTM β -arrestin-2 assay. Upon activation by agonist, β -arrestin-2:EA protein is recruited to histamine H4R:ProlinkTM protein to form a functional enzyme. By adding hydrolysable substrate to enzyme, chemiluminescent signal is produced.

Conclusion and Future Implications

- 4-methyl histamine and histamine are regarded as full agonist due to their similar efficacy profiles.
- From these data, there appears to be a relationship between efficacy and rate of β -arrestin-2 recruitment. The higher efficacy ligands histamine and 4-methyl histamine have faster rate of β -arrestin-2 recruitment. In contrast, the lower efficacy ligand JNJ7777120 has a slower rate of β -arrestin-2 recruitment.
- Future work could focus more on 4-methyl histamine as there was bigger error bar on the concentration-response curve and only had single concentration of histamine was normalised to over 4 hour ,resulted in a more variable response. Modification to the structures of partial agonist could be done to develop therapeutic agents for H4R related diseases over a neutral antagonist for long term treatment.

Acknowledgements and References

I would like to thank for Dr Elizabeth M. Rosethorne and Professor Steven J. Charlton for their countless help, guidance and support throughout this research.

- 1. Ma, L. and Novak, N. (2007). Histamine and histamine intolerance 1,2,3. American Journal of Clinical Nutrition, 85(5), pp.1185-1196.2.
- 2. Rosethorne, E. and Charlton, S. (2010). Agonist-Biased Signaling at the Histamine H4 Receptor: JNJ7777120 Recruits -Arrestin without Activating G Proteins. Molecular Pharmacology, 79(4), pp.749-757.
- 3. Ma, L. and Pei, G. (2007). beta-arrestin signaling and regulation of transcription. Journal of Cell Science, 120(2), pp.213-218.