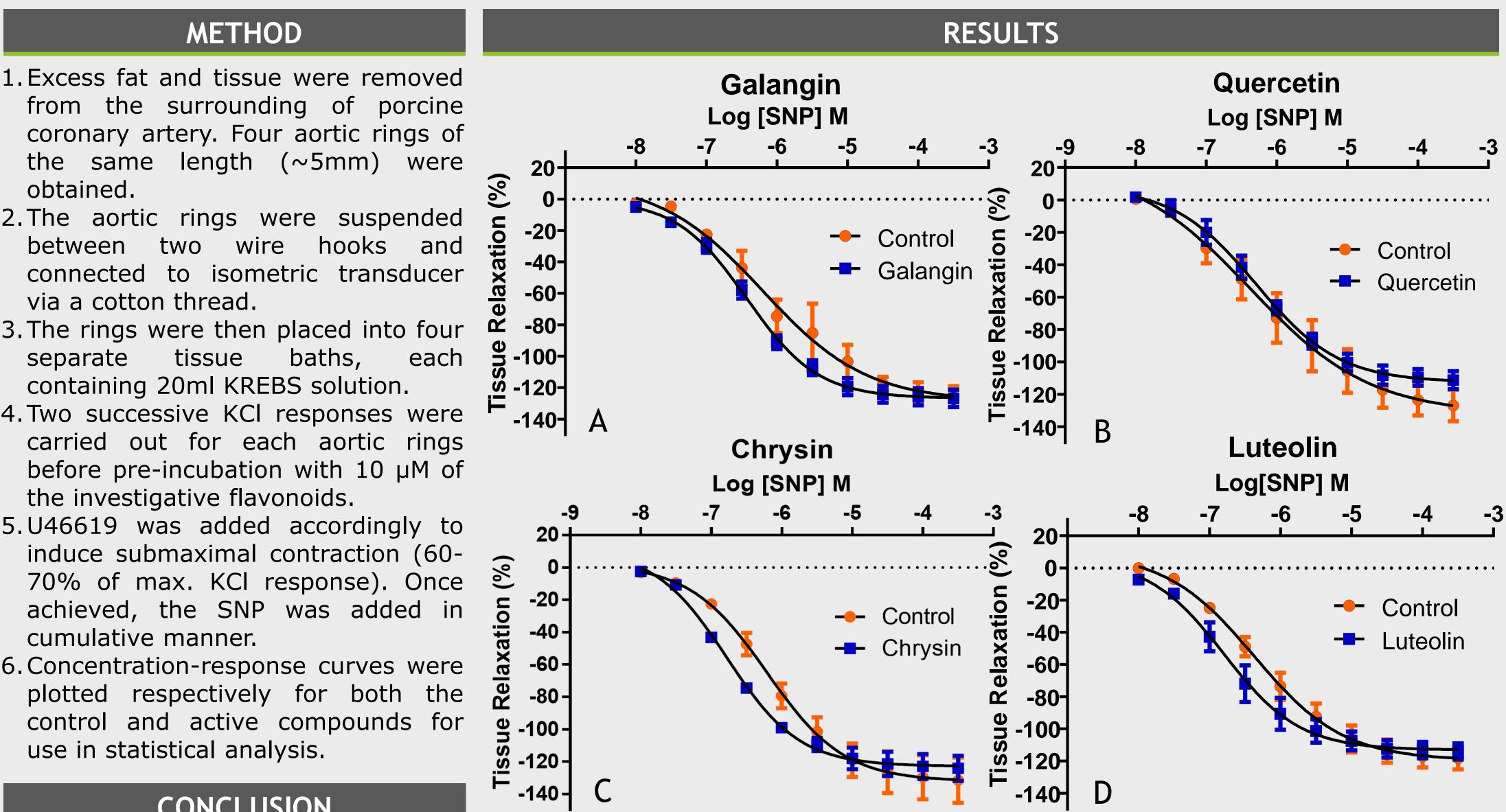
Structure-Activity Relationships of Flavonoids on cGMP-Mediated Relaxation of Coronary Artery by PDE5 inhibition

May Ai Joo LING | Supervisor: Dr Yvonne MBAKI | School of Pharmacy

UNITED KINGDOM · CHINA · MALAYSIA


BACKGROUND

- Flavonoids, which are found naturally in various food and plants, have been shown to have a wide range of advantageous biological activities. One of them is antihypertensive.[1]
- Various studies show that the potency of such activity is dependent on chemical structure, particularly the presence or absence of specific functional groups at certain location within the structure.[2]
- Flavonoids are found to be capable of inhibiting cGMPphosphodiesterase (PDE5), hence increased cGMP level.[3] Duarte et al. reported that absence of the 3'-OH in B ring of flavonoids was essential for the potentiation of the sodium nitroprusside(SNP)-induced vasorelaxation.[4]
- Despite this, little is known about the structure-activity relationships (SAR) between flavonoids and their inhibitory effects on PDE isozyme.

▶ To evaluate the vasodilatory effect of four different flavonoids (galangin, chyrsin, quercetin and luteolin) on the cGMP-mediated pathway.

AIMS

- To investigate the possible relationships between -OH substitution variations in the flavonoid phenolic rings and their importance for PDE5 inhibition. The -OH substitutions studied were 3-OH group in C ring, 3'-OH and 4'-OH in B ring.
- Group data comparison with results collected by peers who studied other types of structurally related flavonoids, using same experimental approach, to find out the effects of other functional groups (e.g.: 5-OH & 7-OH in A ring) on the reported ability of flavonoids to inhibit PDE activity.

- 2. The aortic rings were suspended
- 3. The rings were then placed into four
- 4. Two successive KCI responses were
- 5.U46619 was added accordingly to
- 6. Concentration-response curves were

CONCLUSION

- Flavones are more potent than flavonols.
- ► Lack of 3-OH in C ring increased flavonoids activity in the presence of SNP, hence could be essential for inhibiting PDE5 activity.

FIGURE 1: Figure above shows the effect of 10 µM of the investigate flavonoids on the relaxation response of SNP. X axis represents the concentration of SNP expressed in logarithm value and Y axis shows the percentage of tissue relaxation achieved.

	<i>pEC₅₀ value</i>	Fold Shift	R _{max} value
Control	-6.084 ± 0.29	1.67	-125.6 ± 6.68
+ 10µM Galangin	-6.434 ± 0.11		-126.8 ± 5.69 (n = 5)
Control	-6.200 ± 0.13	3.71	-131.5 ± 14.00
+ 10µM Chrysin	$-6.773 \pm 0.02**$		-124.2 ± 7.82 (n = 5)
Control	-6.256 ± 0.38	-1.21	-126.9 ± 9.76
+ 10µM Quercetin	-6.419 ± 0.22		-111.2 ± 5.49 (n = 4)
Control	-6.325 ± 0.11	2.66	-118.1 ± 7.14
+ 10µM Luteolin	$-6.700 \pm 0.17*$		-114.1 ± 5.09 (n = 5)

- Removal of both 3'-OH and 4'-OH from B ring of flavonoids enhanced the SNP potency, thus suggesting a possible role in PDE5 inhibition.
- ▶ Nevertheless, presence of 4′-OH alone potentiated the SNP activity.

WORKS CITED

- 1. Kozłowska, A. and Szostak-Węgierek, D. (2014). FLAVONOIDS FOOD SOURCES AND HEALTH BENEFITS. Rocz Panstw Zakl Hig, 65(2), pp.79-85. 2. Kumar, S. and Pandey, A. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. *The Scientific World Journal*, 2013, pp.1-16. 3. Kuppusamy, U. and Das, N. (1992). Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochemical
- Pharmacology, 44(7), pp.1307-1315. 4. Duarte, J., Vizcaíno, F., Utrilla, P., Jiménez, J., Tamargo, J. and Zarzuelo, A. (1993). Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. General Pharmacology: The Vascular System, 24(4), pp.857-862.

TABLE 1: Table 1 summarises the effect of the investigative flavonoids on the concentrationrelaxation parameters obtained from paired t-test for SNP-evoked relaxations. The responses are means \pm SEM of potencies (pEC_{50}), fold-shift of the curves and means \pm SEM of the maximal responses (R_{max}) to SNP, where *p < 0.05, **p < 0.01. Only effects exerted by the flavones (Figure 1: C, chrysin ; D, luteolin) were found be statistically significant.