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Abstract

We propose methods for constructing confidence sets for the timing of a break in level and/or
trend that have asymptotically correct coverage for both I1(0) and I(1) processes. These are based
on inverting a sequence of tests for the break location, evaluated across all possible break dates.
We separately derive locally best invariant tests for the I1(0) and I(1) cases; under their respective
assumptions, the resulting confidence sets provide correct asymptotic coverage regardless of the
magnitude of the break. We suggest use of a pre-test procedure to select between the I1(0)- and I(1)-
based confidence sets, and Monte Carlo evidence demonstrates that our recommended procedure
achieves good finite sample properties in terms of coverage and length across both I(0) and I(1)
environments. An application using US macroeconomic data is provided which further evinces the

value of these procedures.

Keywords: Level break; Trend break; Stationary; Unit root; Locally best invariant test; Confi-
dence sets.
JEL Classification: C22.

1 Introduction

It has now been widely established that structural change in the time series properties of macroeco-
nomic and financial time series is commonplace (see, inter alia, Stock and Watson (1996)), and much
work has been devoted to this area of research in the literature. Focusing on the underlying trend func-
tion of a series, the primary issues to be resolved when considering the possibility of structural change
are whether a break is present, and, if so, when the break occurred. The focus of this paper concerns
the latter issue regarding the timing of the break, and is therefore complementary to procedures that
focus on break detection. A proper understanding of the likely timing of a break in the trend function

is crucial for modelling and forecasting efforts, and is also of clear importance when attempting to

*The authors are grateful to two anonymous referees for very useful comments on an earlier version of this paper.
Correspondence to: David Harvey, School of Economics, University of Nottingham, Nottingham, NG7 2RD, UK. E-mail:

dave.harvey@nottingham.ac.uk



gain economic insight into the cause and impact of a break. While a number of procedures exist to
determine a point estimate of a break in level and/or trend, this paper concentrates on ascertaining
the degree of uncertainty surrounding break date estimation by developing procedures for calculating
a confidence set for the break date, allowing practitioners to identify a valid set of possible break
points with a specified degree of confidence.

The methodology of Bai (1994) allows construction of a confidence set for a break in level in a
time series, extended in Bai (1997) to allow for a break in trend, with the confidence set comprised
of a confidence interval surrounding an estimated break point, with the interval derived from the
asymptotic distribution of the break date estimator. However, as Elliott and Miiller (2007) [EM]
argue, the asymptotic theory employed in this approach relies on the break magnitude being in some
sense “large”, in that the magnitude can be asymptotically shrinking only at a rate sufficiently slow
to permit break detection procedures to have power close to one, so that although the magnitude is
asymptotically vanishing, the break is still large enough to be readily detectable. EM argue that in
many practical applications it is “small” breaks (for which detection is somewhat uncertain) that are
typically encountered, and these authors go on to demonstrate that for smaller magnitude breaks, the
Bai approach results in confidence sets that suffer from coverage rates substantially below the nominal
level, with the true break date being excluded from the confidence set much too frequently. EM
suggest an alternative approach to deriving confidence sets that achieve asymptotic validity, based on
inverting a sequence of tests of the null that the break occurs at a maintained date, with the resulting
confidence set comprised of all maintained dates for which the corresponding test did not reject. By
deriving a locally best invariant test that is invariant to the magnitude of the break under the null,
the EM confidence sets have asymptotically correct coverage, regardless of the magnitude of the break
(and therefore regardless of whether the magnitude is treated as fixed or asymptotically vanishing).

The EM model and assumptions pertain to a break in a linear time series regression, of which a
break in level is a special case. They do not, however, consider the case of a break in linear trend,
hence our first contribution is to develop an EM-type methodology for calculating asymptotically valid
confidence sets for the date of a break in trend (and/or level). As in their approach, we derive a locally
best invariant test of the null that the break occurs at a maintained date, and make an expedient
choice for the probability measure used in deriving the test so as to render the resulting test statistic
asymptotically invariant to the break timing.

When attempting to specify the deterministic component of an economic time series in practice,
a critical consideration is the order of integration of the stochastic element of the process. Given the
prevalence of integrated data, it is important to develop methods that are valid in the presence of
I(1) shocks. Moreover, since there is very often a large degree of uncertainty regarding the order of
integration in any given series, it is extremely useful to have available techniques that are robust to
the order of integration, dealing with the potential for either stationary or unit root behaviour at
the same time as specifying the deterministic component. A body of work has developed in recent
years focusing on such concerns, developing order of integration-robust tests for a linear trend (e.g.
Vogelsang (1998), Bunzel and Vogelsang (2005), Harvey et al. (2007), Perron and Yabu (2009a)), tests



for a break in trend (e.g. Harvey et al. (2009), Perron and Yabu (2009b), Saygmsoy and Vogelsang
(2011)), and tests for multiple breaks in level (e.g. Harvey et al. (2010)). Most recently, Harvey and
Leybourne (2013) have proposed methods for estimating the date of a break in level and trend that
performs well for both I(0) and I(1) shocks.

In the current context, it is clear that reliable specification of confidence sets for the date of a break
in level/trend will be dependent on the order of integration of the data under consideration. Perron
and Zhu (2005) extend the results of Bai (1994, 1997) to allow for I(1), as well as I(0), processes when
estimating the timing of a break in trend or level and trend, and different distributional results are
obtained under I(0) and I(1) assumptions. Similarly, and as would be expected, we show that the
EM procedure for calculating confidence sets, which is appropriate for I1(0) shocks, does not result
in sets with asymptotically correct coverage when the driving shocks are actually 1(1). However,
extension to the I(1) case is possible via a modified approach applied to the first differences of the
data, whereby the level break and trend break are transformed into an outlier and a level break,
respectively. This development comprises the second main contribution of our paper. Since there is
typically uncertainty surrounding the integration order in practice, we propose a unit root pre-test-
based procedure for calculating confidence sets that are asymptotically valid regardless of the order
of integration of the data. We find the new procedure allows construction of confidence sets with
correct asymptotic coverage under both I(0) and I(1) shocks (irrespective of the magnitude of the
break). We also examine the performance of our procedure under local-to-I(1) shocks, and find that it
displays asymptotic over-coverage (i.e. coverage rates above the nominal level), hence the confidence
sets are asymptotically conservative in such situations, including the true date in the confidence set
at least as frequently as the nominal rate would suggest. Monte Carlo simulations demonstrate that
our recommended procedure performs well in finite samples, in terms of both coverage and length (the
number of dates included in the confidence set as a proportion of the sample size).

The paper is structured as follows. Section 2 sets out the level/trend break model. Section 3 derives
the locally best invariant tests for a break at a maintained date in both the stationary and unit root
environments. The large sample properties under the null of correct break placement are established
when correct and incorrect orders of integration are assumed, with the implications discussed for the
corresponding confidence sets based on these tests. The properties of feasible variants of these tests,
and corresponding confidence sets, are subsequently investigated. In section 4 we propose use of a unit
root pre-test to select between I1(0) and I(1) confidence sets when the order of integration is not known.
The finite sample behaviour of the various procedures is examined in section 5. Here we also consider
trimming as a means of potentially shortening the confidence sets. Section 6 provides empirical
illustrations of our proposed procedure using US macroeconomic data, while section 7 concludes.

The following notation is also used: ‘[-]” denotes the integer part, ‘=’ denotes weak convergence,

and ‘1(-)” denotes the indicator function.



2 The model and confidence sets

We consider the following model which allows for a level and/or a trend break in either a stationary

or unit root process. The DGP for an observed series y; we assume is given by

y = [+ Bot +011(t > [70T]) + 02(t — | 70T ])1(t > |70T']) + &1, t=1,...,T (1)

e = pe1tug, t=2,..,T, e1=u (2)

with |70T"] € {2,...,T — 2} = Ar the level and/or trend break point with associated break fraction
79. In (1), a level break occurs at time |7¢97"| when 0; # 0; likewise, a trend break occurs if do # 0.
The parameters 31, 55, 1 and 03 are unknown, as is the break point |7¢T|, inference on which is the
central focus of our analysis. Our generic specification for £, is given by (2) assuming that —1 < p <1
and that u; is 1(0).

For an assumed break point |77'] € Ap, our interest centres on testing whether or not |7¢7|
and |77'] coincide, which we can write in hypothesis testing terms as a test of the null hypothesis
Hy : |79T| = |7T] against the alternative Hy : |79T"| # [7T]. Then, following EM, a (1 — «)-level
confidence set for 7¢ is constructed by inverting a sequence of a-level tests of Hy : |79T| = |71
for |7T] € A, with the resulting confidence set comprised of all |77T'| for which Hp is not rejected.
Provided the test of Hy : |797"| = |7T'| has size « for all |771|, the confidence set will have correct
coverage, since the probability of excluding 7¢ from the confidence set (via a spurious rejection of Hy) is
a. In terms of confidence set length, a shorter than (1—a«)-level confidence set arises whenever the tests
of Hy: |70T'] = |7T'] reject with probability greater than « under the alternative H; : |70T"] # | 77|
across |7T']. Other things equal, the more powerful a test is in distinguishing between Hy and Hj,
the shorter this confidence set should be. Note that this approach to constructing confidence sets does
not guarantee that the set is comprised of contiguous sample dates, cf. EM (p. 1207).

In the next section, we consider construction of powerful tests of Hy against Hi, deriving locally
best invariant tests along the lines of EM when p = 0 and when p = 1, under a Gaussianity assumption
for u;. The large sample properties of these tests are subsequently established under weaker conditions

for p and ;.

3 Locally best invariant tests

For the purposes of constructing locally best invariant tests, we make the standard assumption that
uy ~ NIID(0,02), and we suppose that p in (2) is restricted to taking the two values p = 0 or p = 1.
In the case of p = 0, we find that (1) reduces to

yr = By + Bot + 011(t > |70T]) + 02(t — | 70T |)1(t > |70T]) +w, t=1,....,T (3)
while for p =1, (1) can be written as

Ays = Py +011(t = [1oT| + 1) + 021(t > |70T]) +wz, t=2,...,T. (4)



Now write either of the models (3) or (4), for an arbitrary break point |77'|, in the generic form
zt = dyS + d} ;0 + (5)

where § = [01 2], and, under (3), zx =y, dy = [1 t], B =1[81 Ba), drt = |
|7T|)]’; while under (4), 2z = Ay, di = 1, = By, dry = [1(t = |7T|

obvious matrix form, (5) can be expressed as

1t > |7T]) (t—|7T|)1(t >
+1) 1(t > |7T])]. In an

z=DB+ D6+ u. (6)

We consider tests based on @, the vector of OLS residuals from the regression (6), that is, &« = M, z,
where M, = I — C.(C.C,)1C; with C, = [D : D,]. Such tests are by construction invariant to the
unknown parameters § and § under Hy. The likelihood ratio statistic for testing Hy against H; can
then be derived as follows. Let k* and T™ denote the number of regressors and the effective sample
size, respectively, in the regression (6). Also, let B, be the T x (T — k*) matrix defined such that
B.B; = It«_j» and B;B. = M. Since B.z = BL4 is invariant to [, it follows that, on setting 5 = 0
without loss of generality, Bz ~ N(B.D,6,021+_+) under Hy. Under Hy, Bz = B, z is also
invariant to d, hence, on setting 6 = 8 = 0 without loss of generality, B.z ~ N(0,02I7+_z+). The
likelihood ratio statistic is then
(2702)~(T"H)/2 exp{— (202)1(BLz — BLD,,0) (BLz — BLD,y0)}

(2mof) =" =F)/2 exp{—(20%) (B} 2) B}z }
— expl—(202){(BLz — BLDyy) (BLz — BLDyy0) — (BL2) BLz)]
= exp{0,%2'B;B.D:,6 — 30,28 D, B-B..D;,6}
= exp(0, 20/ Dy6 — 20,20’ DL M.D,0).

LR(r,0,70) =

Following the approach of Andrews and Ploberger (1994), to remove the dependence of the statistic

on the parameters § and 7o, we consider tests that maximize the weighted average power criterion

Z AlyT] /P(test rejects| [ToT] = [nT],6 = 6" )dv|,r|(6¥)
[nT]eAT,
[nT]#[7T|

over all tests that satisfy P(test rejects| 797" ] = |7T']) = a, where the weights {\;} are non-negative

real numbers and {v;(0*)} is a sequence of non-negative measures on R?. This yields a test of the form

LR(T)= Y Aur) /LR(T,f, mdvpyr (f)-
[nT]€eAT,
[nT]#[7T]
As in EM, we set A7) = 1, such that equal weights are placed on alternative break dates, and take

V|7 (f) to be a probability measure of N (0, b2 H lyr])- We then obtain (after some algebra)

LR(r)= Y |1+, Hyr DM, Dy |~ exp{ %0, 40/ Dy(H
[nT|eAT,
[nT|#[7T]

|+ V20,2 Dy M- Dy) " Dy}



Taking a first order Taylor series expansion of LR(7) in the locality of b> = 0, we find that the

stochastic component of LR(7), up to a constant of proportionality, is given by

S(r)= Y @DyH;r D (7)
[InT|eAr,
[InT|#|7T |
This represents the locally best invariant test with respect to b that maximizes weighted average
power, for given H|, ).

We specify H|,r| separately under the models (3) and (4), and, as in EM, we construct the
elements of H\,7| using particular scalings of [77T] and (T' — [7T]) such that the resulting S(7)
tests have asymptotic distributions under Hg that do not depend on 7. This choice is justified by
the convenience of allowing the same asymptotic critical value to apply to each of the sequence of
individual tests over |77T'] € Ar. Given these choices for H|,z|, explicit forms for (7) can be derived

under both (3) with p = 0 and (4) with p = 1, as detailed in the following lemma.

Lemma 1

(a) Under DGP (3) (p =0), when

o if |nT| < |77
By =3 F e e ®
0 gy | T

it follows from (7) that, for testing Ho against Hy, the locally best invariant test with respect to b is

given by
[7T]-1 / ¢ 2 I7T|-1 / + 2
So(r) = [7T]72 > (Zu) + T > (Z(s—t)ﬂs> (9)
t=2  \s=1 t=2  \s=1
T—2 t 2 T—2 t 2
HT - TN ) Do + (T[T D > (s—t)is
t=|7T]+1 \s=|[7T]+1 t=|7T]+1 \s=|[7T]+1

where {4, }1_, denote the residuals from OLS estimation of (3) when |7oT| is replaced by | 7T .

(b) Under DGP (4) (p = 1), when

o if ) < |rT)
Hiyr) = (TO L TJL)T_z;J 0 (10)
o e | TUT> 6T




it follows from (7) that, for testing Hy against Hy, the locally best invariant test with respect to b is
given by

7T |-1 |7T]-1 (

Si(r) = [7T)7" > aig + 1T ) Zas> (11)

t=2 s=2
2
T—2 T-2 t
HT =T > @i+ T - [T D] > s
t=|7T|+1 t=|7T|+1 \s=|7T]|+1

where {0;}1_, denote the residuals from OLS estimation of (4) when |7oT| is replaced by | 7T .

3.1 Large sample properties of the test procedures

Now we have the structures of the tests in place, we can derive their large sample properties under

more general assumptions regarding p and u;. Here we make one of the two following assumptions:

Assumption I(0) Let |p| < 1, uy = C(L)¢;, C(L) = 32, CiLt, Cy = 1, with C(z) # 0 for all
2] <1 and >°22,4|C;| < oo, and where (, is an 1D sequence with mean zero, variance 0% and finite

fourth moment.

Under Assumption I(0) we define the long-run variance of u; as w? = limp o T7'E (Ethl ug)? =

02C(1)2. Note that the long-run variance of &; is then given by w? = w2 /(1 — p)2.
Assumption I(1) Let p =1 with u; defined as in Assumption I(0).

Under Assumption I(1) we also define the short-run variance of u; as 02 = E(u?). The theorem below
gives the null limiting distributions of the efficient tests So(7) and S;(7) under Assumptions I(0) and
I(1), respectively.

Theorem 1

(a) Under Hy : |10T'| = |7T| and Assumption 1(0),

1 1 1 1
w6_25’0(7):>/0 Bg(r)er—{—/O K(T)er—i—/o Bé(r)er—l—/O K'(r)%dr = L.

(b) Under Hy : |7oT| = |7T'] and Assumption I(1),

1 1
wy 2{S1(7) — 202} = /0 By (r)?dr —I—/O By(r)%dr = Ly
where
Bi(r) = B(r)-rB(1),

1
Bo(r) = B(r)—rB(1)+6r(1—r){;B(1)—/0 B(s)ds},
r 1
K(r) = 7’2(17“)3(1)/0 B(s)ds+r2(327")/0 B(s)ds

7



with B(r) a standard Brownian motion process, and where B(r), Bb(r)and K'(r) take the same
forms as Bi(r), Ba(r) and K(r), respectively, but with B(r) replaced by B'(r), with B'(r) a standard
Brownian motion process independent of B(r). (Note that Bi(r), Ba(r) and K(r) are tied down and
Bj(r) is a j’th level Brownian bridge.)

Remark 1 Note that, as desired, w-2Sy(7) and w,2{S1(7) — 202} have nuisance-parameter free
distributions that do not depend on 7. This property arises from the specific functions for H|,r
adopted, justifying the H|,r| choices made in Lemma 1. Note also that the £; distribution coincides
with the null limit distribution of the test proposed by EM in the case of a single regressor that is

subject to a break.

Remark 2 The result in Theorem 1 (b) is obtained because both the first and third terms of Si(7) in
(11) converge in probability to o2. These components of Si(7) are associated with testing on the one-
time dummy variable in (4), and it can easily be shown that these terms also converge in probability
to o2 under the alternative H; when only a level break occurs under Assumption I(1), i.e. when an
outlier of magnitude d; is present in the I(0) first differences of the series. As such, Si(7) does not
have asymptotic power for identifying the date of a break in level in I(1) data. This is to be expected
given that an unscaled level break is asymptotically irrelevant in an I(1) series. However, retaining
these terms in the statistic (11), along with a judicious choice of o2 estimator (discussed below), can

yield finite sample performance benefits, hence we do not omit these terms from the Si(7) statistic.

Remark 3 A theoretical alternative to our approach would be to attempt to endow the first
and third terms of Si(7) with a null limit distribution rather than a probability limit. However,
this would require a rescaled and centered variant of the form |77 /2 i:gj_l(ﬁ% ', — o2) for
the first component (and similarly for the third component). This introduces two complications;

first, 02 is unknown and ultimately needs replacing with an estimator, which we generically de-
2 Since 52 is at best O,(T~/?)-consistent for o2, it follows that the asymptotic distribu-
tion of LTTJ_I/z tL;ngl(@?_H — 52) will be different to that of LTTJ_1/2 tzgkl(ﬂ?_s_l —02). Sec-
—1/2 };gj_l(ﬁ? 1 02) implicitly involves the partial sum process

T-1/2 tL;TlJ (u? — 02), while the third term of S;(7) involves the partial sum process 7~/ ZtLgJ U

note o
ondly, even if 02 is known, |77 |

the joint limit distribution of these two partial sum processes depends on the third moment of wu;,
which is also unknown. As a result, we adopt the more analytically tractable specification outlined in
Lemma 1 (b).

Table 1 gives simulated (upper tail) a-level critical values for the limit distributions £y and L;.
These were obtained by direct simulation of the limiting distributions given in Theorem 1, approx-
imating the Brownian motion processes using NI1D(0,1) random variates, and with the integrals
approximated by normalized sums of 2000 steps. The simulations were programmed in Gauss 9.0

using 50,000 Monte Carlo replications. If these critical values are applied to each of the sequence of



tests wZ2Sp(7) under Assumption I(0), and w;,2{S1(7) — 202} under Assumption I(1), the correspond-
ing confidence set based on inverting these tests will have asymptotically correct coverage of (1 — «),
regardless of the magnitude of the break in level and/or trend.

We next consider the behaviour of Sy(7) and Si(7) under Hy when an incorrect assumption

regarding the value of p is made.

Theorem 2

(a) Under Hy : | 7T | = |7T| and Assumption I(1),
w228y (7) = Op(T?).
(b) Under Hy : |7oT| = |7T] and Assumption 1(0),
wy{S1(7) — 2020} = w, *2{E(Ae;)? — o} + Op(T71/?).

Theorem 1 (a) shows that a (nominal) (1—«)-level confidence set based on w2 2Sy(7) will be asymptot-
ically empty (i.e. zero coverage) as all the test statistics diverge to +oo and thereby exceed the a-level
critical value in the limit. Theorem 1 (b) shows that wy2{S1(7) — 202} converges in probability to a
constant that takes the value wy,22{F(Ag;)? — o2 }. If this constant exceeds the a-level critical value,
then the confidence set based on w;;2{S1(7) — 202} will also be asymptotically empty (zero coverage);
if it is less than the a-level critical value, then the confidence set based on wy2{S1(7) — 202} will
be asymptotically full (i.e. coverage of unity). Which of these two cases pertains will depend on the
values of w2, E(Aeg;)? and o2. Trivially, a sufficient condition for the latter case is E(Ag;)? < o2, since
then w,2{S1(7) — 202} assumes a negative probability limit, which can never exceed the (positive)
asymptotic critical value. Clearly then, an incorrect assumption regarding the order of integration of
€ negates the validity of confidence sets based on inverting sequences of these efficient tests, an issue
we revisit in section 4.

The tests considered so far are clearly infeasible since they depend on the unknown parameters

2

2 or w? and 02. In the next section we examine some feasible versions of the tests and reassess the

w

content of Theorems 1 and 2 in the context of these.

3.2 Feasible test procedures and their large sample properties

To make the tests feasible, we require suitable estimators of w? for Sp(7) and w? and o2 for Sp(7).
To estimate the long-run variances w? and w? we consider both non-parametric and parametric ap-

proaches. In the non-parametric case, we employ the Bartlett kernel-based estimators

NP T
@?,NP(T) =Fi0(T) +2 Z (L np)Yig(T),  Fig(T) = T Z Uplig—|
=1 t=1+1

for i = {e,u}, where the @; are the residuals obtained from OLS estimation of regression (3) when
i =¢ and (4) when i = u.! Here, h(l,{np) =1 —1/({xp + 1), with a lag truncation parameter £yp

that is assumed to satisfy the standard condition that, as T — oo, 1/¢yp + (3;5/T — 0.

! For economy of notation we do not discriminate between the different numbers of 4, available in the two cases.



In the parametric case, we employ Berk-type autoregressive spectral density estimators which can

be written as

>
2l

@?,P(T) =
where 7; is obtained from the fitted OLS regression

lp
Ady =7ty + Y Ny +é, t=Cp+1,.,T
=1
and s? = T~} ZtT:ZPH 2. Again, the 4, are obtained from (3) if i = ¢, and from (4) if i = u. Also,
£p is assumed to have the same properties as £y p above.
It is also natural to consider estimating o2 with 62(7) = Yu,0(T) using the 4; from (4). The

following lemma gives the large sample behaviour of the various estimators.

Lemma 2

(a) Under Hy : |10T'| = |7T| and Assumption 1(0),

p
52,

= Op(£];2)?

(1)

Wanp(1) = Opllyp),
(1)
(1) = B(Ae)’+0,(T72).

(b) Under Hy : |7oT| = [7T'] and Assumption I(1),

@g,NP(T) = Op(InpT),
d’z,P(T) = Op(TQ)»
wu,NP(T)v wi,P(T) 5 wﬁ,
i) Lot

The results for djg Np(7T), dzi ~p(7) and 62(7) arise from a simple adaptation of results shown in
Harvey et al. (2009); those for wg}P(T) and @3713(7') arise similarly from Harvey et al. (2010).

We can now define feasible versions of the statistics as

554(1) = @ 2(r)So(r),

£
STi(1) = @5 (n{Si(r) - 2675(7)}

for j = {N P, P}. Based on Theorem 1 and Lemma 2, we then have the following corollary.

Corollary 1
(a) Under Hy : |70T] = |7T] and Assumption I(0),

SS,NP(T)7 5‘6,1»(7) = Lo.

10



(b) Under Hy : |ToT| = |7T| and Assumption I(1),
AI,NP(T): ng,P(T) = L.

These results simply show that when a correct order of integration is assumed (and therefore the
appropriate limit critical values are employed), confidence sets based on the feasible tests will continue
to provide asymptotically correct coverage. From Theorem 2 and Lemma 2 we have the following

corollary.

Corollary 2
(a) Under Hy : |10T| = |7T'| and Assumption I(1),

Sonp(T) = Op(lypT) = oo,
S5.p(r) = Op(1).
(b) Under Hy: |7oT| = |7T| and Assumption 1(0),
STwp(r) = OpltnpT V%) %0,
Ep = 0(T1/4)

0
0,(1) €p=0(T"*
00 05! = o(TY4)

p
=

Sp(1) = Op(hT~Y?)

=

Corollary 2 (a) shows that a (nominal) (1—«)-level confidence set based on Sg ~ p(7) will be asymptot-
ically empty, thereby paralleling the behaviour of its infeasible counterpart. However, the behaviour
of a confidence set based on Sg p(7) is uncertain since it is an O,(1) variate (whose behaviour will
actually depend on w?). Tt is, however, almost certain to be the case that this confidence set will

have incorrect coverage asymptotically. From Corollary 2 (b), a confidence set based on Sf Np(7)

2

6) Or zZero coverage - can

will be asymptotically full. All possibilities - unit, incorrect (dependent on w
arise with 5’17 p(7), contingent on how £p is chosen. The results of Corollary 2 therefore reinforce the
importance of assuming a correct order of integration, since use of an incorrect assumption results in
a procedure with asymptotic coverage different from (1 — ).

We should be aware that the properties of d)zzj (7) and 62 (7) shown in Lemma 2 - particularly their
consistency properties, will not hold in general under H; : |79T| # |7T] (the exception being when
a level break alone occurs under Assumption I(1)). In view of this, we might entertain employing
alternate estimators of d)fj (1) and &2(7) based on some estimator of 79. Below we will consider
the break fraction estimator derived in Harvey and Leybourne (2013), therein referred to as 7p,,.
This estimator is the value of 7 that yields the minimum sum of squared residuals from an OLS
regression of y; = [y1,%2 — py1, ..., yr — pyr—1|’ on Zp . = [z1,22 — pz1, ..., 27 — pzr_1) where z; =
[1,t,1(t > |7T]),(t — |7T])1(t > [7T])]" across |7T| € Ap and across p € D,,. In what follows
we set Ap = {]0.017],...,[0.997'|} and, following Harvey and Leybourne (2013), we set D,, =
{0,0.2,0.4,0.6,0.8,0.9,0.95,0.975,1}. It can be shown that @?Vj(%pm) and 62(7p, ) have the same
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/L'hj

will continue to hold under H;. This gives rise to the potential for power improvements under H;, and

asymptotic properties as those for &? (1) and &2 () shown in Lemma 2, and also that these properties
therefore potentially narrower confidence sets. In what follows we therefore also consider versions of
the S’: ;(7) procedures where d)fj (1) and &2 (7) are replaced with djfj (7p,,) and 62(7p,, ), respectively,

1.e.

Sii(r) = & 3(p,)S(7),

STi(m) = @3 p,){S(1) = 26%(3p,)}-

4 Selecting between I(0)- and I(1)-based confidence sets

Given the foregoing discussions, it should be clear that we want to base confidence set construction
on the 5’6“7].(7') (j ={NP,P}, k= {r,7}) suite of test statistics under Assumption I(0) and the S’f] (1)
statistics under Assumption I(1). One way or another, in practice this has to involve deciding whether
a given data set is more compatible with Assumption I(0) or Assumption I(1) and then applying
S(Iij (1) or gfj (1) as appropriate. The most direct way of doing this is to apply a unit root test in the
role of a pre-test. To this end, we employ the infimum GLS-detrended Dickey-Fuller test of Perron
and Rodriguez (2003) and Harvey et al. (2013). In the current context, this statistic is calculated as
MDF = inf DFS™ (1)
LT GA;
where A% = [|7T],|7yT|] with 7, and Ty representing trimming parameters. Here DFSLS (1)

denotes the standard t-ratio associated with 7 in the fitted ADF-type regression

Ipp
Niip = i1 + Y YA+ &, t=k+2,..T,
j=1

with £pr having the same properties as £yp above, and
iy =y — By — Bat — 011(t > [7T]) — da(t — [7T)1(t > [7T))

where [31, BQ, o1, 52]' is obtained from a local GLS regression of y; on Z; » with p =1+ ¢/T.

The limiting distribution of the MDF statistic under the null hypothesis of Assumption I(1) when
01 = 02 = 0 is given by the expression in equation (11) of Perron and Rodriguez (2003) on setting
¢ = 0. Let cv, denote an asymptotic a-level (left-tail) critical value from this distribution. Our
pre-test-based decision rule is then to select S[’ij (1) if MDF < cv, and select gfj(T) it MDF > cuvg,.
Under Assumption 1(0), MDF diverges to —oo at the rate O,(T"/?) so that 5’6“’3»(7) is selected with
probability one in the limit; this occurs regardless of whether é; and dy are zero or non-zero. Under
Assumption I(1), 5’{“](7) is selected with limit probability 1 — o when d2 = 0, irrespective of the
magnitude of ;. When d2 # 0 (and again irrespective of d1), the asymptotic size of MDF is only
slightly below «, so that S’fj(T) is selected with limit probability a little above 1 — a. In order to

ensure that 5’{“ ;(7) is selected with limit probability one under Assumption I(1), whilst also selecting
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9(’)“, j (1) with probability one in the limit under Assumption I(0), the MDF pre-test can be conducted
at a significance level that shrinks with the sample size, by replacing cv, with cv,, 7, where cvg
satisfies cv, 7 — —00 and cv, T = O(T1/2), i.e. a critical value that diverges to —co at a rate slower
than T'/2,

In what follows, we denote our pre-test-based tests of Hy : |79T| = |7T| as follows:

. Sk if MDF N

predt™ T\ 8k, (r) if MDF > cugr

In the limit, it follows that under Hy : |70T'| = [7T],

, j=A{NP,P}, k={r,7}

pre,j

- Lo under Assumption I(0)
Spre i (T) =
L1 under Assumption I(1)

and so comparison of S7

< cvq, 1, Will lead to correctly sized tests asymptotically. Inference based on the inversion of sequences

(1) with critical values from Ly if MDF < cvar or from Ly if MDF

of such tests offers the possibility of reliable confidence set construction without the need to make an
a priori (and possibly incorrect) assumption regarding the order of integration. Given the uncertainty
surrounding the unit root properties of typical economic and financial series, particularly those that
are subject to a break in level /trend, such an approach has obvious appeal.

Thus far we have considered the cases |p| < 1 and p =1 to evaluate the behaviour of the different
procedures under stationary and unit root assumptions. It is also important to assess the behaviour

N

of S

pre7j
p=1+cI1 ¢ <0, MDF is an Op(1) variate, and hence, due to the fact that cv,r — —oc,

(1) under a local-to-unity specification for p. Adopting the usual Pitman drift specification

S';fre’j(T) = S‘f] (7) in the limit. It can then be easily shown (along the lines of the proof of Theorem

1) that, for ¢ < 0 under Hy,

SE (1) = LS(1), j={NP,P}, k={r7}

where

2
(Be(1) = Be(r)) ¢ dr

(12)
with B.(r) = fore(’”*s)ch(s). Note that on setting ¢ = 0 we obtain £9(7) 2 £1 Vr. Table 2 reports

asymptotic coverage rates for nominal 0.90-, 0.95- and 0.99-level confidence sets constructed from the

rT—T

1—7

i) =7 [ {B0) - 2B} ar v (1072 [ {50 - B -

S;fre7j(7) tests, using critical values from Table 1 (which are appropriate for ¢ = 0). The coverage

rates were obtained by direct simulation of (12) in the same manner as the simulations for Table 1,
and results are reported for ¢ = {0, -5, —10, —20, —30, —40, =50} and 79 = {0.1,0.2,...,0.9}, noting

that the L£§ (7o) distribution depends on 7¢ unless ¢ = 0. It is clear from the results that in the local-

to-unity setting, confidence sets based on the S¥  .(7) tests do not suffer from any under-coverage

pre,j
across c or 7q; indeed, over-coverage is observed, increasing in —c for a given 7g. This arises from the

individual S]’;Te’j(T) tests being under-sized for local-to-unity generating processes given that critical
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values appropriate for a pure unit root are being applied, and translates to conservative confidence
sets that asymptotically include the true break date with a probability at least as great as the nominal
coverage rate. This reassuring property indicates that asymptotic under-coverage is not a feature of
our proposed pre-test-based confidence sets for any value of p, be it unity, local-to-unity, or strictly
less than one.

Finally, an alternative feasible approach to constructing a confidence set with correct asymptotic
coverage under both Assumption I(0) and Assumption I(1) (and with over-coverage under a local-to-
unity specification) is to consider taking a union of an I(0)-based confidence set and an I(1)-based
confidence set. Given the results of Corollary 2, it is evident that asymptotically correct coverage, i.e.
a coverage rate of (1 — ) in both the I(0) and I(1) cases, would be obtained only from a union of the
confidence sets corresponding to g{f yp(7) and Sf p(7), with the latter requiring we set £5' = o(T/*).
All other unions would lead to either asymptotically full coverage (i.e. a coverage rate of one), or
a coverage rate that depends on nuisance parameters (w2 or w?). We investigated the finite sample
properties of such a union, and while the coverage rates were found to be comparable to those of the
best of the pre-test procedures, the union confidence set lengths were generally greater than those
afforded by the best pre-test approach (in some cases substantially so), hence we do not pursue the
union further here.

In the next section we evaluate the finite sample properties of our pre-test-based approaches in
comparison with those that are based on a maintained assumption regarding the integration properties

of the data, both in terms of coverage and length.

5 Finite sample performance

~

In this section we examine the finite sample performance of confidence sets based on the S’g (1), S’f (1)
and S]I.fre,j (1) tests (j = {NP, P}, k = {r,7}). We simulate the DGP (1)-(2) with 3; = 5 = 0 (without
loss of generality) and a range of break magnitudes, §; and d2, and timings, 7¢, for the sample sizes
T = 150 and T' = 300. We consider p € {0.00,0.50,0.80,0.90,0.95,1.00} to encompass both I(1) and a
range of I(0) DGPs, and set u; ~ NIID(0,1). The gé“’j(T) and 5’{2(7) tests are applied at the nominal
0.05-level using the asymptotic critical values provided in Table 1, with {yp = fnax = L12(T/ 100)1/ 4J
and £p selected via the Bayesian information criterion with maximum value £,,x. For the S’;fre,j (1)
tests, we select between g&(r) and S’f](T) on the basis of MDF conducted at the 0.05-level with
¢ = —17.6 (following Harvey et al. (2013)), 7, = 1—7y = 0.01,% and where £p is selected according to
the MAIC procedure of Ng and Perron (2001), as modified by Perron and Qu (2007), with maximum
lag order fipa. All simulations were conducted using 10,000 Monte Carlo replications, and in the

tables we report results for confidence set coverage (the proportion of replications for which the true

break date is contained in the confidence set) and confidence set length (in each replication, length is

2From simulation of the asymptotic null distribution of MDF in this case, we find that cvg.os = —3.88. For simplcity,
we conduct MDF' at the nominal 0.05-level for both 7' = 150 and T = 300, rather than shrinking the significance level

with increasing sample size.
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calculated as the number of dates included in the confidence set as a proportion of the sample size;
we then report the average length over Monte Carlo replications).

Table 3 reports results for 79 = 0.3, 1 = 5 and d2 = 0.5, such that both a level and trend break
occur before the sample mid-point. Consider first the behaviour of the confidence sets based on 5‘5 ()
(j ={NP,P}, k ={7,7}). When p = 0, we find that (approximately) correct coverage is achieved
for the two S’g p(7T) sets, whereas the two 5’5 ~p(T) sets display correct coverage only for T' = 300,
with under-coverage apparent for 7' = 150. When p = 1, the 5’(])“ N p(T) sets deliver substantial under-
coverage, increasingly so in the larger sample size, as our asymptotic results in Corollary 2 suggest.
In contrast, the S’g p(7T) sets (the tests for which were found to be Op(1)), display over-coverage for
both sample sizes, which is clearly less of a concern. For p = 0.5, the coverage rates for the S’(Iij (1)
sets are seen to be broadly similar to those for p = 0, then as p increases towards one, coverage moves
closer to those observed in the p = 1 case, as we might expect in finite samples.

Turning now to the S{“] (1) sets, all are seen to provide (approximately) correct coverage when
p = 1, in line with our theoretical results; indeed, coverage never deviates from 0.95 by more than
0.01 across both sample sizes. At the other extreme, when p = 0 we find that all the S{CJ(T) sets
show under-coverage for both "= 150 and 7' = 300 (which is somewhat surprising in the case of the
two S’f N p(T) sets, since the tests converge in probability to zero under Assumption I(0), although
unreported simulations confirm that coverage does start to increase for larger samples); under-coverage
is also seen in some cases when p = 0.5, while for the larger values of p < 1, coverage is closer to the
correct coverage seen when p = 1 (in fact some over-coverage is displayed in these cases).

For our proposed pre-test-based procedures Sﬁm’j(T), we see that in each case, coverage is very
close to the corresponding S’fj(T) coverage for p = 1 and p values close to 1, but then for small
values of p assumes the more accurate coverage rates of the corresponding S’&]-(T) sets. Of course,

the coverage of any given Sj.. ;

underlying 5’&(7’) and S’fj(T) sets, thus for the two S’]’)‘:m N p(T) sets, under-coverage is still manifest

(1) set is limited by the coverage performance of the corresponding

for some settings, due to the under-coverage inherent in the Sg ~yp(T) sets. However, the S’II;TE’ p(7)
sets show good finite sample coverage rates across the range of settings considered in the table, in
particular avoiding problems of under-coverage.

When considering our results for the length of the confidence sets implied by the different tests,
as we would expect, length generally decreases (since test power generally increases) as T increases
and as p decreases. Comparing the different procedures, the most striking feature is that any given
S‘Z ;(7) or S7 (1) set (where the short and long run variance estimators used in the tests are based

pre,j

on 7p, ) substantially outperforms the corresponding S’Z (1) or SP.

in the tests are evaluated at each 7). This is entirely to be expected, since under the alternative

(1) set (where the estimators

hypothesis, use of a consistent estimator of the true break fraction allows consistent estimation of o2

and w2 under Assumption I(1) and consistent estimation of w? under Assumption I(0). In contrast,

2 2

: 2(7) and &3(7) are not consistent when 7 # 79, and are likely to over-state

the estimators 67 (7), @
the values of the true parameters, thereby reducing the values of the test statistics and increasing

the confidence set length. Of the better performing S:](T) and 5”;6’]-(7) sets, S37NP(T), S’iNP(T),

15



5’;7, enp(T) and S’f p(7) were found to suffer from problems of under-coverage, making them unreliable
on that measure. Overall, then, it is clear that the two procedures that can be deemed in some sense

A
7

satisfactory, on both coverage and length grounds, are 5’8 p(7) and ore.P

(7). Of these two procedures,
S‘;T . p(7) suffers from less over-coverage, and also has arguably the best length properties across the
range of p values considered; specifically, S7.. p(7) and So, p(7) have similar length for p = 0, 0.5,
0.8 and 0.95, and while SZTQ’P(T) has somewhat greater length than S&P(T) for p = 0.9, it offers a
more marked improvement in length when p = 1, as we would expect given the ability of S;Te’ p(T)
to select the better-performing Si p(7) set in this scenario. It is also reassuring to see that for values
of p less than but close to one, the preferred S’;e’ p(7) procedure has decent length properties. For
these large values of p < 1, the local-to-unity asymptotic results are potentially relevant, and it is
clear that despite the g; . p(7) procedure being conservative in such cases (displaying over-coverage),
the procedure retains an ability to achieve a reasonably short length, demonstrating that while the
underlying tests may be under-sized for local-to-unity processes, they still have power to reject for
incorrect break dates.

Table 4 reports results for the same settings as Table 3, except with a larger magnitude level
and trend break, with §; = 10 and §» = 1. As regards coverage, much the same comments apply
as for Table 3.3 As we would expect, the lengths of the confidence sets are generally smaller in this

A~
7

case of larger, more detectable, breaks. Once more, we find that pre.P

(1) is the best performing
procedure overall; indeed, compared to the only other procedure with reliable coverage and decent

o7

e, p(7) now displays equal or shorter length across all values of p, with

length, S&P(T), we see that
decreases in length of up to 0.28 seen.

Table 5 reports results for the case of 1 = 10 and d2 = 0 so that only a level break occurs.
Consider first the results for p = 1. From Remark 1, it follows that here the Syij (1) tests have zero
asymptotic power to identify the date of the level break; this can be seen in the table as the lengths
of all the S'{“] (1) sets increase between T' = 150 and 7" = 300. What we observe, however, is that,
for a given T, the sets based on 317 ;(7) are very much shorter than those based on S{ j (1).* Taking
the results across the different values of p together, we again find S;Te? p(7T) to be the best procedure
when considering both coverage and length, with the gains in length over Sj p(7) when p = 1 now

even more marked than was observed in Tables 3 and 4.

In Table 6 we have d; = 0 and d3 = 1 so that only a trend break is present. Here we find the

3Note that the coverage rates for the S’f] (7) sets are numerically identical across different §1 and d2 settings, since

they are invariant to these parameters by construction under Hy.

1This arises because there is an upward bias in 62(7) relative to 62(#p,,) resulting from the former being based

on residuals from a regression containing a mis-specified break component whenever 7 # 70, while the latter uses an
estimator of 79 which, albeit not consistent, can nonetheless perform reasonably in finite samples. This relative upward
bias translates to lower values of 5‘{’]- (1) compared to S'{J (1), negatively affecting the power of the former and the length
of the corresponding confidence set. Indeed, the lengths of the S'fyj (1) sets are close to the nominal coverage rates, and
similar to what would be obtained if the first and third terms of S1(7) (and consequently the 262(7) centering) were
simply omitted from the statistic, unlike STJ (7) where inclusion of the first and third terms of S1(7) (together with the

262 (%p,,) centering) contribute substantially to shortening the confidence set length.
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pattern of results mimic those of Table 4, albeit with lengths tending to be somewhat greater due to
the lack of contribution of a level break. What is clear from all these results is that 5’;67 p(T) is the
preferred test for construction of confidence sets.

Tables 7 and 8 report results for the same settings as Tables 3 and 4, respectively (i.e. cases
where both a level and trend break occur), but with the breaks occurring at the sample mid-point, i.e.
7o = 0.5, rather than 79 = 0.3. Comparing the coverage results across 79 = 0.3 and 79 = 0.5, while the
under-coverage associated with the S’(’)“ Np(T) sets for p =1 is exaggerated for a mid-point break, the
most noticeable feature is that the under-coverage seen for the 5’{‘7 j(T) sets for the smaller values of p is
here replaced by over-coverage. This ensues partly because when 7 = 79 = 0.5, it can easily be shown
that the difference between the sum of the first and third components of Si(7) in (11) and 262 ()
(or 262(7p,,)) is 0,(T~1/?), as opposed to when 7 = 7o # 0.5 where this difference is only O,(7~'/2)
and tends to be positive. Other things equal, therefore, when 7 = 79 = 0.5 the chance of the S‘fj (1)
test rejecting in finite samples is reduced relative to when 7 = 79 # 0.5. However, despite Sfj (1)
performing relatively well for these mid-point breaks, one could not rely on this approach to deliver
reliable confidence sets in general, given the absence of knowledge regarding 7o and the possibility of
under-coverage for non-central breaks. Taking the results of Tables 7 and 8 as a whole, it is still the
case that g;re, p(7) performs very well.

A~
7

preP(T) is the best performing

Unreported results for the case of 7o = 0.7 also confirm that

procedure overall. Therefore, our recommendation would clearly be for the S p(7T) procedure, given

its reliable finite sample coverage and good performance in terms of confidence set length.

5.1 Confidence sets based on trimming

An issue that may be relevant in finite samples is that when 7 is close to zero the first two components
of Sp(7) in (9) and Si(7) in (11) are based on only a few of the 4, residuals; similarly, when 7 is close
to one the same is true of the last two components of So(7) and Si(7). Therefore, it is possible that
for values of 7 near the (0, 1) extremities, the finite sample behaviour of the tests may differ markedly
from the behaviour of the same tests evaluated at less extreme values of 7. In our above simulations,
coverages were calculated for 7 = 79 = 0.3 and 0.5 - values well away from the extremities, so no
such problems should arise there. That said, there is clearly a potential for values of Sfj(T) calculated
near the extremities of 7 to adversely influence the lengths of the resulting confidence sets (these
being potentially non-contiguous). To investigate this, we recalculated the lengths of the sets based
on S&P(T), S’iP(T) and our preferred test A;re,P(T) only for |7T] € A%, = {[0.1T] , ..., |0.97'| }, which
can be thought of as a 10% trimming, akin to the assumption that no break can occur in the first
and last 10% of the observed data, an assertion frequently made in the associated structural change
literature.

The results are shown in Table 9. The first block of results in Table 9 is for 79 = 0.3, 61 = 5 and

d2 = 0.5 and is to be compared with the corresponding results in Table 3. For T" = 150, we observe
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length reductions of up to about 0.13.°> This implies that, in some cases, a significant proportion of
non-rejections of Hy are incorrectly occurring for tests being evaluated at the extreme values of 7,
since T itself is not close to these extremes. When T' = 300, the length reduction is up to about
0.07 so that, for this specification, trimming is less effective with the larger sample size, implying
that the untrimmed confidence sets contain relatively few anomalous extreme dates. The second
block of results is for 79 = 0.3, §;1 = 10 and d2 = 1, i.e. where the break magnitudes are doubled.
Comparing with Table 4 we find that, for both T" = 150 and T" = 300, there appears to be very
little (if any) reduction in length arising from trimming, again implying, for this specification, few
spurious rejections of Hy occur for tests evaluated at extreme values of 7. In the third block of Table
9 where 79 = 0.3, 61 = 10 and d3 = 0, we see, on comparing with Table 5, that trimming is again
effective, and more so for 7" = 300 than for 7' = 150. For the remaining specifications in Table 9 (the
lower blocks), comparison with Tables 6-8 shows generally only very modest shortenings arising from
trimming. Overall, however, we conclude that trimming can be of possible benefit in improving the
length of confidence sets, potentially removing spurious dates from the set that have arisen purely due

to the sampling variability involved in the tests when evaluated near the extremes.

6 Empirical illustrations

As empirical illustrations of our confidence set procedures for dating a break in level and/or trend,
we apply them to two US macroeconomic series. These are the nominal money supply M2 (seasonally
adjusted, measured in logarithms) and the effective federal funds rate, using monthly data over the
period 1959:1-2012:12 (T" = 648). The data were obtained from the FRED database of the Federal
Reserve Bank of St Louis. We construct 0.95-level confidence sets employing the three procedures
ggp(T), S’fP(T) and S’;TQP(T) (note the confidence set for SZTE’P(T) is either that for S&P(T) or
Si p(7), depending on the outcome of MDF), using the same settings as were applied in the Monte
Carlo simulations above.

Results for the M2 series are shown in Figure 1, where the confidence sets are represented by the
shaded regions, while the series overlays the sets. Figure 1 (a) reports the confidence set for 5’8 p(7)
which is contiguous here with a length of 0.51 (330 observations) covering the interval 1971:4-1998:9.
In Figure 1 (b), we see that the confidence set for SfP(T) is much shorter, with length 0.33 (213
observations), but is not contiguous. In particular, the set is comprised of an almost contiguous
subset of dates covering the interval 1978:6-1994:2 (the dates 1986:10-1987:2 inclusive are exceptions
to this), plus a number of dates towards the extremes of the sample, the latter lying within 0.037" of
the sample’s beginning and end. If we view the end-point behaviour as spurious and apply a trimming
rule of at least 3%, cf. section 5.1, we effectively ignore the non-rejections associated with these very
early and very late dates. The resulting confidence set then contains the almost contiguous subset
of dates alone, with the length of the set reducing to 0.28. Visual inspection of the plot of the M2

series confirms that a break in this date range is plausible. The confidence set selected by our pre-test

®Note that the maximum possible reduction in length with 10% trimming is 0.20.
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procedure SZT ¢.p(T) is that of S’I p(7), and hence the shorter and more plausible of the two, reinforcing
the case for using such an approach in practice.

Figure 2 gives the results for the federal funds rate series. Here S’&P(T) yields a contiguous
confidence set with length 0.28 (181 observations) covering the interval 1972:12-1987:12, which again
appears consistent with the visual plot of the data. The confidence set associated with 5”{ p(7) has
length 0.98, which is rather meaningless as a confidence set for a break since it includes nearly all

,f.

ore,p(T) selects the confidence set S’aP(T), which

observations in the sample. Our pre-test procedure
is without any doubt the more plausible of the two. These examples taken together highlight the

potential shortcomings of simply constructing confidence sets based on S‘g p(T) or 5’17 p(7) alone, while

A~

7

simultaneously demonstrating the benefits of the pre.P

(1) approach.

7 Conclusions

In this paper we have proposed methods for constructing confidence sets for the timing of a break
in level and/or trend that have asymptotically correct coverage regardless of the order of integration
(and are asymptotically conservative in the case of local-to-unity processes). Our approach follows
the work of EM, and is based on inverting a sequence of tests for the break location, evaluated across
the full spectrum of possible break dates. We propose two locally best invariant tests upon which
the confidence sets can be based, each of which corresponds to a particular order of integration (i.e.
I(0) or I(1) data generating processes). Under their respective assumptions, these confidence sets
provide correct asymptotic coverage regardless of the magnitude of the break in level/trend, and
also display good finite sample properties in terms of both coverage and length. When the tests
are applied under an incorrect assumption regarding the order of integration, they perform relatively
poorly, however. Consequently, we propose use of a pre-test procedure to select between the I1(0)-
and I(1)-based confidence sets. Monte Carlo evidence shows that our recommended pre-test based
procedure works well across both I(0) and I(1) environments, offering practitioners a reliable and
robust approach to constructing confidence sets without the need to make an a priori assumption
concerning the data’s integration order. Application to two US macroeconomic series provides further

evidence as to the efficacy of these procedures.
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Appendix

Proof of Lemma 1

(a) To show (9), note that

T ~
D= [ . D=1 41 Ut . (13)
>t 1)1 (& = [T )t
Also, since we have the orthogonality condition D)4 = 0,
[ St oy Ot _ [ 0 ]
i pery (= [PT))i 0
and from the orthogonality condition D't = 0,
Yt | |0
Ethl tuy 0]
So, for |nT'| < |7T], (13) can be written as
_x~ T
Dl ,a — t=1 Ut
! [ 2 = T )
For |[nT| > |7T|,
T T (nT|
Sooiy = Y - Y iy
t=|nT|+1 t=|rT|+1 t=|7T|+1
[nT)
- _ Z iy
t=7T]|+1
T T [nT]
Y =Tha = Y (t=WTha— Y, (=T
t=|nT|+1 t=|7T]+1 t=tT]|+1
T T [nT]
= > =UThu+ (7T =T > a— Y, (= [nT)i
t=[7T]+1 t=[7T]+1 t=[7T]+1
[nT)
= - ) (t=[nT)iu
t=7T]|+1
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such that (13) can be written as

T|
Zt77 |7T] +1

D;?ﬁ = [nT | ~
Zt |7T)+1 (t— LWTJ )t

Using (8), it follows that

771 el \ 2 InT| 2
S(r) = > {LTTN( fat) + [7T) " (Z(thTJ)ﬁt> }

(nT|=2

T-2 [T 2 [nT] 2
+ {(T |7T])~? ( > ﬂt) +(T - |7T))~* ( dot- LHTJ)ﬂt) }

t=|7T|+1 t=|7T|+1

S o 8 ()

t=2

,f
3
~

2

|
—

s=1

(T — |7T]) 72 - ( Z u) + (T — |rT])™* i ( Z (st)ﬁs)

s=|7tT|+1 t=7T|+1 \s=|7T]+1

(b) To show (11), paralleling the proof of Lemma 1(a), we find

R Uy 41
D;u = T " . ]
2t={n7 )41 Ut

[ T+ ] for [nT] < |7T]
_ Gy

]
[ EZ,TJJH ] for |nT| > |7T]
Zt I_TTJ+1

Then, using (10),

771 )\ 2
S(r) = ). {LTTJ oy 7T) (Zut> }

[nT]|=2

T-2

7| 2
+ ) {(TLTTJ)lﬂfnTHﬁ(TLTTJ)Q( > m)}

[nT]=[rT]+1 t=|7T|+1

LTT \_TTJ 1 t 2

= |77t Z a7+ |7 Z (Zu)
T-2 T-2 t 2
HT= 1T Y @ (@ T Y ( )3 u)

t=|7T|+1 t=7T|+1 \s=|7T]+1
= 51(7’).
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Proof of Theorem 1

In what follows we may set 8; = 85 = 0 and d; = d3 = 0 without loss of generality.

(a) Let W(r) = w.B(r). In view of Sy(7), the limits we require are those of (i) 71/ ZtL;le U for

7T, (i) T-V2 0T G for t > |77 and (i) 732Ut — [T )iy for t < |7T, (iv
t=|7T]+1 t=1

T 3/2 ZtW[iT (&= [rT )i for t > [7T']. To show (i) write

[rT| [rT| |7T|
T-1/2 Z 4, = T2 Z wg — | 7T~ Z Us
t=1

T (- LT ) )L A
—|TT|”

- o T D

7-3 L (s— 7]yl j) =
TTJ LTTJ
= T2 Z Up — | 7T~ T-1/2 Z Usg
T2 su, — |77t T 2 T

(DI (sf 7))
[T 7T
( QZt— || |7T]~ Z )

= W) - Lwe (fOTSdW(st_g U) )
12
= W) - Lwin + TO <;W(7)— / W(s)ds>
and for (ii),
[rT| [T | T
TN a = TN (ut(TLTTJ)l > u)
t=7T|+1 t=7T|+1 s=|7T|+1

T3/ Zs 7T ]+1 Us (3 — (T = [rT])~ Z] LTTJ-’-]_])

2
TS g (5= (T = PT) 7 SF 40 d)

|rT| T
T2 > | t=(T— [T > s
t=7T|+1 s=[7T]|+1
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LrT)

T
= T—1/2 > w—(rT) = [fTN(T = 7T TN ug
=\rT|+1

s=|7T]+1
(T 3/2 s LTTJJrl SUs — (T - LTTJ)ilTil Zf: [7T]+1 jT?1/2 ZZ: [7T]+1 Us

T Zs [7T)+1 (3 —(T

TN yad)
LTT T
—(rT) = 7T — [rT) T2 Y 8)
t= LTTJ+1 s=|tT|+1
= W(r) - 7

—L(W (1) - W(r)

[l sdw (s) — %(W(l) —W)\ /22
B (1—7)3 (

2
2

_r=n-7
- 2(1—1) )
W (r) = W(r) = = (W(1) = W(r))
—7)(1—r -7 1

+2 a L (1)3 ) (1 5 (W) = W(r) - / (W(s) - W<T>>ds) .
For (iii) write

[T [rT| [rT]
T-3/2 Z(t — |rT|)u

=T 3/22tut—rT /QZU
t=1

where, for the first right hand side term
[rT]

[rT| 7T
T_3/22tﬂt = T_?’/QZt up — 7T~ Zus
=1
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) T_3/22L;TJUS(S 17T~ ZLTTJ)
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so that

LrT)

3/22 T = /W ds——W( )_r373r23(7'—r < /W )

—r{W()—W() GT(Tg_T <;W /W )}

2 o 2 _ 2
_ _ri(r—r) / Wi(s 47 (373 r / W (s)ds
T 0
Finally, for (iv),
[T [rT| T
732 3" (=T =T7%2 >ty -T2 >y
t=|7T|+1 t=|7T|+1 t=|7T|+1

and for the first right hand side term
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732 N ot = T Y t|w— (T[T D> u
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Taking each term in Sp(7) separately

8 () = L foor g #5 o- [ww)o

s=1
1
= / {T_I/QW(TT‘*)—’I“*T—UQW(T)
0

2
+T—1/2%3_T) 3/2( —1/2w( ) — —3/2/ W (s ds)} dr*
2

T

- /01{WT(T*)—T*WT(1)+6T*(1—T ( /W >} w

using 7* = r7~ and W, (r*) = 7~ Y2W (7r*). This has the same distribution as

/Ol{W(r)—rW()+6r1—7" < /W )} r_wg/0132<7«)2d7~

where By(r) denotes a second level Brownian bridge. Next,
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which has the same distribution as

/01 {—r2(1 —r)W(1) — /OT W (s)ds +r%(3 — 2r) /01 W(S)d3}2 dr = w? /01 K (r)2dr.

In a similar way, it can also be shown that

T—2 t 2 1
(T — |+T])~2 S S | = wg/o By(r)2dr

where BY(r) and K'(r) take the same forms as Ba(r) and K(r), respectively, but where the implied

B(r) and B’(r) Brownian motion processes are independent. Hence,

So(T) = w? {/01 Bo(r)?dr + /01 K(r)%dr + /01 Bh(r)?dr + /01 K'(r)zdr}.

(b) Let W(r) = w,B(r). Note that G| rr)41 = 0. For ¢ < |7T],

|rT| [T 7T
T-1/2 Z i = T Y2 Z ug — 7T~ Z Ug
[T 7T

I/QZU — |rT| |7T]~ UQZU
t=1

= W) — “w(r)

T

from which it follows that
I7T]-1 / ¢ 2 - , 9
—2 N —2 T
3 <Zu> Sy /O{W(r) W) dr
d 1
4 /{W(r)—rW(l)}zdr
0

1
= wi/ By (r)%dr.
0

The following is obtained in an analogous way

T—2 t 2 1 r—r 2
(T - [rTH? ) >, a | = (1-7)7 W(r)=W(r) - ——(W(Q1A) =W(r))p dr
1—71
t=|7T]+1 \s=|7T]+1 T
1
£ ut [ Brar

noting that 4,741 = 0.
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Finally, it is easily shown that

|7T]—1 |_TT
T Y ad, = Z uj + Op(T~1/?)
t=2

= Uu +OP< 1/2)7

T—2 T—2
(T—[7T)™ D . = (T=1rTD™ Y wf+0,(T 17
t=|7T|+1 t=|7T|+1

= 024 0,(T7YV?).

1 1
S1(1) = w? By(r)2dr + B! (r)2dr % + 202.
u 0 0 1 u

So,

Proof of Theorem 2

(a) For the second term of Sy(7) consider

[T [rT) (7T
Z tﬂt = Z t| ur — LTT Z Us
t=1

L7T] - T Lr T
(B ) e
T— SZLTTJ( LTTJ_ ZLTTJ ) pry
= Op(T5/2)

Hence

|7T]-1 t 2
7T ) (Z(Sf)fbs> = O0p(T°) [7T] 72 Op(1)

t=2 s=1

= OP(TQ)

Similarly, the fourth term is also O,(T2). The first and third terms are also easily shown to be O, (T?).
The result for w-2Sy(7) follows directly.

(b) For the first term of S1(7) we can show that

7T |-1 |7T]-1
Dooaf = TN Y (Ae)?+ 0T
t=2 t=2

= B{(Ac)’} + Op(T7?)

The third term can be shown to behave likewise. For the second term of Si(7) consider

[rT] [T |7T]
Z at Z A&t TTJ Z A&S
t=1

t=1
= (epr| —1) = 7T 7T (eprr) — 1)
— 0,1
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Hence,
l7T|-1 / ¢t 2
P13 (Sa) - o
t=2 s=2
In a similar way, the fourth term is also shown to be O,(T~1). So,

Si(r) = 2B{(Aey)*} + Op(T117)

and the result for w;2{S;(7) — 202} follows directly.
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Table 1. Asymptotic a-level critical values from the £y and £; distributions.

a=010 a=005 «a=0.01

Lo 0.220 0.257 0.349
Ly 0.607 0.749 1.063

Table 2. Asymptotic coverage of nominal (1 — a)-level S}

confidence sets: p =1+ ¢TI~ L

(r),j={NP, P}, k={r,7}

To c=0 ¢c=-5 ¢c=-10 ¢c=-20 ¢c=-30 ¢c=-40 c=-50

(1—a) =090
01 0900 0954 0973 0988 0996 0999  1.000
02 0900 00956 0983 0998  1.000  1.000  1.000
03 0900 0957 0991 1000  1.000  1.000  1.000
04 0900 0959 0994 1000  1.000  1.000  1.000
05 0900 0963 0994 1000  1.000  1.000  1.000
06 0900 00963 0993 1000  1.000  1.000  1.000
07 0900 0961 0989 0999  1.000  1.000  1.000
08 0900 0960 0983 0997 0999  1.000  1.000
0.9 0900 0958 0973 098 0994 0997  0.999

(1—a) =095
01 0950 00980 0988 0996 0999  1.000  1.000
02 0950 0980 0994 1000  1.000  1.000  1.000
03 0950 0982 0997 1000  1.000  1.000  1.000
04 0950 098 0999 1000  1.000  1.000  1.000
05 0950 00985 0999 1000  1.000  1.000  1.000
06 0950 00985 0998 1000  1.000  1.000  1.000
07 0950 0984 0996 1000  1.000  1.000  1.000
08 0950 0984 0994 0999  1.000  1.000  1.000
09 0950 0981 0989 0995 0998 0999  1.000

(1—a) =099
01 0990 0997 0998 1000  1.000  1.000  1.000
02 0990 0998 0999 1000  1.000  1.000  1.000
03 0990 0998 1000 1000  1.000  1.000  1.000
04 0990 00999  1.000  1.000  1.000  1.000  1.000
05 0990 0998 1000  1.000  1.000  1.000  1.000
06 0990 0998 1000  1.000  1.000  1.000  1.000
07 0990 0998 1000  1.000  1.000  1.000  1.000
08 0990 0998 0999 1000  1.000  1.000  1.000
09 0990 0997 0999 0999  1.000  1.000  1.000

T.1
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Figure 1. US money supply M2 (1959:1-2012:12) and 0.95-level confidence sets for a break in level/trend
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Figure 2. US effective federal funds rate (1959:1-2012:12) and 0.95-level confidence sets for a break in
level /trend
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