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Abstract

We propose methods for constructing confidence sets for the timing of a break in level and/or

trend that have asymptotically correct coverage for both I(0) and I(1) processes. These are based

on inverting a sequence of tests for the break location, evaluated across all possible break dates.

We separately derive locally best invariant tests for the I(0) and I(1) cases; under their respective

assumptions, the resulting confidence sets provide correct asymptotic coverage regardless of the

magnitude of the break. We suggest use of a pre-test procedure to select between the I(0)- and I(1)-

based confidence sets, and Monte Carlo evidence demonstrates that our recommended procedure

achieves good finite sample properties in terms of coverage and length across both I(0) and I(1)

environments. An application using US macroeconomic data is provided which further evinces the

value of these procedures.

Keywords: Level break; Trend break; Stationary; Unit root; Locally best invariant test; Confi-

dence sets.

JEL Classification: C22.

1 Introduction

It has now been widely established that structural change in the time series properties of macroeco-

nomic and financial time series is commonplace (see, inter alia, Stock and Watson (1996)), and much

work has been devoted to this area of research in the literature. Focusing on the underlying trend func-

tion of a series, the primary issues to be resolved when considering the possibility of structural change

are whether a break is present, and, if so, when the break occurred. The focus of this paper concerns

the latter issue regarding the timing of the break, and is therefore complementary to procedures that

focus on break detection. A proper understanding of the likely timing of a break in the trend function

is crucial for modelling and forecasting efforts, and is also of clear importance when attempting to

∗The authors are grateful to two anonymous referees for very useful comments on an earlier version of this paper.
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dave.harvey@nottingham.ac.uk
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gain economic insight into the cause and impact of a break. While a number of procedures exist to

determine a point estimate of a break in level and/or trend, this paper concentrates on ascertaining

the degree of uncertainty surrounding break date estimation by developing procedures for calculating

a confidence set for the break date, allowing practitioners to identify a valid set of possible break

points with a specified degree of confidence.

The methodology of Bai (1994) allows construction of a confidence set for a break in level in a

time series, extended in Bai (1997) to allow for a break in trend, with the confidence set comprised

of a confidence interval surrounding an estimated break point, with the interval derived from the

asymptotic distribution of the break date estimator. However, as Elliott and Müller (2007) [EM]

argue, the asymptotic theory employed in this approach relies on the break magnitude being in some

sense “large”, in that the magnitude can be asymptotically shrinking only at a rate suffi ciently slow

to permit break detection procedures to have power close to one, so that although the magnitude is

asymptotically vanishing, the break is still large enough to be readily detectable. EM argue that in

many practical applications it is “small”breaks (for which detection is somewhat uncertain) that are

typically encountered, and these authors go on to demonstrate that for smaller magnitude breaks, the

Bai approach results in confidence sets that suffer from coverage rates substantially below the nominal

level, with the true break date being excluded from the confidence set much too frequently. EM

suggest an alternative approach to deriving confidence sets that achieve asymptotic validity, based on

inverting a sequence of tests of the null that the break occurs at a maintained date, with the resulting

confidence set comprised of all maintained dates for which the corresponding test did not reject. By

deriving a locally best invariant test that is invariant to the magnitude of the break under the null,

the EM confidence sets have asymptotically correct coverage, regardless of the magnitude of the break

(and therefore regardless of whether the magnitude is treated as fixed or asymptotically vanishing).

The EM model and assumptions pertain to a break in a linear time series regression, of which a

break in level is a special case. They do not, however, consider the case of a break in linear trend,

hence our first contribution is to develop an EM-type methodology for calculating asymptotically valid

confidence sets for the date of a break in trend (and/or level). As in their approach, we derive a locally

best invariant test of the null that the break occurs at a maintained date, and make an expedient

choice for the probability measure used in deriving the test so as to render the resulting test statistic

asymptotically invariant to the break timing.

When attempting to specify the deterministic component of an economic time series in practice,

a critical consideration is the order of integration of the stochastic element of the process. Given the

prevalence of integrated data, it is important to develop methods that are valid in the presence of

I(1) shocks. Moreover, since there is very often a large degree of uncertainty regarding the order of

integration in any given series, it is extremely useful to have available techniques that are robust to

the order of integration, dealing with the potential for either stationary or unit root behaviour at

the same time as specifying the deterministic component. A body of work has developed in recent

years focusing on such concerns, developing order of integration-robust tests for a linear trend (e.g.

Vogelsang (1998), Bunzel and Vogelsang (2005), Harvey et al. (2007), Perron and Yabu (2009a)), tests
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for a break in trend (e.g. Harvey et al. (2009), Perron and Yabu (2009b), Saygınsoy and Vogelsang

(2011)), and tests for multiple breaks in level (e.g. Harvey et al. (2010)). Most recently, Harvey and

Leybourne (2013) have proposed methods for estimating the date of a break in level and trend that

performs well for both I(0) and I(1) shocks.

In the current context, it is clear that reliable specification of confidence sets for the date of a break

in level/trend will be dependent on the order of integration of the data under consideration. Perron

and Zhu (2005) extend the results of Bai (1994, 1997) to allow for I(1), as well as I(0), processes when

estimating the timing of a break in trend or level and trend, and different distributional results are

obtained under I(0) and I(1) assumptions. Similarly, and as would be expected, we show that the

EM procedure for calculating confidence sets, which is appropriate for I(0) shocks, does not result

in sets with asymptotically correct coverage when the driving shocks are actually I(1). However,

extension to the I(1) case is possible via a modified approach applied to the first differences of the

data, whereby the level break and trend break are transformed into an outlier and a level break,

respectively. This development comprises the second main contribution of our paper. Since there is

typically uncertainty surrounding the integration order in practice, we propose a unit root pre-test-

based procedure for calculating confidence sets that are asymptotically valid regardless of the order

of integration of the data. We find the new procedure allows construction of confidence sets with

correct asymptotic coverage under both I(0) and I(1) shocks (irrespective of the magnitude of the

break). We also examine the performance of our procedure under local-to-I(1) shocks, and find that it

displays asymptotic over-coverage (i.e. coverage rates above the nominal level), hence the confidence

sets are asymptotically conservative in such situations, including the true date in the confidence set

at least as frequently as the nominal rate would suggest. Monte Carlo simulations demonstrate that

our recommended procedure performs well in finite samples, in terms of both coverage and length (the

number of dates included in the confidence set as a proportion of the sample size).

The paper is structured as follows. Section 2 sets out the level/trend break model. Section 3 derives

the locally best invariant tests for a break at a maintained date in both the stationary and unit root

environments. The large sample properties under the null of correct break placement are established

when correct and incorrect orders of integration are assumed, with the implications discussed for the

corresponding confidence sets based on these tests. The properties of feasible variants of these tests,

and corresponding confidence sets, are subsequently investigated. In section 4 we propose use of a unit

root pre-test to select between I(0) and I(1) confidence sets when the order of integration is not known.

The finite sample behaviour of the various procedures is examined in section 5. Here we also consider

trimming as a means of potentially shortening the confidence sets. Section 6 provides empirical

illustrations of our proposed procedure using US macroeconomic data, while section 7 concludes.

The following notation is also used: ‘b·c’denotes the integer part, ‘⇒’denotes weak convergence,
and ‘1(·)’denotes the indicator function.
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2 The model and confidence sets

We consider the following model which allows for a level and/or a trend break in either a stationary

or unit root process. The DGP for an observed series yt we assume is given by

yt = β1 + β2t+ δ11(t > bτ0T c) + δ2(t− bτ0T c)1(t > bτ0T c) + εt, t = 1, ..., T (1)

εt = ρεt−1 + ut, t = 2, ..., T, ε1 = u1 (2)

with bτ0T c ∈ {2, ..., T − 2} ≡ ΛT the level and/or trend break point with associated break fraction

τ0. In (1), a level break occurs at time bτ0T c when δ1 6= 0; likewise, a trend break occurs if δ2 6= 0.

The parameters β1, β2, δ1 and δ2 are unknown, as is the break point bτ0T c, inference on which is the
central focus of our analysis. Our generic specification for εt is given by (2) assuming that −1 < ρ ≤ 1

and that ut is I(0).

For an assumed break point bτT c ∈ ΛT , our interest centres on testing whether or not bτ0T c
and bτT c coincide, which we can write in hypothesis testing terms as a test of the null hypothesis
H0 : bτ0T c = bτT c against the alternative H1 : bτ0T c 6= bτT c. Then, following EM, a (1 − α)-level

confidence set for τ0 is constructed by inverting a sequence of α-level tests of H0 : bτ0T c = bτT c
for bτT c ∈ ΛT , with the resulting confidence set comprised of all bτT c for which H0 is not rejected.

Provided the test of H0 : bτ0T c = bτT c has size α for all bτT c, the confidence set will have correct
coverage, since the probability of excluding τ0 from the confidence set (via a spurious rejection ofH0) is

α. In terms of confidence set length, a shorter than (1−α)-level confidence set arises whenever the tests

of H0 : bτ0T c = bτT c reject with probability greater than α under the alternative H1 : bτ0T c 6= bτT c
across bτT c. Other things equal, the more powerful a test is in distinguishing between H0 and H1,

the shorter this confidence set should be. Note that this approach to constructing confidence sets does

not guarantee that the set is comprised of contiguous sample dates, cf. EM (p. 1207).

In the next section, we consider construction of powerful tests of H0 against H1, deriving locally

best invariant tests along the lines of EM when ρ = 0 and when ρ = 1, under a Gaussianity assumption

for ut. The large sample properties of these tests are subsequently established under weaker conditions

for ρ and ut.

3 Locally best invariant tests

For the purposes of constructing locally best invariant tests, we make the standard assumption that

ut ∼ NIID(0, σ2
u), and we suppose that ρ in (2) is restricted to taking the two values ρ = 0 or ρ = 1.

In the case of ρ = 0, we find that (1) reduces to

yt = β1 + β2t+ δ11(t > bτ0T c) + δ2(t− bτ0T c)1(t > bτ0T c) + ut, t = 1, ..., T (3)

while for ρ = 1, (1) can be written as

∆yt = β2 + δ11(t = bτ0T c+ 1) + δ21(t > bτ0T c) + ut, t = 2, ..., T. (4)
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Now write either of the models (3) or (4), for an arbitrary break point bτT c, in the generic form

zt = d′tβ + d′τ ,tδ + ut (5)

where δ = [δ1 δ2]′, and, under (3), zt = yt, dt = [1 t]′, β = [β1 β2]′, dτ ,t = [1(t > bτT c) (t−bτT c)1(t >

bτT c)]′; while under (4), zt = ∆yt, dt = 1, β = β2, dτ ,t = [1(t = bτT c + 1) 1(t > bτT c)]′. In an
obvious matrix form, (5) can be expressed as

z = Dβ +Dτδ + u. (6)

We consider tests based on û, the vector of OLS residuals from the regression (6), that is, û = Mτz,

where Mτ = I − Cτ (C ′τCτ )−1Cτ with Cτ = [D : Dτ ]. Such tests are by construction invariant to the

unknown parameters β and δ under H0. The likelihood ratio statistic for testing H0 against H1 can

then be derived as follows. Let k∗ and T ∗ denote the number of regressors and the effective sample

size, respectively, in the regression (6). Also, let Bτ be the T ∗ × (T ∗ − k∗) matrix defined such that
B′τBτ = IT ∗−k∗ and BτB′τ = Mτ . Since B′τz = B′τ û is invariant to β, it follows that, on setting β = 0

without loss of generality, B′τz ∼ N(B′τDτ0δ, σ
2
uIT ∗−k∗) under H1. Under H0, B′τz = B′τ0

z is also

invariant to δ, hence, on setting δ = β = 0 without loss of generality, B′τz ∼ N(0, σ2
uIT ∗−k∗). The

likelihood ratio statistic is then

LR(τ , δ, τ0) =
(2πσ2

u)−(T ∗−k∗)/2 exp{−(2σ2
u)−1(B′τz −B′τDτ0δ)

′(B′τz −B′τDτ0δ)}
(2πσ2

u)−(T ∗−k∗)/2 exp{−(2σ2
u)−1(B′τz)

′B′τz}
= exp[−(2σ2

u)−1{(B′τz −B′τDτ0δ)
′(B′τz −B′τDτ0δ)− (B′τz)

′B′τz}]

= exp{σ−2
u z′BτB

′
τDτ0δ − 1

2σ
−2
u δ′D′τ0

BτB
′
τDτ0δ}

= exp(σ−2
u û′Dτ0δ − 1

2σ
−2
u δ′D′τ0

MτDτ0δ).

Following the approach of Andrews and Ploberger (1994), to remove the dependence of the statistic

on the parameters δ and τ0, we consider tests that maximize the weighted average power criterion∑
bηT c∈ΛT ,
bηT c6=bτT c

λbηT c

∫
P (test rejects| bτ0T c = bηT c , δ = δ∗)dvbηT c(δ

∗)

over all tests that satisfy P (test rejects| bτ0T c = bτT c) = α, where the weights {λt} are non-negative
real numbers and {vt(δ∗)} is a sequence of non-negative measures on R2. This yields a test of the form

LR(τ) =
∑

bηT c∈ΛT ,
bηT c6=bτT c

λbηT c

∫
LR(τ , f, η)dvbηT c(f).

As in EM, we set λbηT c = 1, such that equal weights are placed on alternative break dates, and take

vbηT c(f) to be a probability measure of N(0, b2HbηT c). We then obtain (after some algebra)

LR(τ) =
∑

bηT c∈ΛT ,
bηT c6=bτT c

∣∣I + b2σ−2
u HbηT cD

′
ηMτDη

∣∣−1/2
exp{1

2b
2σ−4

u û′Dη(H
−1
bηT c + b2σ−2

u D′ηMτDη)
−1D′ηû}.
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Taking a first order Taylor series expansion of LR(τ) in the locality of b2 = 0, we find that the

stochastic component of LR(τ), up to a constant of proportionality, is given by

S(τ) =
∑

bηT c∈ΛT ,
bηT c6=bτT c

û′DηHbηT cD
′
ηû. (7)

This represents the locally best invariant test with respect to b2 that maximizes weighted average

power, for given HbηT c.

We specify HbηT c separately under the models (3) and (4), and, as in EM, we construct the

elements of HbηT c using particular scalings of bτT c and (T − bτT c) such that the resulting S(τ)

tests have asymptotic distributions under H0 that do not depend on τ . This choice is justified by

the convenience of allowing the same asymptotic critical value to apply to each of the sequence of

individual tests over bτT c ∈ ΛT . Given these choices for HbηT c, explicit forms for (7) can be derived

under both (3) with ρ = 0 and (4) with ρ = 1, as detailed in the following lemma.

Lemma 1

(a) Under DGP (3) (ρ = 0), when

HbηT c =



[
bτT c−2 0

0 bτT c−4

]
if bηT c < bτT c[

(T − bτT c)−2 0

0 (T − bτT c)−4

]
if bηT c > bτT c

(8)

it follows from (7) that, for testing H0 against H1, the locally best invariant test with respect to b2 is

given by

S0(τ) = bτT c−2
bτT c−1∑
t=2

(
t∑

s=1

ûs

)2

+ bτT c−4
bτT c−1∑
t=2

(
t∑

s=1

(s− t)ûs

)2

(9)

+(T − bτT c)−2
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

ûs

2

+ (T − bτT c)−4
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

(s− t)ûs

2

where {ût}Tt=1 denote the residuals from OLS estimation of (3) when bτ0T c is replaced by bτT c.

(b) Under DGP (4) (ρ = 1), when

HbηT c =



[
bτT c−1 0

0 bτT c−2

]
if bηT c < bτT c[

(T − bτT c)−1 0

0 (T − bτT c)−2

]
if bηT c > bτT c

(10)
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it follows from (7) that, for testing H0 against H1, the locally best invariant test with respect to b2 is

given by

S1(τ) = bτT c−1
bτT c−1∑
t=2

û2
t+1 + bτT c−2

bτT c−1∑
t=2

(
t∑

s=2

ûs

)2

(11)

+(T − bτT c)−1
T−2∑

t=bτT c+1

û2
t+1 + (T − bτT c)−2

T−2∑
t=bτT c+1

 t∑
s=bτT c+1

ûs

2

where {ût}Tt=2 denote the residuals from OLS estimation of (4) when bτ0T c is replaced by bτT c.

3.1 Large sample properties of the test procedures

Now we have the structures of the tests in place, we can derive their large sample properties under

more general assumptions regarding ρ and ut. Here we make one of the two following assumptions:

Assumption I(0) Let |ρ| < 1, ut = C(L)ζt, C(L) =
∑∞

i=0CiL
i, C0 = 1, with C(z) 6= 0 for all

|z| ≤ 1 and
∑∞

i=0 i|Ci| <∞, and where ζt is an IID sequence with mean zero, variance σ2 and finite

fourth moment.

Under Assumption I(0) we define the long-run variance of ut as ω2
u = limT→∞ T

−1E(
∑T

t=1 ut)
2 =

σ2C(1)2. Note that the long-run variance of εt is then given by ω2
ε = ω2

u/(1− ρ)2.

Assumption I(1) Let ρ = 1 with ut defined as in Assumption I(0).

Under Assumption I(1) we also define the short-run variance of ut as σ2
u = E(u2

t ). The theorem below

gives the null limiting distributions of the effi cient tests S0(τ) and S1(τ) under Assumptions I(0) and

I(1), respectively.

Theorem 1

(a) Under H0 : bτ0T c = bτT c and Assumption I(0),

ω−2
ε S0(τ)⇒

∫ 1

0
B2(r)2dr +

∫ 1

0
K(r)2dr +

∫ 1

0
B′2(r)2dr +

∫ 1

0
K ′(r)2dr ≡ L0.

(b) Under H0 : bτ0T c = bτT c and Assumption I(1),

ω−2
u {S1(τ)− 2σ2

u} ⇒
∫ 1

0
B1(r)2dr +

∫ 1

0
B′1(r)2dr ≡ L1

where

B1(r) = B(r)− rB(1),

B2(r) = B(r)− rB(1) + 6r (1− r)
{

1

2
B(1)−

∫ 1

0
B(s)ds

}
,

K(r) = −r2(1− r)B(1)−
∫ r

0
B(s)ds+ r2(3− 2r)

∫ 1

0
B(s)ds
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with B(r) a standard Brownian motion process, and where B′1(r), B′2(r)and K ′(r) take the same

forms as B1(r), B2(r) and K(r), respectively, but with B(r) replaced by B′(r), with B′(r) a standard

Brownian motion process independent of B(r). (Note that B1(r), B2(r) and K(r) are tied down and

Bj(r) is a j’th level Brownian bridge.)

Remark 1 Note that, as desired, ω−2
ε S0(τ) and ω−2

u {S1(τ) − 2σ2
u} have nuisance-parameter free

distributions that do not depend on τ . This property arises from the specific functions for HbηT c
adopted, justifying the HbηT c choices made in Lemma 1. Note also that the L1 distribution coincides

with the null limit distribution of the test proposed by EM in the case of a single regressor that is

subject to a break.

Remark 2 The result in Theorem 1 (b) is obtained because both the first and third terms of S1(τ) in

(11) converge in probability to σ2
u. These components of S1(τ) are associated with testing on the one-

time dummy variable in (4), and it can easily be shown that these terms also converge in probability

to σ2
u under the alternative H1 when only a level break occurs under Assumption I(1), i.e. when an

outlier of magnitude δ1 is present in the I(0) first differences of the series. As such, S1(τ) does not

have asymptotic power for identifying the date of a break in level in I(1) data. This is to be expected

given that an unscaled level break is asymptotically irrelevant in an I(1) series. However, retaining

these terms in the statistic (11), along with a judicious choice of σ2
u estimator (discussed below), can

yield finite sample performance benefits, hence we do not omit these terms from the S1(τ) statistic.

Remark 3 A theoretical alternative to our approach would be to attempt to endow the first

and third terms of S1(τ) with a null limit distribution rather than a probability limit. However,

this would require a rescaled and centered variant of the form bτT c−1/2∑bτT c−1
t=2 (û2

t+1 − σ2
u) for

the first component (and similarly for the third component). This introduces two complications;

first, σ2
u is unknown and ultimately needs replacing with an estimator, which we generically de-

note σ̃2
u. Since σ̃

2
u is at best Op(T

−1/2)-consistent for σ2
u, it follows that the asymptotic distribu-

tion of bτT c−1/2∑bτT c−1
t=2 (û2

t+1 − σ̃2
u) will be different to that of bτT c−1/2∑bτT c−1

t=2 (û2
t+1 − σ2

u). Sec-

ondly, even if σ2
u is known, bτT c

−1/2∑bτT c−1
t=2 (û2

t+1 − σ2
u) implicitly involves the partial sum process

T−1/2
∑brT c

t=1 (u2
t − σ2

u), while the third term of S1(τ) involves the partial sum process T−1/2
∑brT c

t=1 ut;

the joint limit distribution of these two partial sum processes depends on the third moment of ut,

which is also unknown. As a result, we adopt the more analytically tractable specification outlined in

Lemma 1 (b).

Table 1 gives simulated (upper tail) α-level critical values for the limit distributions L0 and L1.

These were obtained by direct simulation of the limiting distributions given in Theorem 1, approx-

imating the Brownian motion processes using NIID(0, 1) random variates, and with the integrals

approximated by normalized sums of 2000 steps. The simulations were programmed in Gauss 9.0

using 50,000 Monte Carlo replications. If these critical values are applied to each of the sequence of
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tests ω−2
ε S0(τ) under Assumption I(0), and ω−2

u {S1(τ)−2σ2
u} under Assumption I(1), the correspond-

ing confidence set based on inverting these tests will have asymptotically correct coverage of (1− α),

regardless of the magnitude of the break in level and/or trend.

We next consider the behaviour of S0(τ) and S1(τ) under H0 when an incorrect assumption

regarding the value of ρ is made.

Theorem 2

(a) Under H0 : bτ0T c = bτT c and Assumption I(1),

ω−2
ε S0(τ) = Op(T

2).

(b) Under H0 : bτ0T c = bτT c and Assumption I(0),

ω−2
u {S1(τ)− 2σ2

u} = ω−2
u 2{E(∆εt)

2 − σ2
u}+Op(T

−1/2).

Theorem 1 (a) shows that a (nominal) (1−α)-level confidence set based on ω−2
ε S0(τ) will be asymptot-

ically empty (i.e. zero coverage) as all the test statistics diverge to +∞ and thereby exceed the α-level

critical value in the limit. Theorem 1 (b) shows that ω−2
u {S1(τ)− 2σ2

u} converges in probability to a
constant that takes the value ω−2

u 2{E(∆εt)
2 − σ2

u}. If this constant exceeds the α-level critical value,
then the confidence set based on ω−2

u {S1(τ)− 2σ2
u} will also be asymptotically empty (zero coverage);

if it is less than the α-level critical value, then the confidence set based on ω−2
u {S1(τ) − 2σ2

u} will
be asymptotically full (i.e. coverage of unity). Which of these two cases pertains will depend on the

values of ω2
u, E(∆εt)

2 and σ2
u. Trivially, a suffi cient condition for the latter case is E(∆εt)

2 ≤ σ2
u, since

then ω−2
u {S1(τ) − 2σ2

u} assumes a negative probability limit, which can never exceed the (positive)
asymptotic critical value. Clearly then, an incorrect assumption regarding the order of integration of

εt negates the validity of confidence sets based on inverting sequences of these effi cient tests, an issue

we revisit in section 4.

The tests considered so far are clearly infeasible since they depend on the unknown parameters

ω2
ε, or ω

2
u and σ

2
u. In the next section we examine some feasible versions of the tests and reassess the

content of Theorems 1 and 2 in the context of these.

3.2 Feasible test procedures and their large sample properties

To make the tests feasible, we require suitable estimators of ω2
ε for S0(τ) and ω2

u and σ
2
u for S1(τ).

To estimate the long-run variances ω2
ε and ω

2
u we consider both non-parametric and parametric ap-

proaches. In the non-parametric case, we employ the Bartlett kernel-based estimators

ω̂2
i,NP (τ) = γ̂i,0(τ) + 2

`NP∑
l=1

h(l, `NP )γ̂i,l(τ), γ̂i,l(τ) = T−1
T∑

t=l+1

ûtût−l

for i = {ε, u}, where the ût are the residuals obtained from OLS estimation of regression (3) when

i = ε and (4) when i = u.1 Here, h(l, `NP ) = 1 − l/(`NP + 1), with a lag truncation parameter `NP

that is assumed to satisfy the standard condition that, as T →∞, 1/`NP + `3NP /T → 0.

1For economy of notation we do not discriminate between the different numbers of ût available in the two cases.
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In the parametric case, we employ Berk-type autoregressive spectral density estimators which can

be written as

ω̂2
i,P (τ) =

s2
i

π̂2
i

where π̂i is obtained from the fitted OLS regression

∆ût = π̂ût−1 +

`P∑
l=1

ψ̂j∆ût−l + êt, t = `P + 1, ..., T

and s2
i = T−1

∑T
t=`P+1 ê

2
t . Again, the ût are obtained from (3) if i = ε, and from (4) if i = u. Also,

`P is assumed to have the same properties as `NP above.

It is also natural to consider estimating σ2
u with σ̂2

u(τ) = γ̂u,0(τ) using the ût from (4). The

following lemma gives the large sample behaviour of the various estimators.

Lemma 2

(a) Under H0 : bτ0T c = bτT c and Assumption I(0),

ω̂2
ε,NP (τ), ω̂2

ε,P (τ)
p→ ω2

ε,

ω̂2
u,NP (τ) = Op(`

−1
NP ),

ω̂2
u,P (τ) = Op(`

−2
P ),

σ̂2
u(τ) = E(∆εt)

2 +Op(T
−1/2).

(b) Under H0 : bτ0T c = bτT c and Assumption I(1),

ω̂2
ε,NP (τ) = Op(`NPT ),

ω̂2
ε,P (τ) = Op(T

2),

ω̂2
u,NP (τ), ω̂2

u,P (τ)
p→ ω2

u,

σ̂2
u(τ)

p→ σ2
u.

The results for ω̂2
ε,NP (τ), ω̂2

u,NP (τ) and σ̂2
u(τ) arise from a simple adaptation of results shown in

Harvey et al. (2009); those for ω̂2
ε,P (τ) and ω̂2

u,P (τ) arise similarly from Harvey et al. (2010).

We can now define feasible versions of the statistics as

Ŝτ0,j(τ) = ω̂−2
ε,j (τ)S0(τ),

Ŝτ1,j(τ) = ω̂−2
u,j(τ){S1(τ)− 2σ̂2

u(τ)}

for j = {NP,P}. Based on Theorem 1 and Lemma 2, we then have the following corollary.

Corollary 1

(a) Under H0 : bτ0T c = bτT c and Assumption I(0),

Ŝτ0,NP (τ), Ŝτ0,P (τ)⇒ L0.
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(b) Under H0 : bτ0T c = bτT c and Assumption I(1),

Ŝτ1,NP (τ), Ŝτ1,P (τ)⇒ L1.

These results simply show that when a correct order of integration is assumed (and therefore the

appropriate limit critical values are employed), confidence sets based on the feasible tests will continue

to provide asymptotically correct coverage. From Theorem 2 and Lemma 2 we have the following

corollary.

Corollary 2

(a) Under H0 : bτ0T c = bτT c and Assumption I(1),

Ŝτ0,NP (τ) = Op(`
−1
NPT )

p→∞,

Ŝτ0,P (τ) = Op(1).

(b) Under H0 : bτ0T c = bτT c and Assumption I(0),

Ŝτ1,NP (τ) = Op(`NPT
−1/2)

p→ 0,

Ŝτ1,P (τ) = Op(`
2
PT
−1/2)


p→ 0 `P = o(T 1/4)

= Op(1) `P = O(T 1/4)
p→∞ `−1

P = o(T 1/4)

.

Corollary 2 (a) shows that a (nominal) (1−α)-level confidence set based on Ŝτ0,NP (τ) will be asymptot-

ically empty, thereby paralleling the behaviour of its infeasible counterpart. However, the behaviour

of a confidence set based on Ŝτ0,P (τ) is uncertain since it is an Op(1) variate (whose behaviour will

actually depend on ω2
u). It is, however, almost certain to be the case that this confidence set will

have incorrect coverage asymptotically. From Corollary 2 (b), a confidence set based on Ŝτ1,NP (τ)

will be asymptotically full. All possibilities - unit, incorrect (dependent on ω2
ε) or zero coverage - can

arise with Ŝτ1,P (τ), contingent on how `P is chosen. The results of Corollary 2 therefore reinforce the

importance of assuming a correct order of integration, since use of an incorrect assumption results in

a procedure with asymptotic coverage different from (1− α).

We should be aware that the properties of ω̂2
i,j(τ) and σ̂2

u(τ) shown in Lemma 2 - particularly their

consistency properties, will not hold in general under H1 : bτ0T c 6= bτT c (the exception being when
a level break alone occurs under Assumption I(1)). In view of this, we might entertain employing

alternate estimators of ω̂2
i,j(τ) and σ̂2

u(τ) based on some estimator of τ0. Below we will consider

the break fraction estimator derived in Harvey and Leybourne (2013), therein referred to as τ̂Dm .

This estimator is the value of τ that yields the minimum sum of squared residuals from an OLS

regression of yρ̄ = [y1, y2 − ρ̄y1, ..., yT − ρ̄yT−1]′ on Zρ̄,τ = [z1, z2 − ρ̄z1, ..., zT − ρ̄zT−1]′ where zt =

[1, t, 1(t > bτT c), (t − bτT c)1(t > bτT c)]′ across bτT c ∈ ΛT and across ρ̄ ∈ Dm. In what follows

we set ΛT = {b0.01T c , ..., b0.99T c} and, following Harvey and Leybourne (2013), we set Dm =

{0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.975, 1}. It can be shown that ω̂2
i,j(τ̂Dm) and σ̂2

u(τ̂Dm) have the same
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asymptotic properties as those for ω̂2
i,j(τ) and σ̂2

u(τ) shown in Lemma 2, and also that these properties

will continue to hold under H1. This gives rise to the potential for power improvements under H1, and

therefore potentially narrower confidence sets. In what follows we therefore also consider versions of

the Ŝτi,j(τ) procedures where ω̂2
i,j(τ) and σ̂2

u(τ) are replaced with ω̂2
i,j(τ̂Dm) and σ̂2

u(τ̂Dm), respectively,

i.e.

Ŝ τ̂0,j(τ) = ω̂−2
ε,j (τ̂Dm)S0(τ),

Ŝ τ̂1,j(τ) = ω̂−2
u,j(τ̂Dm){S1(τ)− 2σ̂2

u(τ̂Dm)}.

4 Selecting between I(0)- and I(1)-based confidence sets

Given the foregoing discussions, it should be clear that we want to base confidence set construction

on the Ŝk0,j(τ) (j = {NP,P}, k = {τ , τ̂}) suite of test statistics under Assumption I(0) and the Ŝk1,j(τ)

statistics under Assumption I(1). One way or another, in practice this has to involve deciding whether

a given data set is more compatible with Assumption I(0) or Assumption I(1) and then applying

Ŝk0,j(τ) or Ŝk1,j(τ) as appropriate. The most direct way of doing this is to apply a unit root test in the

role of a pre-test. To this end, we employ the infimum GLS-detrended Dickey-Fuller test of Perron

and Rodríguez (2003) and Harvey et al. (2013). In the current context, this statistic is calculated as

MDF = inf
bτTc∈Λ∗

T

DFGLSc̄ (τ)

where Λ∗T = [bτ lT c , bτUT c] with τ l and τU representing trimming parameters. Here DFGLSc̄ (τ)

denotes the standard t-ratio associated with π̃ in the fitted ADF-type regression

∆ũt = π̃ũt−1 +

`DF∑
j=1

ψ̃j∆ũt−j + ẽt, t = k + 2, ..., T,

with `DF having the same properties as `NP above, and

ũt = yt − β̃1 − β̃2t− δ̃11(t > bτT c)− δ̃2(t− bτT c)1(t > bτT c)

where [β̃1, β̃2, δ̃1, δ̃2]′ is obtained from a local GLS regression of yρ̄ on Zρ̄,τ with ρ̄ = 1 + c̄/T .

The limiting distribution of the MDF statistic under the null hypothesis of Assumption I(1) when

δ1 = δ2 = 0 is given by the expression in equation (11) of Perron and Rodríguez (2003) on setting

c = 0. Let cvα denote an asymptotic α-level (left-tail) critical value from this distribution. Our

pre-test-based decision rule is then to select Ŝk0,j(τ) if MDF < cvα and select Ŝk1,j(τ) if MDF ≥ cvα.

Under Assumption I(0), MDF diverges to −∞ at the rate Op(T 1/2) so that Ŝk0,j(τ) is selected with

probability one in the limit; this occurs regardless of whether δ1 and δ2 are zero or non-zero. Under

Assumption I(1), Ŝk1,j(τ) is selected with limit probability 1 − α when δ2 = 0, irrespective of the

magnitude of δ1. When δ2 6= 0 (and again irrespective of δ1), the asymptotic size of MDF is only

slightly below α, so that Ŝk1,j(τ) is selected with limit probability a little above 1 − α. In order to
ensure that Ŝk1,j(τ) is selected with limit probability one under Assumption I(1), whilst also selecting
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Ŝk0,j(τ) with probability one in the limit under Assumption I(0), the MDF pre-test can be conducted

at a significance level that shrinks with the sample size, by replacing cvα with cvα,T , where cvα,T

satisfies cvα,T → −∞ and cvα,T = o(T 1/2), i.e. a critical value that diverges to −∞ at a rate slower

than T 1/2.

In what follows, we denote our pre-test-based tests of H0 : bτ0T c = bτT c as follows:

Ŝkpre,j(τ) =

{
Ŝk0,j(τ) if MDF < cvα,T

Ŝk1,j(τ) if MDF ≥ cvα,T
, j = {NP,P}, k = {τ , τ̂}.

In the limit, it follows that under H0 : bτ0T c = bτT c,

Ŝkpre,j(τ)⇒
{
L0 under Assumption I(0)

L1 under Assumption I(1)
, j = {NP,P}, k = {τ , τ̂}

and so comparison of Ŝkpre,j(τ) with critical values from L0 if MDF < cvα,T or from L1 if MDF

< cvα,T , will lead to correctly sized tests asymptotically. Inference based on the inversion of sequences

of such tests offers the possibility of reliable confidence set construction without the need to make an

a priori (and possibly incorrect) assumption regarding the order of integration. Given the uncertainty

surrounding the unit root properties of typical economic and financial series, particularly those that

are subject to a break in level/trend, such an approach has obvious appeal.

Thus far we have considered the cases |ρ| < 1 and ρ = 1 to evaluate the behaviour of the different

procedures under stationary and unit root assumptions. It is also important to assess the behaviour

of Ŝkpre,j(τ) under a local-to-unity specification for ρ. Adopting the usual Pitman drift specification

ρ = 1 + cT−1, c ≤ 0, MDF is an Op(1) variate, and hence, due to the fact that cvα,T → −∞,
Ŝkpre,j(τ) = Ŝk1,j(τ) in the limit. It can then be easily shown (along the lines of the proof of Theorem

1) that, for c ≤ 0 under H0,

Ŝkpre,j(τ)⇒ Lc1(τ), j = {NP,P}, k = {τ , τ̂}

where

Lc1(τ) = τ−2

∫ τ

0

{
Bc(r)−

r

τ
Bc(τ)

}2
dr + (1− τ)−2

∫ 1

τ

{
Bc(r)−Bc(τ)− r − τ

1− τ (Bc(1)−Bc(τ))

}2

dr

(12)

with Bc(r) =
∫ r

0 e
(r−s)cdB(s). Note that on setting c = 0 we obtain L0

1(τ)
d
= L1 ∀τ . Table 2 reports

asymptotic coverage rates for nominal 0.90-, 0.95- and 0.99-level confidence sets constructed from the

Ŝkpre,j(τ) tests, using critical values from Table 1 (which are appropriate for c = 0). The coverage

rates were obtained by direct simulation of (12) in the same manner as the simulations for Table 1,

and results are reported for c = {0,−5,−10,−20,−30,−40,−50} and τ0 = {0.1, 0.2, ..., 0.9}, noting
that the Lc1(τ0) distribution depends on τ0 unless c = 0. It is clear from the results that in the local-

to-unity setting, confidence sets based on the Ŝkpre,j(τ) tests do not suffer from any under-coverage

across c or τ0; indeed, over-coverage is observed, increasing in −c for a given τ0. This arises from the

individual Ŝkpre,j(τ) tests being under-sized for local-to-unity generating processes given that critical
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values appropriate for a pure unit root are being applied, and translates to conservative confidence

sets that asymptotically include the true break date with a probability at least as great as the nominal

coverage rate. This reassuring property indicates that asymptotic under-coverage is not a feature of

our proposed pre-test-based confidence sets for any value of ρ, be it unity, local-to-unity, or strictly

less than one.

Finally, an alternative feasible approach to constructing a confidence set with correct asymptotic

coverage under both Assumption I(0) and Assumption I(1) (and with over-coverage under a local-to-

unity specification) is to consider taking a union of an I(0)-based confidence set and an I(1)-based

confidence set. Given the results of Corollary 2, it is evident that asymptotically correct coverage, i.e.

a coverage rate of (1−α) in both the I(0) and I(1) cases, would be obtained only from a union of the

confidence sets corresponding to Ŝk0,NP (τ) and Ŝk1,P (τ), with the latter requiring we set `−1
P = o(T 1/4).

All other unions would lead to either asymptotically full coverage (i.e. a coverage rate of one), or

a coverage rate that depends on nuisance parameters (ω2
u or ω

2
ε). We investigated the finite sample

properties of such a union, and while the coverage rates were found to be comparable to those of the

best of the pre-test procedures, the union confidence set lengths were generally greater than those

afforded by the best pre-test approach (in some cases substantially so), hence we do not pursue the

union further here.

In the next section we evaluate the finite sample properties of our pre-test-based approaches in

comparison with those that are based on a maintained assumption regarding the integration properties

of the data, both in terms of coverage and length.

5 Finite sample performance

In this section we examine the finite sample performance of confidence sets based on the Ŝk0,j(τ), Ŝk1,j(τ)

and Ŝkpre,j(τ) tests (j = {NP,P}, k = {τ , τ̂}). We simulate the DGP (1)-(2) with β1 = β2 = 0 (without

loss of generality) and a range of break magnitudes, δ1 and δ2, and timings, τ0, for the sample sizes

T = 150 and T = 300. We consider ρ ∈ {0.00, 0.50, 0.80, 0.90, 0.95, 1.00} to encompass both I(1) and a
range of I(0) DGPs, and set ut ∼ NIID(0, 1). The Ŝk0,j(τ) and Ŝk1,j(τ) tests are applied at the nominal

0.05-level using the asymptotic critical values provided in Table 1, with `NP = `max =
⌊
12(T/100)1/4

⌋
and `P selected via the Bayesian information criterion with maximum value `max. For the Ŝkpre,j(τ)

tests, we select between Ŝk0,j(τ) and Ŝk1,j(τ) on the basis of MDF conducted at the 0.05-level with

c̄ = −17.6 (following Harvey et al. (2013)), τ l = 1−τU = 0.01,2 and where `DF is selected according to

the MAIC procedure of Ng and Perron (2001), as modified by Perron and Qu (2007), with maximum

lag order `max. All simulations were conducted using 10,000 Monte Carlo replications, and in the

tables we report results for confidence set coverage (the proportion of replications for which the true

break date is contained in the confidence set) and confidence set length (in each replication, length is

2From simulation of the asymptotic null distribution of MDF in this case, we find that cv0.05 = −3.88. For simplcity,
we conduct MDF at the nominal 0.05-level for both T = 150 and T = 300, rather than shrinking the significance level

with increasing sample size.

14



calculated as the number of dates included in the confidence set as a proportion of the sample size;

we then report the average length over Monte Carlo replications).

Table 3 reports results for τ0 = 0.3, δ1 = 5 and δ2 = 0.5, such that both a level and trend break

occur before the sample mid-point. Consider first the behaviour of the confidence sets based on Ŝk0,j(τ)

(j = {NP,P}, k = {τ , τ̂}). When ρ = 0, we find that (approximately) correct coverage is achieved

for the two Ŝk0,P (τ) sets, whereas the two Ŝk0,NP (τ) sets display correct coverage only for T = 300,

with under-coverage apparent for T = 150. When ρ = 1, the Ŝk0,NP (τ) sets deliver substantial under-

coverage, increasingly so in the larger sample size, as our asymptotic results in Corollary 2 suggest.

In contrast, the Ŝk0,P (τ) sets (the tests for which were found to be Op(1)), display over-coverage for

both sample sizes, which is clearly less of a concern. For ρ = 0.5, the coverage rates for the Ŝk0,j(τ)

sets are seen to be broadly similar to those for ρ = 0, then as ρ increases towards one, coverage moves

closer to those observed in the ρ = 1 case, as we might expect in finite samples.

Turning now to the Ŝk1,j(τ) sets, all are seen to provide (approximately) correct coverage when

ρ = 1, in line with our theoretical results; indeed, coverage never deviates from 0.95 by more than

0.01 across both sample sizes. At the other extreme, when ρ = 0 we find that all the Ŝk1,j(τ) sets

show under-coverage for both T = 150 and T = 300 (which is somewhat surprising in the case of the

two Ŝk1,NP (τ) sets, since the tests converge in probability to zero under Assumption I(0), although

unreported simulations confirm that coverage does start to increase for larger samples); under-coverage

is also seen in some cases when ρ = 0.5, while for the larger values of ρ < 1, coverage is closer to the

correct coverage seen when ρ = 1 (in fact some over-coverage is displayed in these cases).

For our proposed pre-test-based procedures Ŝkpre,j(τ), we see that in each case, coverage is very

close to the corresponding Ŝk1,j(τ) coverage for ρ = 1 and ρ values close to 1, but then for small

values of ρ assumes the more accurate coverage rates of the corresponding Ŝk0,j(τ) sets. Of course,

the coverage of any given Ŝkpre,j(τ) set is limited by the coverage performance of the corresponding

underlying Ŝk0,j(τ) and Ŝk1,j(τ) sets, thus for the two Ŝkpre,NP (τ) sets, under-coverage is still manifest

for some settings, due to the under-coverage inherent in the Ŝk0,NP (τ) sets. However, the Ŝkpre,P (τ)

sets show good finite sample coverage rates across the range of settings considered in the table, in

particular avoiding problems of under-coverage.

When considering our results for the length of the confidence sets implied by the different tests,

as we would expect, length generally decreases (since test power generally increases) as T increases

and as ρ decreases. Comparing the different procedures, the most striking feature is that any given

Ŝ τ̂i,j(τ) or Ŝ τ̂pre,j(τ) set (where the short and long run variance estimators used in the tests are based

on τ̂Dm) substantially outperforms the corresponding Ŝ
τ
i,j(τ) or Ŝτpre,j(τ) set (where the estimators

in the tests are evaluated at each τ). This is entirely to be expected, since under the alternative

hypothesis, use of a consistent estimator of the true break fraction allows consistent estimation of σ2
u

and ω2
u under Assumption I(1) and consistent estimation of ω

2
ε under Assumption I(0). In contrast,

the estimators σ̂2
u(τ), ω̂2

u(τ) and ω̂2
ε(τ) are not consistent when τ 6= τ0, and are likely to over-state

the values of the true parameters, thereby reducing the values of the test statistics and increasing

the confidence set length. Of the better performing Ŝ τ̂i,j(τ) and Ŝ τ̂pre,j(τ) sets, Ŝ τ̂0,NP (τ), Ŝ τ̂1,NP (τ),
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Ŝ τ̂pre,NP (τ) and Ŝ τ̂1,P (τ) were found to suffer from problems of under-coverage, making them unreliable

on that measure. Overall, then, it is clear that the two procedures that can be deemed in some sense

satisfactory, on both coverage and length grounds, are Ŝ τ̂0,P (τ) and Ŝ τ̂pre,P (τ). Of these two procedures,

Ŝ τ̂pre,P (τ) suffers from less over-coverage, and also has arguably the best length properties across the

range of ρ values considered; specifically, Ŝ τ̂pre,P (τ) and Ŝ τ̂0,P (τ) have similar length for ρ = 0, 0.5,

0.8 and 0.95, and while Ŝ τ̂pre,P (τ) has somewhat greater length than Ŝ τ̂0,P (τ) for ρ = 0.9, it offers a

more marked improvement in length when ρ = 1, as we would expect given the ability of Ŝ τ̂pre,P (τ)

to select the better-performing Ŝ τ̂1,P (τ) set in this scenario. It is also reassuring to see that for values

of ρ less than but close to one, the preferred Ŝ τ̂pre,P (τ) procedure has decent length properties. For

these large values of ρ < 1, the local-to-unity asymptotic results are potentially relevant, and it is

clear that despite the Ŝ τ̂pre,P (τ) procedure being conservative in such cases (displaying over-coverage),

the procedure retains an ability to achieve a reasonably short length, demonstrating that while the

underlying tests may be under-sized for local-to-unity processes, they still have power to reject for

incorrect break dates.

Table 4 reports results for the same settings as Table 3, except with a larger magnitude level

and trend break, with δ1 = 10 and δ2 = 1. As regards coverage, much the same comments apply

as for Table 3.3 As we would expect, the lengths of the confidence sets are generally smaller in this

case of larger, more detectable, breaks. Once more, we find that Ŝ τ̂pre,P (τ) is the best performing

procedure overall; indeed, compared to the only other procedure with reliable coverage and decent

length, Ŝ τ̂0,P (τ), we see that Ŝ τ̂pre,P (τ) now displays equal or shorter length across all values of ρ, with

decreases in length of up to 0.28 seen.

Table 5 reports results for the case of δ1 = 10 and δ2 = 0 so that only a level break occurs.

Consider first the results for ρ = 1. From Remark 1, it follows that here the Ŝk1,j(τ) tests have zero

asymptotic power to identify the date of the level break; this can be seen in the table as the lengths

of all the Ŝk1,j(τ) sets increase between T = 150 and T = 300. What we observe, however, is that,

for a given T , the sets based on Ŝ τ̂1,j(τ) are very much shorter than those based on Ŝτ1,j(τ).4 Taking

the results across the different values of ρ together, we again find Ŝ τ̂pre,P (τ) to be the best procedure

when considering both coverage and length, with the gains in length over Ŝ τ̂0,P (τ) when ρ = 1 now

even more marked than was observed in Tables 3 and 4.

In Table 6 we have δ1 = 0 and δ2 = 1 so that only a trend break is present. Here we find the

3Note that the coverage rates for the Ŝτi,j(τ) sets are numerically identical across different δ1 and δ2 settings, since

they are invariant to these parameters by construction under H0.
4This arises because there is an upward bias in σ̂2

u(τ) relative to σ̂
2
u(τ̂Dm) resulting from the former being based

on residuals from a regression containing a mis-specified break component whenever τ 6= τ0, while the latter uses an

estimator of τ0 which, albeit not consistent, can nonetheless perform reasonably in finite samples. This relative upward

bias translates to lower values of Ŝτ1,j(τ) compared to Ŝ
τ̂
1,j(τ), negatively affecting the power of the former and the length

of the corresponding confidence set. Indeed, the lengths of the Ŝτ1,j(τ) sets are close to the nominal coverage rates, and

similar to what would be obtained if the first and third terms of S1(τ) (and consequently the 2σ̂2
u(τ) centering) were

simply omitted from the statistic, unlike Ŝτ̂1,j(τ) where inclusion of the first and third terms of S1(τ) (together with the

2σ̂2
u(τ̂Dm) centering) contribute substantially to shortening the confidence set length.
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pattern of results mimic those of Table 4, albeit with lengths tending to be somewhat greater due to

the lack of contribution of a level break. What is clear from all these results is that Ŝ τ̂pre,P (τ) is the

preferred test for construction of confidence sets.

Tables 7 and 8 report results for the same settings as Tables 3 and 4, respectively (i.e. cases

where both a level and trend break occur), but with the breaks occurring at the sample mid-point, i.e.

τ0 = 0.5, rather than τ0 = 0.3. Comparing the coverage results across τ0 = 0.3 and τ0 = 0.5, while the

under-coverage associated with the Ŝk0,NP (τ) sets for ρ = 1 is exaggerated for a mid-point break, the

most noticeable feature is that the under-coverage seen for the Ŝk1,j(τ) sets for the smaller values of ρ is

here replaced by over -coverage. This ensues partly because when τ = τ0 = 0.5, it can easily be shown

that the difference between the sum of the first and third components of S1(τ) in (11) and 2σ̂2
u(τ)

(or 2σ̂2
u(τ̂Dm)) is op(T−1/2), as opposed to when τ = τ0 6= 0.5 where this difference is only Op(T−1/2)

and tends to be positive. Other things equal, therefore, when τ = τ0 = 0.5 the chance of the Ŝk1,j(τ)

test rejecting in finite samples is reduced relative to when τ = τ0 6= 0.5. However, despite Ŝk1,j(τ)

performing relatively well for these mid-point breaks, one could not rely on this approach to deliver

reliable confidence sets in general, given the absence of knowledge regarding τ0 and the possibility of

under-coverage for non-central breaks. Taking the results of Tables 7 and 8 as a whole, it is still the

case that Ŝ τ̂pre,P (τ) performs very well.

Unreported results for the case of τ0 = 0.7 also confirm that Ŝ τ̂pre,P (τ) is the best performing

procedure overall. Therefore, our recommendation would clearly be for the Ŝ τ̂pre,P (τ) procedure, given

its reliable finite sample coverage and good performance in terms of confidence set length.

5.1 Confidence sets based on trimming

An issue that may be relevant in finite samples is that when τ is close to zero the first two components

of S0(τ) in (9) and S1(τ) in (11) are based on only a few of the ût residuals; similarly, when τ is close

to one the same is true of the last two components of S0(τ) and S1(τ). Therefore, it is possible that

for values of τ near the (0, 1) extremities, the finite sample behaviour of the tests may differ markedly

from the behaviour of the same tests evaluated at less extreme values of τ . In our above simulations,

coverages were calculated for τ = τ0 = 0.3 and 0.5 - values well away from the extremities, so no

such problems should arise there. That said, there is clearly a potential for values of Ŝki,j(τ) calculated

near the extremities of τ to adversely influence the lengths of the resulting confidence sets (these

being potentially non-contiguous). To investigate this, we recalculated the lengths of the sets based

on Ŝ τ̂0,P (τ), Ŝ τ̂1,P (τ) and our preferred test Ŝ τ̂pre,P (τ) only for bτT c ∈ Λ′T = {b0.1T c , ..., b0.9T c}, which
can be thought of as a 10% trimming, akin to the assumption that no break can occur in the first

and last 10% of the observed data, an assertion frequently made in the associated structural change

literature.

The results are shown in Table 9. The first block of results in Table 9 is for τ0 = 0.3, δ1 = 5 and

δ2 = 0.5 and is to be compared with the corresponding results in Table 3. For T = 150, we observe
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length reductions of up to about 0.13.5 This implies that, in some cases, a significant proportion of

non-rejections of H0 are incorrectly occurring for tests being evaluated at the extreme values of τ ,

since τ0 itself is not close to these extremes. When T = 300, the length reduction is up to about

0.07 so that, for this specification, trimming is less effective with the larger sample size, implying

that the untrimmed confidence sets contain relatively few anomalous extreme dates. The second

block of results is for τ0 = 0.3, δ1 = 10 and δ2 = 1, i.e. where the break magnitudes are doubled.

Comparing with Table 4 we find that, for both T = 150 and T = 300, there appears to be very

little (if any) reduction in length arising from trimming, again implying, for this specification, few

spurious rejections of H0 occur for tests evaluated at extreme values of τ . In the third block of Table

9 where τ0 = 0.3, δ1 = 10 and δ2 = 0, we see, on comparing with Table 5, that trimming is again

effective, and more so for T = 300 than for T = 150. For the remaining specifications in Table 9 (the

lower blocks), comparison with Tables 6-8 shows generally only very modest shortenings arising from

trimming. Overall, however, we conclude that trimming can be of possible benefit in improving the

length of confidence sets, potentially removing spurious dates from the set that have arisen purely due

to the sampling variability involved in the tests when evaluated near the extremes.

6 Empirical illustrations

As empirical illustrations of our confidence set procedures for dating a break in level and/or trend,

we apply them to two US macroeconomic series. These are the nominal money supply M2 (seasonally

adjusted, measured in logarithms) and the effective federal funds rate, using monthly data over the

period 1959:1-2012:12 (T = 648). The data were obtained from the FRED database of the Federal

Reserve Bank of St Louis. We construct 0.95-level confidence sets employing the three procedures

Ŝ τ̂0,P (τ), Ŝ τ̂1,P (τ) and Ŝ τ̂pre,P (τ) (note the confidence set for Ŝ τ̂pre,P (τ) is either that for Ŝ τ̂0,P (τ) or

Ŝ τ̂1,P (τ), depending on the outcome of MDF ), using the same settings as were applied in the Monte

Carlo simulations above.

Results for the M2 series are shown in Figure 1, where the confidence sets are represented by the

shaded regions, while the series overlays the sets. Figure 1 (a) reports the confidence set for Ŝ τ̂0,P (τ)

which is contiguous here with a length of 0.51 (330 observations) covering the interval 1971:4-1998:9.

In Figure 1 (b), we see that the confidence set for Ŝ τ̂1,P (τ) is much shorter, with length 0.33 (213

observations), but is not contiguous. In particular, the set is comprised of an almost contiguous

subset of dates covering the interval 1978:6-1994:2 (the dates 1986:10-1987:2 inclusive are exceptions

to this), plus a number of dates towards the extremes of the sample, the latter lying within 0.03T of

the sample’s beginning and end. If we view the end-point behaviour as spurious and apply a trimming

rule of at least 3%, cf. section 5.1, we effectively ignore the non-rejections associated with these very

early and very late dates. The resulting confidence set then contains the almost contiguous subset

of dates alone, with the length of the set reducing to 0.28. Visual inspection of the plot of the M2

series confirms that a break in this date range is plausible. The confidence set selected by our pre-test

5Note that the maximum possible reduction in length with 10% trimming is 0.20.
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procedure Ŝ τ̂pre,P (τ) is that of Ŝ τ̂1,P (τ), and hence the shorter and more plausible of the two, reinforcing

the case for using such an approach in practice.

Figure 2 gives the results for the federal funds rate series. Here Ŝ τ̂0,P (τ) yields a contiguous

confidence set with length 0.28 (181 observations) covering the interval 1972:12-1987:12, which again

appears consistent with the visual plot of the data. The confidence set associated with Ŝ τ̂1,P (τ) has

length 0.98, which is rather meaningless as a confidence set for a break since it includes nearly all

observations in the sample. Our pre-test procedure Ŝ τ̂pre,P (τ) selects the confidence set Ŝ τ̂0,P (τ), which

is without any doubt the more plausible of the two. These examples taken together highlight the

potential shortcomings of simply constructing confidence sets based on Ŝ τ̂0,P (τ) or Ŝ τ̂1,P (τ) alone, while

simultaneously demonstrating the benefits of the Ŝ τ̂pre,P (τ) approach.

7 Conclusions

In this paper we have proposed methods for constructing confidence sets for the timing of a break

in level and/or trend that have asymptotically correct coverage regardless of the order of integration

(and are asymptotically conservative in the case of local-to-unity processes). Our approach follows

the work of EM, and is based on inverting a sequence of tests for the break location, evaluated across

the full spectrum of possible break dates. We propose two locally best invariant tests upon which

the confidence sets can be based, each of which corresponds to a particular order of integration (i.e.

I(0) or I(1) data generating processes). Under their respective assumptions, these confidence sets

provide correct asymptotic coverage regardless of the magnitude of the break in level/trend, and

also display good finite sample properties in terms of both coverage and length. When the tests

are applied under an incorrect assumption regarding the order of integration, they perform relatively

poorly, however. Consequently, we propose use of a pre-test procedure to select between the I(0)-

and I(1)-based confidence sets. Monte Carlo evidence shows that our recommended pre-test based

procedure works well across both I(0) and I(1) environments, offering practitioners a reliable and

robust approach to constructing confidence sets without the need to make an a priori assumption

concerning the data’s integration order. Application to two US macroeconomic series provides further

evidence as to the effi cacy of these procedures.
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Appendix

Proof of Lemma 1

(a) To show (9), note that

D′ηû =

[ ∑T
t=bηT c+1 ût∑T

t=bηT c+1(t− bηT c)ût

]
. (13)

Also, since we have the orthogonality condition D′τ û = 0,[ ∑T
t=bτT c+1 ût∑T

t=bτT c+1(t− bτT c)ût

]
=

[
0

0

]

and from the orthogonality condition D′û = 0,[ ∑T
t=1 ût∑T
t=1 tût

]
=

[
0

0

]
.

So, for bηT c < bτT c, (13) can be written as

D′ηû =

[
−
∑bηT c

t=1 ût

−
∑bηT c

t=1 (t− bηT c)ût

]
.

For bηT c > bτT c,

T∑
t=bηT c+1

ût =

T∑
t=bτT c+1

ût −
bηT c∑

t=bτT c+1

ût

= −
bηT c∑

t=bτT c+1

ût

T∑
t=bηT c+1

(t− bηT c)ût =

T∑
t=bτT c+1

(t− bηT c)ût −
bηT c∑

t=bτT c+1

(t− bηT c)ût

=

T∑
t=bτT c+1

(t− bτT c)ût + (bτT c − bηT c)
T∑

t=bτT c+1

ût −
bηT c∑

t=bτT c+1

(t− bηT c)ût

= −
bηT c∑

t=bτT c+1

(t− bηT c)ût
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such that (13) can be written as

D′ηû =

 −
∑bηT c

t=bτT c+1 ût

−
∑bηT c

t=bτT c+1(t− bηT c)ût

 .
Using (8), it follows that

S(τ) =

bτT c−1∑
bηT c=2

bτT c−2

bηT c∑
t=1

ût

2

+ bτT c−4

bηT c∑
t=1

(t− bηT c)ût

2
+

T−2∑
bηT c=bτT c+1

(T − bτT c)−2

 bηT c∑
t=bτT c+1

ût

2

+ (T − bτT c)−4

 bηT c∑
t=bτT c+1

(t− bηT c)ût

2
= bτT c−2

bτT c−1∑
t=2

(
t∑

s=1

ûs

)2

+ bτT c−4
bτT c−1∑
t=2

(
t∑

s=1

(s− t)ûs

)2

+(T − bτT c)−2
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

ûs

2

+ (T − bτT c)−4
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

(s− t)ûs

2

= S0(τ).

(b) To show (11), paralleling the proof of Lemma 1(a), we find

D′ηû =

[
ûbηT c+1∑T
t=bηT c+1 ût

]

=



[
ûbηT c+1

−
∑bηT c

t=2 ût

]
for bηT c < bτT c[

ûbηT c+1

−
∑bηT c

t=bτT c+1 ût

]
for bηT c > bτT c

.

Then, using (10),

S(τ) =

bτT c−1∑
bηT c=2

bτT c−1 û2
bηT c+1 + bτT c−2

bηT c∑
t=2

ût

2
+

T−2∑
bηT c=bτT c+1

(T − bτT c)−1û2
bηT c+1 + (T − bτT c)−2

 bηT c∑
t=bτT c+1

ût

2
= bτT c−1

bτT c−1∑
t=2

û2
t+1 + bτT c−2

bτT c−1∑
t=2

(
t∑

s=2

ûs

)2

+(T − bτT c)−1
T−2∑

t=bτT c+1

û2
t+1 + (T − bτT c)−2

T−2∑
t=bτT c+1

 t∑
s=bτT c+1

ûs

2

= S1(τ).

22



Proof of Theorem 1

In what follows we may set β1 = β2 = 0 and δ1 = δ2 = 0 without loss of generality.

(a) Let W (r) = ωεB(r). In view of S0(τ), the limits we require are those of (i) T−1/2
∑brT c

t=1 ût for

t ≤ bτT c, (ii) T−1/2
∑brT c

t=bτT c+1 ût for t > bτT c and (iii) T
−3/2

∑brT c
t=1 (t − brT c)ût for t ≤ bτT c, (iv)

T−3/2
∑brT c

t=bτT c+1(t− brT c)ût for t > bτT c. To show (i) write

T−1/2

brT c∑
t=1

ût = T−1/2

brT c∑
t=1

ut − bτT c−1
bτT c∑
s=1

us


−

T−3/2
∑bτT c

s=1 us

(
s− bτT c−1∑bτT c

j=1 j
)

T−3
∑bτT c

s=1

(
s− bτT c−1∑bτT c

j=1 j
)2

T−2

brT c∑
t=1

t− bτT c−1
bτT c∑
s=1

s


= T−1/2

brT c∑
t=1

ut − brT c bτT c−1 T−1/2

bτT c∑
s=1

us

−

T−3/2
∑bτT c

s=1 sus − bτT c−1 T−1
∑bτT c

j=1 jT−1/2
∑bτT c

s=1 us

T−3
∑bτT c

s=1

(
s− bτT c−1∑bτT c

j=1 j
)2


×

T−2

brT c∑
t=1

t− brT c bτT c−1 T−2

bτT c∑
s=1

s


⇒ W (r)− r

τ
W (τ)−

(∫ τ
0 sdW (s)− τ2

2τW (τ)
τ3

12

)(
r2

2
− rτ2

2τ

)
= W (r)− r

τ
W (τ) +

6r (τ − r)
τ3

(
τ

2
W (τ)−

∫ τ

0
W (s)ds

)
and for (ii),

T−1/2

brT c∑
t=bτT c+1

ût = T−1/2

brT c∑
t=bτT c+1

ut − (T − bτT c)−1
T∑

s=bτT c+1

us


−

T−3/2
∑T

s=bτT c+1 us

(
s− (T − bτT c)−1

∑T
j=bτT c+1 j

)
T−3

∑T
s=bτT c+1

(
s− (T − bτT c)−1

∑T
j=bτT c+1 j

)2


×T−2

brT c∑
t=bτT c+1

t− (T − bτT c)−1
T∑

s=bτT c+1

s
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= T−1/2

brT c∑
t=bτT c+1

ut − (brT c − bτT c)(T − bτT c)−1T−1/2
T∑

s=bτT c+1

us

−

T−3/2
∑T

s=bτT c+1 sus − (T − bτT c)−1T−1
∑T

j=bτT c+1 jT
−1/2

∑T
s=bτT c+1 us

T−3
∑T

s=bτT c+1

(
s− (T − bτT c)−1

∑T
j=bτT c+1 j

)2


×

T−2

brT c∑
t=bτT c+1

t− (brT c − bτT c)(T − bτT c)−1T−2
T∑

s=bτT c+1

s


⇒ W (r)−W (τ)− r − τ

1− τ (W (1)−W (τ))

−

∫ 1
τ sdW (s)− 1−τ2

2(1−τ)(W (1)−W (τ))

(1−τ)3

12

(r2 − τ2

2
− (r − τ)(1− τ2)

2(1− τ)

)
= W (r)−W (τ)− r − τ

1− τ (W (1)−W (τ))

+
6(r − τ)(1− r)

(1− τ)3

(
1− τ

2
(W (1)−W (τ))−

∫ 1

τ
(W (s)−W (τ))ds

)
.

For (iii) write

T−3/2

brT c∑
t=1

(t− brT c)ût = T−3/2

brT c∑
t=1

tût − rT−1/2

brT c∑
t=1

ût

where, for the first right hand side term

T−3/2

brT c∑
t=1

tût = T−3/2

brT c∑
t=1

t

ut − bτT c−1
bτT c∑
s=1

us


−

T−3/2
∑bτT c

s=1 us

(
s− bτT c−1∑bτT c

j=1 j
)

T−3
∑bτT c

s=1

(
s− bτT c−1∑bτT c

j=1 j
)2

T−3

brT c∑
t=1

t

t− bτT c−1
bτT c∑
s=1

s


= T−3/2

brT c∑
t=1

tut − bτT c−1 T−1

brT c∑
t=1

t

T−1/2
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s=1

us


−
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s=1 sus − bτT c−1 T−1
∑bτT c

j=1 jT−1/2
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s=1 us
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so that

T−3/2

brT c∑
t=1

(t− brT c)ût ⇒ rW (r)−
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0
W (s)ds− r2

2τ
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r2(3τ − 2r)
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∫ τ
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Finally, for (iv),
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(t− brT c)ût = T−3/2

brT c∑
t=bτT c+1

tût − rT−1/2

brT c∑
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ût

and for the first right hand side term
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tût = T−3/2
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t=bτT c+1
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ut − (T − bτT c)−1
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s=bτT c+1
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T−3/2
∑T
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(
s− (T − bτT c)−1
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j=bτT c+1 j
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s=bτT c+1

(
s− (T − bτT c)−1

∑T
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×T−3
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t=bτT c+1

t

t− (T − bτT c)−1
T∑
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s
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tut − (T − bτT c)−1T−1
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t=bτT c+1

t

T−1/2
T∑

s=bτT c+1
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T−3/2
∑T

s=bτT c+1 sus − (T − bτT c)−1T−1
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j=bτT c+1 jT
−1/2
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T−3
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(
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∑T
j=bτT c+1 j

)2


×
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t2 − (T − bτT c)−1T−1
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T−2
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⇒
∫ r

τ
sdW (s)− r2 − τ2

2(1− τ)
(W (1)−W (τ))

−

∫ 1
τ sdW (s)− 1−τ2
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so
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brT c∑
t=bτT c+1
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(
τW (τ)−

∫ τ

0
W (s)ds

)
− 1− τ2

2(1− τ)
(W (1)−W (τ))

}
−r
{
W (r)−W (τ)− r − τ

1− τ (W (1)−W (τ)) +
6(r − τ)(1− r)

(1− τ)3

×
(

1− τ
2

(W (1)−W (τ))−
∫ 1

τ
(W (s)−W (τ))ds

)}
= −(r − τ)2(1− r)

(1− τ)2
(W (1)−W (τ))−

∫ r

τ
(W (s)−W (τ))ds

+
(r − τ)2(3(1− τ)− 2(r − τ))

(1− τ)3

∫ 1

τ
(W (s)−W (τ))ds.

Taking each term in S0(τ) separately

bτT c−2
bτT c−1∑
t=2

(
t∑

s=1

ûs

)2

⇒ τ−2

∫ τ

0

{
W (r)− r

τ
W (τ) +

6r (τ − r)
τ3

(
τ

2
W (τ)−

∫ τ

0
W (s)ds

)}2

dr

=

∫ 1

0

{
τ−1/2W (τr∗)− r∗τ−1/2W (τ)

+τ−1/2 6r (τ − r)
τ3

τ3/2

(
1

2
τ−1/2W (τ)− τ−3/2

∫ τ

0
W (s)ds

)}2

dr∗

=

∫ 1

0

{
Wτ (r∗)− r∗Wτ (1) + 6r∗ (1− r∗)

(
1

2
Wτ (1)−

∫ 1

0
Wτ (s∗)ds∗

)}2

dr∗

using r∗ = rτ−1 and Wτ (r∗) = τ−1/2W (τr∗). This has the same distribution as∫ 1

0

{
W (r)− rW (1) + 6r (1− r)

(
1

2
W (1)−

∫ 1

0
W (s)ds

)}2

dr = ω2
ε

∫ 1

0
B2(r)2dr

where B2(r) denotes a second level Brownian bridge. Next,

bτT c−4
bτT c−1∑
t=2

(
t∑

s=1

(s− t)ûs

)2

⇒ τ−4

∫ τ

0

{
−r

2(τ − r)
τ2

W (τ)−
∫ r

0
W (s)ds+

r2(3τ − 2r)

τ3

∫ τ

0
W (s)ds

}2

dr

= τ−4

∫ 1

0

{
−τ

2r∗2(τ − τr∗)
τ2

W (τ)−
∫ r∗

0
W (τs∗)τds∗

+
τ2r∗2(3τ − 2τr∗)

τ3

∫ 1

0
W (τs∗)τds∗

}2

τdr∗

=

∫ 1

0

{
−r∗2(1− r∗)Wτ (1)−

∫ r∗

0
Wτ (s∗)ds∗

+r∗2(3− 2r∗)

∫ 1

0
Wτ (s∗)ds∗

}2

dr∗
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which has the same distribution as∫ 1

0

{
−r2(1− r)W (1)−

∫ r

0
W (s)ds+ r2(3− 2r)

∫ 1

0
W (s)ds

}2

dr = ω2
ε

∫ 1

0
K(r)2dr.

In a similar way, it can also be shown that

(T − bτT c)−2
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

ûs

2

⇒ ω2
ε

∫ 1

0
B′2(r)2dr

(T − bτT c)−4
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

(s− t)ûs

2

⇒ ω2
ε

∫ 1

0
K ′(r)2dr

where B′2(r) and K ′(r) take the same forms as B2(r) and K(r), respectively, but where the implied

B(r) and B′(r) Brownian motion processes are independent. Hence,

S0(τ)⇒ ω2
ε

{∫ 1

0
B2(r)2dr +

∫ 1

0
K(r)2dr +

∫ 1

0
B′2(r)2dr +

∫ 1

0
K ′(r)2dr

}
.

(b) Let W (r) = ωuB(r). Note that ûbτT c+1 = 0. For t ≤ bτT c,

T−1/2

brT c∑
t=1

ût = T−1/2

brT c∑
t=1

ut − bτT c−1
bτT c∑
s=1

us


= T−1/2

brT c∑
t=1

ut − brT c bτT c−1 T−1/2

bτT c∑
s=1

us

⇒ W (r)− r

τ
W (τ)

from which it follows that

bτT c−2
bτT c−1∑
t=2

(
t∑

s=2

ûs

)2

⇒ τ−2

∫ τ

0

{
W (r)− r

τ
W (τ)

}2
dr

d
=

∫ 1

0
{W (r)− rW (1)}2 dr

= ω2
u

∫ 1

0
B1(r)2dr.

The following is obtained in an analogous way

(T − bτT c)−2
T−2∑

t=bτT c+1

 t∑
s=bτT c+1

ûs

2

⇒ (1− τ)−2

∫ 1

τ

{
W (r)−W (τ)− r − τ

1− τ (W (1)−W (τ))

}2

dr

d
= ω2

u

∫ 1

0
B′1(r)2dr

noting that ûbτT c+1 = 0.
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Finally, it is easily shown that

bτT c−1
bτT c−1∑
t=2

û2
t+1 = bτT c−1

bτT c−1∑
t=2

u2
t +Op(T

−1/2)

= σ2
u +Op(T

−1/2),

(T − bτT c)−1
T−2∑

t=bτT c+1

û2
t+1 = (T − bτT c)−1

T−2∑
t=bτT c+1

u2
t +Op(T

−1/2)

= σ2
u +Op(T

−1/2).

So,

S1(τ)⇒ ω2
u

{∫ 1

0
B1(r)2dr +

∫ 1

0
B′1(r)2dr

}
+ 2σ2

u.

Proof of Theorem 2

(a) For the second term of S0(τ) consider

brT c∑
t=1

tût =

brT c∑
t=1

t

ut − bτT c−1
bτT c∑
s=1

us


−


∑bτT c

s=1 us

(
s− bτT c−1∑bτT c

j=1 j
)

T−3
∑bτT c

s=1

(
s− bτT c−1∑bτT c

j=1 j
)2

T−3

brT c∑
t=1

t

t− bτT c−1
bτT c∑
s=1

s


= Op(T

5/2)

Hence

bτT c−4
bτT c−1∑
t=2

(
t∑

s=1

(s− t)ûs

)2

= Op(T
5) bτT c−3Op(1)

= Op(T
2)

Similarly, the fourth term is also Op(T 2). The first and third terms are also easily shown to be Op(T 2).

The result for ω−2
ε S0(τ) follows directly.

(b) For the first term of S1(τ) we can show that

bτT c−1
bτT c−1∑
t=2

û2
t+1 = bτT c−1

bτT c−1∑
t=2

(∆εt)
2 +Op(T

−1/2)

= E{(∆εt)2}+Op(T
−1/2)

The third term can be shown to behave likewise. For the second term of S1(τ) consider

brT c∑
t=1

ût =

brT c∑
t=1

∆εt − bτT c−1
bτT c∑
s=1

∆εs


= (εbrT c − ε1)− bτT c−1 brT c (εbτT c − ε1)

= Op(1).
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Hence,

bτT c−2
bτT c−1∑
t=2

(
t∑

s=2

ûs

)2

= bτT c−1Op(1)

= Op(T
−1).

In a similar way, the fourth term is also shown to be Op(T−1). So,

S1(τ) = 2E{(∆εt)2}+Op(T
−1/2)

and the result for ω−2
u {S1(τ)− 2σ2

u} follows directly.
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Table 1. Asymptotic α-level critical values from the L0 and L1 distributions.

α = 0.10 α = 0.05 α = 0.01

L0 0.220 0.257 0.349
L1 0.607 0.749 1.063

Table 2. Asymptotic coverage of nominal (1− α)-level Ŝk
pre,j(τ), j = {NP,P}, k = {τ , τ̂}

confidence sets: ρ = 1 + cT−1.

τ0 c = 0 c = −5 c = −10 c = −20 c = −30 c = −40 c = −50

(1 −α) = 0.90

0.1 0.900 0.954 0.973 0.988 0.996 0.999 1.000
0.2 0.900 0.956 0.983 0.998 1.000 1.000 1.000
0.3 0.900 0.957 0.991 1.000 1.000 1.000 1.000
0.4 0.900 0.959 0.994 1.000 1.000 1.000 1.000
0.5 0.900 0.963 0.994 1.000 1.000 1.000 1.000
0.6 0.900 0.963 0.993 1.000 1.000 1.000 1.000
0.7 0.900 0.961 0.989 0.999 1.000 1.000 1.000
0.8 0.900 0.960 0.983 0.997 0.999 1.000 1.000
0.9 0.900 0.958 0.973 0.986 0.994 0.997 0.999

(1 −α) = 0.95

0.1 0.950 0.980 0.988 0.996 0.999 1.000 1.000
0.2 0.950 0.980 0.994 1.000 1.000 1.000 1.000
0.3 0.950 0.982 0.997 1.000 1.000 1.000 1.000
0.4 0.950 0.986 0.999 1.000 1.000 1.000 1.000
0.5 0.950 0.985 0.999 1.000 1.000 1.000 1.000
0.6 0.950 0.985 0.998 1.000 1.000 1.000 1.000
0.7 0.950 0.984 0.996 1.000 1.000 1.000 1.000
0.8 0.950 0.984 0.994 0.999 1.000 1.000 1.000
0.9 0.950 0.981 0.989 0.995 0.998 0.999 1.000

(1 −α) = 0.99

0.1 0.990 0.997 0.998 1.000 1.000 1.000 1.000
0.2 0.990 0.998 0.999 1.000 1.000 1.000 1.000
0.3 0.990 0.998 1.000 1.000 1.000 1.000 1.000
0.4 0.990 0.999 1.000 1.000 1.000 1.000 1.000
0.5 0.990 0.998 1.000 1.000 1.000 1.000 1.000
0.6 0.990 0.998 1.000 1.000 1.000 1.000 1.000
0.7 0.990 0.998 1.000 1.000 1.000 1.000 1.000
0.8 0.990 0.998 0.999 1.000 1.000 1.000 1.000
0.9 0.990 0.997 0.999 0.999 1.000 1.000 1.000
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Ŝ
τ 1
,N

P
(τ
)

Ŝ
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Ŝ
τ 1
,P
(τ
)

Ŝ
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Ŝ
τ̂ 0
,N

P
(τ
)

Ŝ
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Ŝ
τ 1
,N

P
(τ
)

Ŝ
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Ŝ
τ 0
,P
(τ
)

Ŝ
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Ŝ
τ p
r
e
,P
(τ
)

Ŝ
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Ŝ
τ̂ p
r
e
,N

P
(τ
)

Ŝ
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Ŝ
τ 0
,N

P
(τ
)

Ŝ
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Ŝ
τ̂ p
r
e
,N

P
(τ
)

Ŝ
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Ŝ
τ̂ p
r
e
,P
(τ
)

C
o
v
e
ra
g
e

0
.0
0

0
.9
3
7

1
.0
0
0

0
.9
3
8

0
.9
4
5

0
.9
9
9

0
.9
4
7

0
.9
3
7

1
.0
0
0

0
.9
3
8

0
.9
4
5

0
.9
9
7

0
.9
4
7

0
.5
0

0
.9
1
7

1
.0
0
0

0
.9
1
9

0
.9
5
6

1
.0
0
0

0
.9
5
8

0
.9
1
7

1
.0
0
0

0
.9
1
9

0
.9
5
6

1
.0
0
0

0
.9
5
8

0
.8
0

0
.8
4
5

1
.0
0
0

0
.8
5
6

0
.9
7
5

1
.0
0
0

0
.9
8
1

0
.8
4
5

1
.0
0
0

0
.8
5
6

0
.9
7
4

1
.0
0
0

0
.9
8
0

0
.9
0

0
.6
9
5

1
.0
0
0

0
.8
0
3

0
.9
9
1

1
.0
0
0

0
.9
9
4

0
.6
9
4

1
.0
0
0

0
.8
0
2

0
.9
9
0

1
.0
0
0

0
.9
9
4

0
.9
5

0
.4
7
5

1
.0
0
0

0
.9
2
2

0
.9
9
7

1
.0
0
0

0
.9
9
9

0
.4
7
4

0
.9
9
9

0
.9
2
1

0
.9
9
5

1
.0
0
0

0
.9
9
8

1
.0
0

0
.2
1
8

0
.9
7
0

0
.9
5
2

0
.9
9
5

0
.9
5
9

0
.9
5
9

0
.2
1
8

0
.9
6
8

0
.9
5
0

0
.9
9
0

0
.9
5
9

0
.9
5
9

L
e
n
g
th

0
.0
0

0
.1
1
4

0
.4
8
1

0
.1
1
7

0
.9
5
9

0
.3
0
5

0
.9
5
5

0
.0
1
6

0
.0
4
3

0
.0
1
6

0
.0
2
3

0
.0
3
2

0
.0
2
3

0
.5
0

0
.1
2
9

0
.4
2
1

0
.1
3
1

0
.9
5
4

0
.4
1
5

0
.9
5
1

0
.0
4
9

0
.0
2
4

0
.0
4
9

0
.0
6
9

0
.0
6
3

0
.0
6
9

0
.8
0

0
.1
4
4

0
.5
0
4

0
.1
5
3

0
.9
8
5

0
.5
3
7

0
.9
7
3

0
.0
8
2

0
.0
7
0

0
.0
8
2

0
.1
1
7

0
.2
5
6

0
.1
1
9

0
.9
0

0
.1
4
2

0
.6
0
9

0
.2
5
8

0
.9
8
8

0
.5
4
7

0
.8
8
1

0
.0
8
6

0
.1
3
1

0
.1
0
3

0
.1
6
1

0
.2
8
4

0
.1
8
0

0
.9
5

0
.1
2
4

0
.6
7
3

0
.5
6
0

0
.9
8
9

0
.5
3
8

0
.6
4
3

0
.0
7
7

0
.1
7
9

0
.1
6
5

0
.2
1
5

0
.2
8
2

0
.2
5
2

1
.0
0

0
.0
9
8

0
.6
6
7

0
.6
4
8

0
.9
8
8

0
.5
1
6

0
.5
3
3

0
.0
6
3

0
.2
5
2

0
.2
4
9

0
.3
1
4

0
.2
9
5

0
.2
8
9

T.6



T
ab

le
8.

F
in
it
e
sa
m
p
le

co
ve
ra
ge

an
d
le
n
gt
h
of

n
om

in
al

0.
95
-l
ev
el

co
n
fi
d
en

ce
se
ts
:
τ
0
=

0.
5,

δ
1
=

10
,
δ
2
=

1

P
a
n
el

A
.
T
=

1
5
0

ρ
Ŝ
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Ŝ
τ 1
,P
(τ
)

Ŝ
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Ŝ
τ̂ 0
,P
(τ
)

Ŝ
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Ŝ
τ̂ 0
,P
(τ
)

Ŝ
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(a) Ŝ τ̂
0,P (τ ) (b) Ŝ τ̂

1,P (τ ) = Ŝ τ̂
pre,P (τ )

Figure 1. US money supply M2 (1959:1-2012:12) and 0.95-level confidence sets for a break in level/trend

(a) Ŝ τ̂
0,P (τ ) = Ŝ τ̂

pre,P (τ ) (b) Ŝ τ̂
1,P (τ )

Figure 2. US effective federal funds rate (1959:1-2012:12) and 0.95-level confidence sets for a break in
level/trend
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