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1 Introduction

To improve the power performance of panel data unit root tests in the presence of hetero-

geneous individual trends, Breitung (2000) proposed a statistic for large-T panels based on

an orthogonal transformation of the individual series. The test does not require an incon-

sistency adjustment of the estimator of the autoregressive parameter ϕ as opposed to other

tests in the literature, see e.g., Baltagi (2013) for a survey. Although it was found to be

consistent and have superior power in small samples for values of ϕ not far from unity (e.g.,

ϕ = 0.95), its asymptotic local power in a T−1N−1/2 neighbourhood of unity is trivial and

equivalent to that of the asymptotically bias corrected tests (see, Moon et al. (2007)).

In this paper, we extend Breitung’s (2000) test in two directions. First, we allow the time

dimension T of the panel to be finite (fixed) while allowing for heterogeneity, heteroscedas-

ticity, and serial correlation in the error terms. Second, we derive the fixed-T asymptotic

local power function of the new test. These extensions make the application of the test valid

in cases of short-T panels, often met in practice, and under higher than first order serial

correlation. The paper provides a number of interesting results. First, it shows that the

fixed-T version of the test can further improve its small sample size and power performance

in short panels, compared to its large-T version. Second, the new test also has trivial asymp-

totic local power in a N−1/2 neighbourhood of unity when the error terms are independently

distributed over time, which explains analytically Breitung’s (2000) findings in his Monte

Carlo experiment. Third, when the error terms are serially correlated, the estimator of ϕ

becomes inconsistent and thus, the test needs an inconsistency correction. Fourth, there are

forms of serial correlation for which the test has non-trivial local power.

The paper is organized as follows. Section 2 introduces the new test and provides its

asymptotic local power function. Section 3 presents the results of our Monte Carlo exercise,

while Section 4 concludes the paper. All proofs are relegated to the Appendix.

2 The test statistic and its asymptotic local power

Consider the following first order autoregressive panel data model with individual effects:

yi = ϕyi−1 + (1− ϕ)aie+ ϕβie+ (1− ϕ)βiτ + ui, (1)

where yi = (yi1, ..., yiT )′ and yi = (yi0, ..., yiT−1)′ are TX1 vectors, ui is the TX1 vector of

error terms uit, and ai and βi are the individual coeffi cients of the deterministic components

of the model. The coeffi cients ai reflect the individual effects of the panel, while βi capture

the slopes of individual linear trends, referred to as incidental trends. The TX1 vector e has
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elements et = 1, for t = 1...T , and τ t = t is the time trend. Next, define the autoregressive

coeffi cient ϕ as ϕN = 1 − c√
N
. Then, the null hypothesis of a unit root in ϕ against its

alternative of stationarity (i.e., ϕ < 1) can be respectively written as

H0: c = 0 and H1: c > 0,

where c is the local to unity parameter. The asymptotic distribution of the extension of Bre-

itung’s (2000) test statistic (denoted as UB) is derived by making the following assumption.

Assumption A
(i) {ui}, i ∈ {1, 2, ..., N}, are independent random vectors with means E(ui) = 0, hetero-

geneous variance-covariance matrices Γi ≡ E(uiu
′
i) ≡ [γi,ts], where γi,ts = E(uituis) = 0 for

t < s and s = t + p + 1, ..., T. The maximum order of serial correlation in ui is p = T − 2.

All 4 + ε mixed moments are finite.

(ii) Γ = limN
1
N

∑N
i=1 Γi is a finite, positive definite matrix and lim(NΓ)−1Γi=lim

(∑N
i=1 Γi

)−1

Γi =

0, for all i.

(iii) The random variables yio, ai and βi have finite 4 + ε moments and are independent

from uit for i = 1, ..., N and t = 1, ..., T .

Assumption A allows us to derive the distribution of the fixed-T version of Breitung’s

(2000) large-T panel unit root test statistic under the null hypothesis. Condition (i) de-

termines the order of serial correlation in error terms uit and together with condition (ii)

provide the necessary assumptions for the application of the Lindeberg-Feller multivariate

CLT. Condition (iii) is needed for the derivation of the asymptotic local power function.

Breitung’s (2000) test is based on the forward orthogonal deviations transformation of

the individual series yit of model (1). In a first step, the initial observations yi0 are subtracted

from yit, i.e. zit = yit − yi0. Then, define the following (T − 1)XT matrices:

A =

(
01XT

GH

)
and B =

(
01X(T−2) 0 0

IT−2 0(T−2)X1 − 1
T
τT−2

)
, where

G =



√
T−2
T−1

0√
T−3
T−2

. . .

0
√

1
2

 and H =



1 − 1
T−1

· · · · · · · · · − 1
T−1

. . . − 1
T−2

− 1
T−2

. . .
...

1 −1
2
−1

2

· · · · · · · · · 0 1 −1


,

with dimensions (T−2)X(T−2) and (T−2)XT respectively, and vector τT−2 = (1, 2, ..., T−
2)′. In the case that uit ∼ IIID(0, σ2), multiplying ∆zi with matrix A and zi with matrix
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B implies the following orthogonal moment conditions under null hypothesis H0: c = 0:

E(z′iB
′A∆zi) = 0. (2)

These can be tested based on the following least squares estimator of ϕ:

ϕ̂FOD = 1 +

(
N∑
i=1

z′iB
′Bzi

)(
N∑
i=1

z′iB
′A∆zi

)
,

which is equal to that of Breitung (2000) plus 1. This estimator is consistent underH0: c = 0,

i.e., p limN ϕ̂FOD = 1. In the more general case where Γ 6= σ2IT , estimator ϕ̂FOD becomes

inconsistent and its asymptotic bias is equal to p limN(ϕ̂FOD−1) = tr((Λ+I)′B′AΓ)
tr((Λ+I)′B′B(Λ+I)Γ)

, where

Λ is a TXT matrix which has unities at its lower than its main diagonals, and zero elsewhere,

and I is a TXT identity matrix.1 Thus, to test moment conditions (2), ϕ̂FOD needs to be

corrected for its inconsistency (see, e.g., Harris and Tzavalis (1999)).

Theorem 1 Let conditions (i) and (ii) of Assumption A hold and N → +∞, then under
H0: c = 0 we have

UBT =
√
NV −1/2δ̂

(
ϕ̂FOD − 1− b̂

δ̂

)
d−→ N(0, 1),

where b̂

δ̂
= tr(ΦpΓ̂)

1
N

∑N
i=1 z

′
iB

′Bzi
, Γ̂ = 1

N

∑N
i=1 ∆zi∆z

′
i, Φp = Ψp− e′Ψpe

e′Me
M with Ψp a TXT matrix hav-

ing in its diagonals {−p, .., 0, ...p} the corresponding elements of matrix Ξ = (Λ+I)′B′A, and

zero elsewhere, M is a TXT selection matrix with elements mts = 0, if γts 6= 0, and mts = 1,

if γts = 0, and V = vec(Ξ′ − Φ′p)
′Θvec(Ξ′ − Φ′p) where Θ = 1

N

∑N

i=1
V ar(vec(∆zi∆z

′
i)).

2

Implementing test statistic UBT requires a consistent estimator of variance V , given

under H0 as V̂ = vec(Ξ′−Φ′p)
′Θ̂vec(Ξ′−Φ′p) where Θ̂ = 1

N

∑N
i=1 (vec(∆zi∆z

′
i)vec(∆zi∆z

′
i)
′).

The main difference between UBT and Breitung’s statistic UB is the replacement of a T -

consistent variance estimator of ui with a N -consistent one.

To study the asymptotic local power of UBT under H1: c > 0, we will rely on a "slope"

parameter, denoted as k, which is defined in local power functions of form Φ(za + ck),

where Φ is the standard normal cumulative distribution function and za denotes the α-level

percentile. Since Φ is strictly monotonic, a larger k means greater power for the same value

1This happens because tr((Λ + I)′B′A) = 0 and tr((Λ + I)′B′AΓ) 6= 0.
2An alternative specification of UBT for uit ∼ IID(0, σ2) is UBT,2 =

√
NV

−1/2
2 (ϕ̂FOD − 1)

d−→ N(0, 1),
where V2 = vec(Ξ′)′Θvec(Ξ′) and Ξ = (Λ + I)′B′A. If uit are also normally distributed, V2 becomes

V2 =
2tr(A2

Ξ)
tr((Λ+I)′B′B(Λ+I))2 , with AΞ = 1

2 (Ξ + Ξ′).
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of c. If k > 0, then test statistic UBT will have non-trivial power. If k = 0, it will have

trivial power, which is equal to a. Finally, if k < 0, it will be biased. In the next theorem,

we derive the limiting distribution of UBT under H1: c > 0.

Theorem 2 Under Assumption A and H1: c > 0, we have

UBT =
√
NV −1/2δ̂

(
ϕ̂FOD − 1− b̂

δ̂

)
d−→ N(−ck, 1), (3)

as N →∞, where

k =
tr(Λ′B′AΛΓ) + tr(B′AΛΓ) + tr(Λ′B′AΓ) + tr(F ′B′AΓ)− tr(Λ′ΦpΓ)− tr(ΦpΛΓ)√

V
, (4)

where F is defined in the Appendix.

The result of Theorem 2 implies that UBT can have non-trivial power, as k can be positive.

Power becomes trivial if uit are serially uncorrelated. Then, UBT will suffer from the problem

of zero asymptotic local power due to incidental trends, noted by Moon et al. (2007) for large-

T panel unit root tests.3 This explains Breitung’s (2000) Monte Carlo findings. Note that this

power also depends on the moments of nuisance parameters βi, entered in the denominator

of k through the variance function V . For instance, if uit and βi are zero-mean normally

distributed random variables, then V is given as V = 2tr((AFODΓ+E(β2
i )AFODee

′)2), where

AFOD = 1
2
(Ξ + Ξ′ − Φp − Φ′p) (see proof of Theorem 1).

3 Simulation Results

The aim of our simulation study is twofold: first, to examine if the size and power per-

formance of the fixed-T test statistic UBT in small samples is satisfactory compared to its

large-T version and, second, to investigate how well the asymptotic local power function can

approximate the actual power of the test. In our analysis, we assume that error terms uit are

generated from the MA(1) process uit = εit + θεit−1, with innovations εit ∼ NIID(0, 1) and

values of θ ∈ {−0.8,−0.4, 0, 0.4, 0.8}. We set yi0 = 0 and ai = 0, without loss of generality

as these parameters do not appear in the local power function. For βi, we consider βi = 0

or βi ∼ NIID(0, 1). Finally, ϕ ∈ {1, 0.95}, N ∈ {20, 50, 100} and T ∈ {7, 10, 15, 20, 50}.

3The limiting distribution of UBT,2 under H1:c > 0 becomes UBT,2 =
√
NV

−1/2
2 (ϕ̂FOD − 1)

d−→
N(−ck2, 1), where k2 = 0, which means that the test has trivial power.
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Rejection frequencies are computed from 10000 replications at the 5% significance level.

N 20 50 100

ϕ/T 10 20 50 100 10 20 50 100 10 20 50 100

UBT 1 0.093 0.104 0.110 0.114 0.077 0.087 0.088 0.093 0.070 0.070 0.073 0.080

0.95 0.061 0.083 0.267 0.840 0.065 0.106 0.582 0.997 0.074 0.158 0.854 1

UB 1 0.082 0.074 0.063 0.061 0.079 0.069 0.066 0.057 0.075 0.066 0.059 0.057

0.95 0.055 0.069 0.291 0.886 0.059 0.101 0.547 0.998 0.064 0.138 0.823 1

Table 1: Size and size-adjusted power of test statistics UBT and UB, for θ = 0.

Table 1 presents the size and the size-adjusted power of UBT and Breitung’s statistic

UB. This is done for θ = 0 and βi = 0, for all i (see also Breuitung (2000)). The results

of the table clearly indicate that both the size and power of UBT are satisfactory (see De

Blander and Dhaene (2012)). The size of the test is very close to its nominal 5% level. Its

power increases with N or T , but faster with T than N . For small N (i.e., N = 20) and large

T , statistic UB has better size and more power than UBT . However, as N increases UBT

improves its size and is more powerful than the UB test irrespective of T . This qualifies

application of UBT also in cases where both dimensions N and T of the panel are large.

N 20 50 100

θ ϕ/T 10 20 50 100 10 20 50 100 10 20 50 100

-0.8 1 0.054 0.054 0.057 0.054 0.051 0.057 0.054 0.057 0.053 0.054 0.056 0.051

0.95 0.061 0.073 0.099 0.114 0.070 0.086 0.128 0.164 0.075 0.105 0.173 0.246

-0.4 1 0.051 0.059 0.066 0.080 0.050 0.055 0.066 0.071 0.054 0.054 0.059 0.061

0.95 0.062 0.091 0.252 0.711 0.074 0.115 0.435 0.695 0.077 0.138 0.656 0.998

0.4 1 0.079 0.096 0.113 0.111 0.070 0.084 0.082 0.089 0.061 0.069 0.082 0.079

0.95 0.092 0.161 0.489 0.950 0.093 0.181 0.728 0.999 0.093 0.216 0.924 1.00

0.8 1 0.074 0.097 0.111 0.122 0.068 0.078 0.090 0.090 0.064 0.073 0.080 0.078

0.95 0.095 0.168 0.496 0.958 0.090 0.185 0.747 0.999 0.100 0.219 0.927 1.00

Table 2: Size and power of the fixed-T panel root test statistic UBT when θ 6= 0.

Regarding the effects of serial correlation on the test, the results of Table 2, which presents
size and power of statistic UBT for non-zero θ, indicate that positive serial correlation (θ > 0)

in the errors uit increases considerably the power of UBT , even for very small values of T

and N . Also, the size performance of UBT is unaffected when error terms uit are negatively

correlated (θ < 0). This result is in contrast to that of single time series unit root tests
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which are critically oversized for θ < 0 (see, e.g., Schwert (1989)).

To see how well the asymptotic theory approximates the local power of UBT in the

neighbourhood of unity, Table 3 presents power values when ϕ = 1 − c/
√
N , for c = 1,

N ∈ {50, 100, 300, 1000}, T = 10 and two cases of βi: βi = 0 and βi ∼ NIID(0, 1). The

results of Table 3 indicate that the estimates of the power obtained by our Monte Carlo

experiment tend to approximate their theoretical values (TV ). For θ < 0, the test has non-

trivial local power while for θ > 0, it is biased. The non-trivial local power of the test for

θ < 0 can be attributed to the fact that the individual series of the panel yit become close to

those of a panel data autoregressive model with a common trend, for all i. In this case, the

incidental trends problem does not apply (see Moon et al. (2007). Finally, the power losses

for βi ∼ NIID(0, 1) are not very large. They become minimal for θ = 0, where βi does not

affect the local power function.

βi= 0, i = 1, ..., N βi∼ N(0, 1), i = 1, ..., N

θ\N 50 100 300 1000 TV θ\N 50 100 300 1000 TV

−0.8 0.125 0.123 0.113 0.096 0.067 −0.8 0.091 0.086 0.084 0.076 0.059

−0.4 0.142 0.132 0.109 0.099 0.059 −0.4 0.089 0.086 0.075 0.068 0.054

0 0.222 0.182 0.115 0.086 0.050 0 0.203 0.154 0.105 0.081 0.050

0.4 0.286 0.213 0.132 0.088 0.045 0.4 0.173 0.138 0.102 0.077 0.047

0.8 0.308 0.233 0.147 0.096 0.044 0.8 0.191 0.154 0.111 0.079 0.046

Table 3: Local power values of statistic UBT for T = 10, when uit= εit+θεit−1.

4 Conclusions

This paper extends Breitung’s (2000) panel unit root test to the case of fixed-T time dimen-

sion and derives its asymptotic local power. It shows that the new test can further improve

its small sample size and power performance in short panels, compared to its large-T version.

In addition to this, allowing for serial correlation in error terms leads to a test which can

have non-trivial local asymptotic power in the presence of incidental trends. Monte Carlo

analysis confirms the asymptotic results provided by the paper.
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5 Appendix

Theorem 1: Under H0: c = 0, we have zi = zi−1 + βie+ ui and zi−1 = Λeβi + Λui. Then,

the denominator of ϕ̂FOD − 1, denoted as δ̂, is 1
N

∑N
i=1 z

′
iB
′A∆zi = 1

N

∑N
i=1(z′i−1 + βie

′ +

ui)B
′A(βie + ui) = 1

N

∑N
i=1(u′i(Λ

′ + IT ) + βiτ
′)B′A(βie + ui) = 1

N

∑N
i=1 u

′
i(Λ
′ + IT )B′Aui,

since (Λ + IT )e = τ and τ ′B′ = 01XT , B
′Ae = 0TX1 by construction. By Khinchine’s Weak

Law of Large Numbers:

1

N

N∑
i=1

u′i(Λ
′ + IT )B′Aui =

1

N

N∑
i=1

u′iΞui
p−→ tr(ΞΓ).
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Similarly, it can be shown that the denominator of ϕ̂FOD − 1 has the following limit:

1

N

N∑
i=1

z′iB
′Bzi =

1

N

N∑
i=1

u′i(Λ
′ + IT )B′B(Λ + IT )ui

p−→ tr((Λ′ + IT )B′B(Λ + IT )Γ).

The last two relationships imply that the inconsistency of ϕ̂FOD is given as p limN(ϕ̂FOD −
1) = tr(ΞΓ)

tr((Λ′+IT )B′B(Λ+IT )Γ)
. Thus ϕ̂FOD becomes unbiased, if tr(ΞΓ) = 0 i.e. Γ = σ2IT .

Combining the above, the limiting distribution of UBT can be derived as follows:

√
Nδ̂
(
ϕ̂FOD − 1− b̂/δ̂

)
=

√
N

(
1

N

N∑
i=1

u′i(Λ
′ + IT )B′Aui −

1

N

N∑
i=1

∆z′iΦp∆zi

)
=

1√
N

N∑
i=1

∆z′i(Ξ− Φp)∆zi

since∆z′iΞ∆zi = u′iΞui, whereE(∆z′i(Ξ−Φp)∆zi) = 0 by construction ofΦp and V ar(∆z′i(Ξ−
Φp)∆zi) = vec(Ξ − Φp)

′V ar(vec(∆zi∆z
′
i))vec(Ξ − Φp). The result follows by applying the

Lindeberg-Feller CLT. If ui and βi are zero-mean normally distributed random variables,

then ∆zi is also normal and V ar(∆z′i(Ξ− Φp)∆zi) = 2tr(
(
AFOD

(
Γ + E(β2

i )ee
′))2

).

Theorem 2: To prove the theorem, we will employ following relationships:

zi = ϕNzi−1 +Xζ i + ui, i = 1, 2, ..., N (5)

zi−1 = ΩXζ i + Ωui + (w − e)yi0, (6)

and ∆zi = (ϕN − 1)zi−1 +Xζ i + ui, (7)

where ζ i =

(
(1− ϕN)(ai − yi0) + ϕβi

(1− ϕN)βi

)
, X = (e, τ), w = (1, ϕN , ϕ

2
N , ..., ϕ

T−1
N )′ and

Ω =



0 . . . . . 0

1 0 .

ϕN 1 . .

ϕ2
N ϕN . . .

. . . . .

. . 1 0 .

ϕT−2
N ϕT−3

N . . ϕN 1 0


. Note that, for ϕN = 1, we have Ω ≡ Λ. The first

order Taylor expansions of Ω and w yield

Ω = Λ + F (ϕN − 1) + o(1) and w = e+ f(ϕN − 1) + o(1), (8)

respectively, where F = dΩ
dϕN
|ϕN=1 and f = dw

dϕN
|ϕN=1(see also Madsen (2010)). ζ i can be
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written in more compact form as

ζ i =
c√
N
µi + βie2, (9)

where c√
N

= (1− ϕN), µi = (ai − yi0 − βi, βi)′ and e2 = (1, 0)′. The following equalities also

hold:

tr(Ξ) = 0 and tr(Λ′B′A) = −tr(B′A),

e′Ξ = 01XT and Ξe = 0TX1,

B′AXe2 = 0TX1, (10)

e′2X
′Λ′B′AΛXe2 = e′2X

′Λ′B′AXẽ, (11)

e′2X
′B′AΛXe2 = e′2X

′B′AXẽ,

e′2X
′ΦpΛXe2 = e′2X

′ΦpXẽ, (12)

e′2X
′Λ′ΦpXe2 = ẽ′X ′ΦpXe2, (13)

where ẽ = (−1, 1)′. Consider the following formula of test statistic UBT :

√
Nδ̂

(
ϕ̂FOD − ϕN −

b̂

δ̂

)
= (14)

=
√
Nδ̂

(
1 +

1
N

∑N
i=1 z

′
iB
′A∆zi

1
N

∑N
i=1 z

′
iB
′Bzi

− ϕN −
1
N

∑N
i=1 ∆z′iΦp∆zi

1
N

∑N
i=1 z

′
iB
′Bzi

)
(15)

=
c

N

N∑
i=1

z′iB
′Bzi +

1√
N

N∑
i=1

z′iB
′A∆zi −

1√
N

N∑
i=1

∆z′iΦp∆zi = (I) + (II) + (III).

The limiting distribution of the above statistic is derived by taking limits of (I), (II) and

(III), for N →∞. To derive the limit of (I), we will employ (5). Then, (I) can be written as

c
N

∑N
i=1 z

′
iB
′Bzi = c

N

N∑
i=1

φ2
Nz
′
i−1B

′Bzi−1+φNz
′
i−1B

′BXζ i+φNz
′
i−1B

′Bui+φNζ
′
iX
′B′Bzi−1+

ζ ′iX
′B′BXζ i + ζ ′iX

′B′Bui + φNu
′
iB
′Bzi−1 + u′iBB

′Xζ i + u′iB
′Bui. Using (6) and (8) and

(9), the first term of the last relationship can be written as c
N

∑N
i=1 φ

2
Nz
′
i−1B

′Bzi−1 =
c
N

∑N
i=1 z

′
i−1B

′Bzi−1 + op(1) = c
N

∑N
i=1(βie

′
2X
′Λ′ + u′iΛ

′)B′B(ΛXe2βi + Λui) + op(1). Since

the sum is multiplied by 1
N
, any summand coming from the expansion of it which is also

multiplied by 1
N
, or 1√

N
, will be asymptotically negligible, op(1). By KWLLN and stan-

dard results on quadratic forms (see Schott (1996)), we can show that c
N

∑N
i=1(βie

′
2X
′Λ′ +

u′iΛ
′)B′B(ΛXe2βi + Λui)

p−→ c
[
E(β2

i )e
′
2X
′Λ′B′BΛXe2 + tr(Λ′B′BΛΓ)

]
. Following analo-
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gous arguments to the above, it can be shown that

(I) :
c

N

N∑
i=1

z′iB
′Bzi

p−→ c

 tr(Λ′B′BΛΓ) + tr(Λ′B′BΓ) + tr(B′BΛΓ) + tr(B′BΓ)

+E(β2
i )e
′
2X
′Λ′B′BΛXe2 + E(β2

i )e
′
2X
′Λ′B′BXe2

+E(β2
i )e
′
2X
′B′BΛXe2 + E(β2

i )e
′
2X
′B′BXe2

 (16)

Similarly, we can show

(II) :
1√
N

N∑
i=1

z′iB
′A∆zi

p−→ N(cµ1, V(II)) (17)

where µ1 = c

 −tr(Λ
′B′AΛΓ)− tr(Λ′B′AΓ)− tr(B′AΛΓ)− tr(F ′B′AΓ)

−E(β2
i )e
′
2X
′Λ′B′AΛXe2 + E(β2

i )ẽ
′X ′Λ′B′AXẽ+

−E(β2
i )e
′
2X
′B′AΛXe2 + E(β2

i )e
′
2X
′B′AXẽ

+ tr(Λ′B′AΓ) +

tr(B′AΓ) and

(III) : − 1√
N

N∑
i=1

∆z′iΦp∆zi
p−→ N(cµ2, V(III)) (18)

where µ2 = c

 tr(Λ′ΦpΓ) + tr(ΦpΛΓ)

+E(β2
i )e
′
2X
′Λ′ΦpXe2 + E(β2

i )e
′
2X
′ΦpΛXe2

−E(β2
i )e
′
2X
′ΦpXẽ− E(β2

i )ẽ
′X ′ΦpXe2

 − tr(ΦpΓ). Summing up the

results in (16), (17) and (18) and using the results of equations (13), we can prove the result

of Theorem 2. Note that the variance functions of the limiting distributions of quantities

(I) and (II): V(II) and V(III), as well as their covariance do not need to be calculated, given

that they are equal to variance V of the test statistic UBT , under H0: c = 0. This happens

because these functions are independent of c (see also Breitung (2000)).

11


