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Abstract
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1 Introduction

To improve the power performance of panel data unit root tests in the presence of hetero-
geneous individual trends, Breitung (2000) proposed a statistic for large-T" panels based on
an orthogonal transformation of the individual series. The test does not require an incon-
sistency adjustment of the estimator of the autoregressive parameter ¢ as opposed to other
tests in the literature, see e.g., Baltagi (2013) for a survey. Although it was found to be
consistent and have superior power in small samples for values of ¢ not far from unity (e.g.,

1/2 peighbourhood of unity is trivial and

¢ = 0.95), its asymptotic local power in a T-1 N~
equivalent to that of the asymptotically bias corrected tests (see, Moon et al. (2007)).

In this paper, we extend Breitung’s (2000) test in two directions. First, we allow the time
dimension T of the panel to be finite (fixed) while allowing for heterogeneity, heteroscedas-
ticity, and serial correlation in the error terms. Second, we derive the fixed-T" asymptotic
local power function of the new test. These extensions make the application of the test valid
in cases of short-7T" panels, often met in practice, and under higher than first order serial
correlation. The paper provides a number of interesting results. First, it shows that the
fixed-T" version of the test can further improve its small sample size and power performance
in short panels, compared to its large-T" version. Second, the new test also has trivial asymp-

1/2 neighbourhood of unity when the error terms are independently

totic local power in a N~
distributed over time, which explains analytically Breitung’s (2000) findings in his Monte
Carlo experiment. Third, when the error terms are serially correlated, the estimator of ¢
becomes inconsistent and thus, the test needs an inconsistency correction. Fourth, there are
forms of serial correlation for which the test has non-trivial local power.

The paper is organized as follows. Section 2 introduces the new test and provides its
asymptotic local power function. Section 3 presents the results of our Monte Carlo exercise,

while Section 4 concludes the paper. All proofs are relegated to the Appendix.

2 The test statistic and its asymptotic local power

Consider the following first order autoregressive panel data model with individual effects:

Yi = @Y1+ (1 — @)ae + ofie + (1 — )BT + uy, (1)

where y; = (vi1, ..., yir) and y; = (Vio, ..., Yir—1)" are T X1 vectors, u; is the T X1 vector of
error terms u;, and a; and (3, are the individual coefficients of the deterministic components
of the model. The coefficients a; reflect the individual effects of the panel, while (3, capture

the slopes of individual linear trends, referred to as incidental trends. The T' X1 vector e has



elements e, = 1, for t = 1...T, and 7, = t is the time trend. Next, define the autoregressive
coefficient ¢ as ¢y = 1 — \/LN Then, the null hypothesis of a unit root in ¢ against its

alternative of stationarity (i.e., ¢ < 1) can be respectively written as
Hy: ¢=0 and Hi: ¢>0,

where c is the local to unity parameter. The asymptotic distribution of the extension of Bre-
itung’s (2000) test statistic (denoted as U B) is derived by making the following assumption.

Assumption A

(i) {w;}, i € {1,2,..., N}, are independent random vectors with means F(u;) = 0, hetero-
geneous variance-covariance matrices I'; = E(usu;) = [, ], where v, ;. = FE(uu;s) = 0 for
t<sand s=t+p+1,..,T. The maximum order of serial correlation in u; is p =T — 2.
All 4 4 € mixed moments are finite.

(i) I' = limy % Zf\il [; is a finite, positive definite matrix and lim(NT)~'T;=lim (Zf\il Fi> B I,
0, for all i.

(iii) The random variables v;,, a; and (3, have finite 4 + ¢ moments and are independent
from uy forte=1,..., Nand t =1,...,T.

Assumption A allows us to derive the distribution of the fixed-T" version of Breitung’s
(2000) large-T" panel unit root test statistic under the null hypothesis. Condition (i) de-
termines the order of serial correlation in error terms u; and together with condition (ii)
provide the necessary assumptions for the application of the Lindeberg-Feller multivariate
CLT. Condition (iii) is needed for the derivation of the asymptotic local power function.

Breitung’s (2000) test is based on the forward orthogonal deviations transformation of
the individual series y;; of model (1). In a first step, the initial observations y;o are subtracted

from vy, i.e. 2y = yir — yio. Then, define the following (7" — 1) XT matrices:

0 0 _ 0 0
A= T and B = LX(T=2) . , where
GH It Or-2yx1 —7TT-2

I-2 0 1 _ﬁ _ﬁ
T—1

1 1

T-3 ) T T2 T T2

G = 2 and H = : ,

" 1 1
0 - 1 =3 =3
2 0 1 -1

with dimensions (7'—2) X (T'—2) and (T'—2) X T respectively, and vector 7o = (1,2,...,T—
2)'. In the case that u; ~ ITID(0,0?), multiplying Az; with matrix A and z; with matrix



B implies the following orthogonal moment conditions under null hypothesis Hy: ¢ = 0:
E(z}B'AAz) = 0. (2)

These can be tested based on the following least squares estimator of ¢:

N N
$rop =1+ (Z ZZ{BIB%) <Z zl'-B’AAzz‘) :

=1 =1

which is equal to that of Breitung (2000) plus 1. This estimator is consistent under Hy: ¢ = 0,

i.e., plimy ®pop = 1. In the more general case where I' # o2[7, estimator ¢, becomes
tr((A+I)' B’ AT)
tr((A+1)B'B(A+I)T
A is a T XT matrix which has unities at its lower than its main diagonals, and zero elsewhere,

inconsistent and its asymptotic bias is equal to plimy (¢ pop —1) =

L where

and I is a TXT identity matrix.! Thus, to test moment conditions (2), ¢ ,p needs to be

corrected for its inconsistency (see, e.g., Harris and Tzavalis (1999)).

Theorem 1 Let conditions (i) and (ii) of Assumption A hold and N — 400, then under

Hy: ¢ =0 we have

~

- b
UBr = VNV Y% (@FOD —1- g> 4, N(0,1),

b _ tr(®pl) N1 N / - e'Upe . .
where 5= m, I'= N Zi:l AZZ'AZZ-, (pp = \ij— e’MeM with \ij a T XT matrix hav-

2

ing in its diagonals {—p, .., 0, ...p} the corresponding elements of matriz = = (A+1)'B'A, and

zero elsewhere, M is a TXT selection matrixz with elements mys = 0, if v,, # 0, and mys = 1,

N
if 76 =0, and V = vec(Z' — @) Ovec(Z' — )) where © = + Z'—1 Var(vec(Az;Az})).?

Implementing test statistic UBr requires a consistent estimator of variance V', given
under Hy as V = vec(Z' — @;)'@vec(E' — @) where 0= ~ le\il (vec(Az; Azl vec(Az;AzL)).
The main difference between U By and Breitung’s statistic UB is the replacement of a T-
consistent variance estimator of u; with a N-consistent one.

To study the asymptotic local power of UBr under H;: ¢ > 0, we will rely on a "slope"
parameter, denoted as k, which is defined in local power functions of form ®(z, + ck),
where ® is the standard normal cumulative distribution function and z, denotes the a-level

percentile. Since @ is strictly monotonic, a larger k£ means greater power for the same value

IThis happens because tr((A + I)'B’A) =0 and tr((A + I)'B’AT) # 0.
2 An alternative specification of UBr for u; ~ I1D(0,02) is UBr2 = \/JVVQ_UQ(@FOD -1) -, N(0,1),
where V5 = vec(Z')Ouec(E’) and E = (A + I)’B’A. If u; are also normally distributed, V2 becomes

_ 2tr(A2) ; — ==
Vo = prrn s With Az = 5 (E+F).




of c. If £ > 0, then test statistic U Br will have non-trivial power. If k = 0, it will have
trivial power, which is equal to a. Finally, if £ < 0, it will be biased. In the next theorem,

we derive the limiting distribution of U By under H;: ¢ > 0.

Theorem 2 Under Assumption A and Hy: ¢ > 0, we have
. b
UBr = VNV% (@FOD —1- g> L, N(=ck, 1), (3)

as N — oo, where

b tr(N'B'AAT) + tr(B'AAT) + tr(AN'B'AL) + tr(F'B'AT") — tr(A'®,I') — tr(®,AL) (4)
= N 7

where F' is defined in the Appendiz.

The result of Theorem 2 implies that U By can have non-trivial power, as k can be positive.
Power becomes trivial if u;; are serially uncorrelated. Then, U By will suffer from the problem
of zero asymptotic local power due to incidental trends, noted by Moon et al. (2007) for large-
T panel unit root tests.®> This explains Breitung’s (2000) Monte Carlo findings. Note that this
power also depends on the moments of nuisance parameters 3,, entered in the denominator
of k through the variance function V. For instance, if u;; and 3, are zero-mean normally
distributed random variables, then V is given as V = 2tr((Apopl + E(?) Aropee’)?), where
Apop = 5(E+ &' — @, — @) (see proof of Theorem 1).

3 Simulation Results

The aim of our simulation study is twofold: first, to examine if the size and power per-
formance of the fixed-T test statistic U By in small samples is satisfactory compared to its
large-T" version and, second, to investigate how well the asymptotic local power function can
approximate the actual power of the test. In our analysis, we assume that error terms u;; are
generated from the MA(1) process u;; = €;; + 01, with innovations ¢;; ~ NII1D(0,1) and
values of 0 € {—0.8,-0.4,0,0.4,0.8}. We set y;,0 = 0 and a; = 0, without loss of generality
as these parameters do not appear in the local power function. For 3,, we consider 3, = 0
or 8, ~ NIID(0,1). Finally, ¢ € {1,0.95}, N € {20,50,100} and T" € {7,10,15,20,50}.

3The limiting distribution of UBr s under Hy:c > 0 becomes UBrga = mV{lm(ngOD -1 <,

N(—cks,1), where ks = 0, which means that the test has trivial power.



Rejection frequencies are computed from 10000 replications at the 5% significance level.

N 20 50 100
©/T 10 20 50 100 10 20 50 100 10 20 50 100
UBr 1 0.093 0.104 0.110 0.114 0.077 0.087 0.088 0.093 0.070 0.070 0.073 0.080
0.95 0.061 0.083 0.267 0.840 0.065 0.106 0.582 0.997 0.074 0.158 0.854 1
UB 1 0.082 0.074 0.063 0.061 0.079 0.069 0.066 0.057 0.075 0.066 0.059 0.057
0.95 0.055 0.069 0.291 0.886 0.059 0.101 0.547 0.998 0.064 0.138 0.823 1
Table 1: Size and size-adjusted power of test statistics U Br and UB, for § = 0.
Table 1 presents the size and the size-adjusted power of U Br and Breitung’s statistic
UB. This is done for # = 0 and 3, = 0, for all i (see also Breuitung (2000)). The results
of the table clearly indicate that both the size and power of U By are satisfactory (see De
Blander and Dhaene (2012)). The size of the test is very close to its nominal 5% level. Its
power increases with N or T', but faster with 7" than N. For small N (i.e., N = 20) and large
T, statistic UB has better size and more power than U By. However, as N increases U By
improves its size and is more powerful than the UB test irrespective of T'. This qualifies
application of U By also in cases where both dimensions N and T of the panel are large.
N 20 50 100
0 ©/T 10 20 50 100 10 20 50 100 10 20 50 100
0.8 1 0.054 0.054 0.057 0.054 0.051 0.057 0.0564 0.057 0.0563 0.054 0.056 0.051
0.95 0.061 0.073 0.099 0.114 0.070 0.086 0.128 0.164 0.075 0.105 0.173 0.246
-04 1 0.051 0.059 0.066 0.080 0.050 0.055 0.066 0.071 0.064 0.054 0.059 0.061
0.95 0.062 0.091 0.252 0.711 0.074 0.115 0.435 0.695 0.077 0.138 0.656 0.998
04 1 0.079 0.096 0.113 0.111 0.070 0.084 0.082 0.089 0.061 0.069 0.082 0.079
0.95 0.092 0.161 0.489 0.950 0.093 0.181 0.728 0.999 0.093 0.216 0.924 1.00
0.8 1 0.074 0.097 0.111 0.122 0.068 0.078 0.090 0.090 0.064 0.073 0.080 0.078
0.95 0.095 0.168 0.496 0.958 0.090 0.185 0.747 0.999 0.100 0.219 0.927 1.00

Table 2: Size and power of the fixed-T" panel root test statistic U By when 6 # 0.

Regarding the effects of serial correlation on the test, the results of Table 2, which presents
size and power of statistic U By for non-zero 6, indicate that positive serial correlation (6 > 0)
in the errors u;; increases considerably the power of UBr, even for very small values of T’
and N. Also, the size performance of U By is unaffected when error terms u; are negatively

correlated (6 < 0). This result is in contrast to that of single time series unit root tests
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which are critically oversized for 8 < 0 (see, e.g., Schwert (1989)).

To see how well the asymptotic theory approximates the local power of UBr in the
neighbourhood of unity, Table 3 presents power values when ¢ = 1 — ¢/ VN, for ¢ = 1,
N € {50,100, 300,1000}, T' = 10 and two cases of 5,: 3, = 0 and 8, ~ NIID(0,1). The
results of Table 3 indicate that the estimates of the power obtained by our Monte Carlo
experiment tend to approximate their theoretical values (7'V'). For 6 < 0, the test has non-
trivial local power while for 6§ > 0, it is biased. The non-trivial local power of the test for
f < 0 can be attributed to the fact that the individual series of the panel y;; become close to
those of a panel data autoregressive model with a common trend, for all 7. In this case, the
incidental trends problem does not apply (see Moon et al. (2007). Finally, the power losses
for 8, ~ NIID(0,1) are not very large. They become minimal for § = 0, where [, does not

affect the local power function.

B=0,i=1,..,N B~ N(0,1),i=1,..,N

O\N 50 100 300 1000 TV ~A\N 50 100 300 1000 TV
—0.8 0.125 0.123 0.113 0.096 0.067 —0.8 0.091 0.086 0.084 0.076 0.059
—0.4 0.142 0132 0.109 0.099 0.059 —0.4 0.089 0.086 0.075 0.068 0.054
0 0222 0182 0.115 0.08 0050 0 0203 0.154 0.105 0.081 0.050
04 028 0.213 0.132 0088 0.045 0.4 0173 0.138 0.102 0.077 0.047
0.8 0.308 0.233 0.147 0.096 0.044 0.8 0191 0.154 0.111 0.079 0.046

Table 3: Local power values of statistic U By for T' = 10, when u;;= €;;+60c;_1.

4 Conclusions

This paper extends Breitung’s (2000) panel unit root test to the case of fixed-T" time dimen-
sion and derives its asymptotic local power. It shows that the new test can further improve
its small sample size and power performance in short panels, compared to its large-T version.
In addition to this, allowing for serial correlation in error terms leads to a test which can
have non-trivial local asymptotic power in the presence of incidental trends. Monte Carlo

analysis confirms the asymptotic results provided by the paper.
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5 Appendix

Theorem 1: Under Hy: ¢ = 0, we have z; = z;_1 + 8,6 +u; and 2;_1 = Aef; + Au;. Then,
the denominator of ¢ppp — 1, denoted as 8, is =~ SV B ANz = % SN (2 + B +
W) BAB e +w) = LSV (N + Ip) + B7) B ABue +w) = XN (N + ) B Au,
since (A + Iz)e = 7 and 7' B’ = 01x7, B'Ae = Orx1 by construction. By Khinchine’s Weak

Law of Large Numbers:

N N
1 1

i=1 =1



Similarly, it can be shown that the denominator of ¢r,p — 1 has the following limit:

1 N

N

1

v > BBz = ~ > ul(A' + Ir)B'B(A + Ir)u; = tr((A'+ Ir)B'B(A + Ir)T).
=1

=1

The last two relationships imply that the inconsistency of ¢pop is given as plimy(@pop —

r(El ~ . . —_ .
1) = tr((A,H;);,B)(AHT)F). Thus ¢pop becomes unbiased, if ¢tr(ZC) = 0 i.e. [ = o2l7.

Combining the above, the limiting distribution of U By can be derived as follows:
VNb (@FOD —1- 6/5> -
1 — 1 — 1 &
1A / / — "= _ .
VN (N ; ui(N + Ir) B Au; — — ; Aziq)pAzi> - 75 ; AZ(Z—®,)Az

since Az/EAz; = ul=u;, where E(Az)(Z—®,)Az;) = 0 by construction of ®, and Var(Az/(Z—
Q,)Az;) = vec(Z — @,)' Var(vec(Az;Azl))vec(Z — ®,). The result follows by applying the
Lindeberg-Feller CLT. If u; and 3, are zero-mean normally distributed random variables,
then Az; is also normal and Var(Az/(Z — ®,)Az;) = 2tr((Apop (I + E(B?)ee’))z).

Theorem 2: To prove the theorem, we will employ following relationships:

Zi = QONZi_l—i-XCZ-—'—Ui, 1= ].,2,...,N (5)
zio = QX+ Qui + (w — e)yio, (6)
and Az = (py — Dz + X, + uy, (7)
Where CZ = ( SON)(CL yO) * gpﬁ ) X - (677—)7 w = (17¢N7g0%\/'7 7§0% 1)/ a’nd
(1= »n)B;
0 . .o .0
1 0
PN 1 .
Q=1 VA o - - . |- Note that, for o = 1, we have Q = A. The first
i 1 0
PN oen S - ey 10

order Taylor expansions of €2 and w yield
Q=A+F(py —1)+o0(1) and w=e+ f(oy — 1)+ 0o(1), (8)

respectively, where ' = % loy=1 and f = CZTwN |oy=1(see also Madsen (2010)). ¢; can be



written in more compact form as
¢ i+ (9)
i = =M i€2;
/—NM 2

where —= = (1 —¢y), p; = (@i —yio — 5;, 6;)" and ez = (1,0)". The following equalities also
hold:

tr(2) = 0 and tr(A'B'A) = —tr(B'A),

¢E = 0O1xr and Ze = Oryxy,
B'AXe; = Orx, (10)
AX'NBANXe, = e X'NBAXE, (11)
es X'B'AANX ey, = e, X'B'AXE,
e X'®,AXes = e, X'P,Xe, (12)
X' ND, Xey = &X'D,Xey, (13)

where é = (—1,1)". Consider the following formula of test statistic U Br:

. b
VNG (SOFOD —¥YN g) = (14)

s (1, 32N aBAA, LY, Axe,A
NZ@ 1 zB,Bz”L (pN NZZ 1 zB/Bz”L

N
C ! !/ ! !/ /
= — E ziBBzijL— E zl-BAAzi—— E Az @, Az = (1) + (I1) + (I111).
N VIV i VIV T

The limiting distribution of the above statistic is derived by taking limits of (1), (/) and
(I11), for N — oo. To derive the limit of (1), we will employ (5). Then, (I) can be written as

sz 1 %iB'Bz; = NZ¢N'ZZ[’ \B'Bzi 1+ ¢z B BX(+6n2B'Buit+¢n(G X' B' Bz +

(:X'B'BX(;, +CXBBuZ+¢NuBBzZ 1 + u;BB'X(; + u.B'Bu;. Using (6) and (8) and
(9), the first term of the last relationship can be written as + e SN 97 B'Bzi, =
N SV 2 \B'Bzi 1 4 0,(1) = ~ ¢ SN (Bieh XN + uiN)B' B(AX e33; + Auy) + 0,(1). Since
the sum is multiplied by %, any summand coming from the expansion of it which is also
multiplied by +, \ﬁ, will be asymptotically negligible, 0,(1). By KWLLN and stan-
dard results on quadratlc forms (see Schott (1996)), we can show that < ZZ_ (B;e5 XN +

w,N)B'B(AX eof3; + Au;) -2 ¢ [E(87)ebX'N'B'BAX €5 + tr(N' B’ BAF)} . Following analo-

10



gous arguments to the above, it can be shown that

N tr(N'B'BAT) + tr(N'B'BT) + tr(B'BAT) + tr(B'BT)
C I o/ p 2
(1) : > 2B'Bz ¢ +E(BY)eb X' N'B'BAX ey 4+ E(3)ey X'N'B'BXe (16)
= +E(B7)ey X'B'BAX eq + E(37)eb X' B'BX ey

Similarly, we can show

(I1) : Z 2B ANz 25 N(cuy, Vi) (17)

WH

tr(A'B'AAT) — tr(A'B'AT) — tr(B'AAT) — tr(F'B'AT)
where 1, = ¢ _B(B2)eb X' N B ANX es + E(52)E X'N' B'AX e+ +tr(ABAT) +
—E(B}ebtX'B'ANX ey + E(?)e, X'B'AXé
tr(B'AT") and

(I11): ¢_ Z AZ®, Az 2 N(cpy, Vi) (18)

tr(A'®,I) + tr(®,AT")
where p1, = ¢ | +E(B))ey, X'N®,Xey + E(B7)esh X'®,AX ey | — tr(P,I). Summing up the
—E(BY)eb X', XE — E(2)E X', X e,
results in (16), (17) and (18) and using the results of equations (13), we can prove the result
of Theorem 2. Note that the variance functions of the limiting distributions of quantities
(I) and (I1): Vi) and Vizrpy, as well as their covariance do not need to be calculated, given
that they are equal to variance V' of the test statistic U By, under Hy: ¢ = 0. This happens

because these functions are independent of ¢ (see also Breitung (2000)).
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