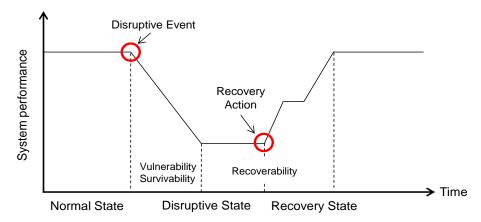
Railway Network Resilience Modelling

UNITED KINGDOM · CHINA · MALAYSIA


Background

Railways have been significantly impacted by many different disruptive events such as technical failures, natural disasters and man-made disasters.

Objective

- (i) To estimate system performance during a disruption.
- (ii) To identify the critical components of railway networks (e.g. block sections or railway links).
- (iii) To evaluate mitigation strategies for minimising the impacts of a disruption.

Resilience concept

Modelling Framework

INPUT DATA	KPIS ESTIMATION	RESILIENCE ANALYSES
 Railway Network data: Network Structure Data; Operational Data; Passenger Data. 	Railway Network Performance Estimation Model (Stochastic-Discrete Event Simulation)	 Vulnerability Analysis Mitigation strategies are not required; Mapping a network with threats; Considering frequency of threats;
Disruptive scenario data • Types? • Occurrence Time? • Location? • Magnitude (speed restrictions or		Risk based criticality of network components.
blockages)? • Duration?	Outputs (KPIs): • Train-Graph; • Train delays;	 Recoverability Analysis Require mitigation strategies; evaluate the efficiency of
 Mitigation Strategy data Time to recover; Mitigation strategies such as cancellations, route shortening and bus replacement services. 	 Passenger delays; Train service cancellations, Passenger journey cancellations 	 mitigation strategies; Optimise the best strategy to maximise the resilience of a railway network (minimise KPIs).