Biochemistry and Molecular Medicine BSc

   
   
  

Fact file - 2018 entry

Qualification
Biochemistry and Molecular Medicine | BSc Hons
UCAS code
C741
Duration
3 years full-time
A level offer
AAB
Required subjects
chemistry and at least one other science subject at A level (biology preferred). Applicants are required to pass the practical element of assessment in biology, chemistry and/or physics if assessed separately. GCSE maths grade 4 or above
IB score
34 (5/6 in chemistry and another science in any order at Higher Level) 
Course location
Medical School and University Park Campus
Course places
110 places across all biochemistry degrees
School/department
 

Overview

For students interested in the medical applications of biochemistry, this degree provides a good foundation in core skills with a final year research project to consolidate your knowledge. 
Read full overview

Highlights of biochemistry and molecular medicine at Nottingham

  • expand your study through a wide choice of optional modules, including subjects from other schools such as languages or business 
  • benefit from substantial laboratory experience from year one
  • travel while you learn, with opportunities to study abroad in your second year
  • contribute to real research during your final year project, working alongside our research groups
  • flexibility to change between the BSc and MSci once you start the course 
  • have a large percentage of your learning based in a Medical School with academic staff who have an interest in human biochemistry
 

This course is similar to the biochemistry (C700) course but with more emphasis on medical and clinical topics in years two and three.  

Throughout the course, there will be times where you will have some choice. If you find a particular area of biochemistry or molecular medicine interesting, there is flexibility (through optional modules and research projects) to tailor the course to focus on those interests. As our courses have a similar first year, there are also opportunities to switch to another biochemistry degree path (see the courses we offer) at the end of year one.   

Yearly overviews

Year one

You will study fundamental aspects of cell biology, biochemistry, genetics, cellular control and core skills in biochemistry and genetics. This will be alongside human physiology and essential chemistry, including molecular structure, bonding and reactivity of organic molecules.

This course is supported by practical studies in cell biology, biochemistry, genetics and physiology. You also choose 20 credits of optional modules from the School of Life Sciences or from other schools in the University.

Year two

In this year, your studies continue at greater depth covering principles of protein and gene structure and function, genomic data analysis, extracellular signals, molecular pharmacology, metabolic regulation and oxidative phosphorylation.

The course also includes laboratory classes in analysis of proteins and enzymes, and practical gene cloning. You will also undertake a dissertation along with a module developing transferable skills of presentation, interpretation and criticism of scientific data. In addition, there will be 20 credits of optional modules to choose from.

Year three

A major feature of the final year is an individual project which may be lab, bio-informatics or literature-based. Modules in advanced gene cloning, cancer and other diseases, protein folding and life cycles are also taken. Optional modules are available.

 

Learning and assessment

Teaching methods

You will learn through a variety of methods depending on the module. This may include:

  • lectures
  • seminars
  • laboratory classes
  • workshops
  • tutorials

You will study in the Life Sciences Building on University Park Campus and the Medical School, which is embedded in the Queen’s Medical Centre. There is a footbridge linking the Medical School to University Park Campus. We have large lecture theatres, smaller seminar rooms and large multidisciplinary laboratories. 

Assessment methods 

Assessment varies on the module being studied but typically is a combination of:

  • exams
  • essays
  • dissertations
  • laboratory reports
  • presentations 

Exams happen twice a year at the end of each semester. 

Find out more about our teaching on our school website.

 
Study abroad and placements

We offer the chance to study abroad at an approved partner university through the Universitas 21 programme. This is an exciting opportunity to gain a global perspective of science, boost your communication skills, and to discover a new culture.

There is also the possibility to gain valuable work experience with an optional placement year. Placements are a great opportunity to see what the sector you want to go into is like, try out specific job roles, and to gain the skills that employers want.

Please note that placements have to be organised by the student and approved by the school. The University's Careers and Employability Service can provide advice on how to find and apply for a placement. 

Information on fees for a placement or study abroad year can be found on the fees website.

 

Student support

All students have a personal tutor. Personal tutors are members of academic staff in the school and they will:
  • monitor your academic progress and check on your wellbeing
  • provide exam marks and help you reflect on feedback
  • act as a first point of contact for any guidance on academic or personal matters

At Nottingham we still offer small group tutorials. This ensures you have enough time to build a relationship with your tutor and benefit from their support. Your fellow tutees also provide peer support. 

Additionally, the school has a dedicated Welfare Officer and a Student Liaison Officer who are available to help you adapt to university life and provide advice on more complex issues.   

Peer mentoring

BiochemSoc is the student-led biochemistry society. Alongside organising social, sporting and networking events, BiochemSoc provide peer mentoring. You will be matched with a senior student who can offer help and support and introduce you to the rest of what the society offers.  

 
Student profile
 
 

Entry requirements

A levels

AAB, including chemistry and at least one other science subject at A level (biology preferred). A pass is required in science practical tests, if assessed separately. GCSE maths grade 4 or above.

Understand how we show GCSE grades

 

 

English language requirements 

IELTS 6.5 (no less than 6.0 in any element).

If you require additional support to take your language skills to the required level, you can attend a presessional course at the Centre for English Language Education (CELE), which is accredited by the British Council for the teaching of English. Successful students can progress onto their chosen degree course without taking IELTS again.

 

Alternative qualifications

For details please see the alternative qualifications page.

 

Foundation course

Science Foundation Certificate

International students only

International students (non-EU) who do not have the required qualifications or grades to go directly onto an undergraduate degree course, may be interested in the Science Foundation Certificate delivered through The University of Nottingham International College. You are guaranteed a place on selected undergraduate courses if all progression requirements are met. 

Science with Foundation Year

Home, EU and international students

If you have achieved high grades in your A levels (or equivalent qualifications) but do not meet the current subject entry requirements for direct entry to your chosen undergraduate course, you may be interested in our one year science foundation programme. Applicants must also demonstrate good grades in previous relevant science subjects to apply. You are guaranteed a place on selected undergraduate courses if all progression requirements are met.  

 

Flexible admissions policy

In recognition of our applicants’ varied experience and educational pathways, The University of Nottingham employs a flexible admissions policy. We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances. Please see the University’s admissions policies and procedures for more information.
 

 

 
 

Modules

Typical year one modules

Core Skills in Biochemistry and Molecular Medicine
With lectures, workshops and tutorials this module will enable you to develop the core skills needed by biochemists in scientific writing, data handling and analysis, experimental design and scientific presentations. This module is designed to develop your problem solving scientific skills. An important aspect of this module is the integral tutorial system which will allow you to get to know the member of staff who will be your tutor for the duration of your studies.
 
Genes, Molecules and Cells
This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.
 
Fundamental Inorganic and Organic Chemistry
This module provides the essential chemistry that biochemists need to understand the life process at the molecular level. The module includes atomic and molecular structure, bonding and reactivity, spectroscopy, “curly arrow” organic reactions and core organic chemistry and is taught by means of lectures and workshops.
 
Human Physiology 
In this module, you will be introduced to the physiology of the major systems eg cardiovascular, nervous, and musculoskeletal, mostly in man, including some aspects of drug action. This module will allow you to understand your biochemical and genetics knowledge in the context of the intact organism. This module includes lectures and laboratory classes.
 


Optional modules

You also choose 20 credits of optional modules from the School of Life Sciences or from other schools in the University. Options from within the School of Life Sciences are as follows:

Life on Earth 
Life on Earth provides an introduction to the fundamental characteristics and properties of the myriad of organisms which inhabit our planet, from viruses, bacteria and Archaea, to plants and animals. In weekly lectures, and regular laboratory practical classes, you will consider how living organisms are classified, how they are related genetically and phylogenetically, and basic aspects of their structure and function.
 
Evolution, Ecology and Behaviour
Starting with Darwin’s theory of evolution, you will learn how natural selection and other evolutionary forces have shaped the ways in which organisms interact with each other and their environment. In addition to lectures, practical classes will give you hands-on experience with a range of ecological and behavioural concepts in the laboratory and the field.
 
Fundamentals of Neuroscience
This module will give you a good grounding in the basic principles of the nervous system of humans and other animals. Topics will include neuroanatomy, cellular neuroscience, neuropharmacology, sensory systems, neuroendocrinology, memory, behavioural neuroscience and diseases of the nervous system. These will be delivered through weekly lectures and practical classes.
 
 

Typical year two modules

Structure, Function and Analysis of Proteins 

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

 
Signals and Metabolic Regulation
This module considers the mechanisms and purpose of cell to cell signalling and metabolic regulation and includes the regulation of carbohydrate and lipid metabolism and an outline of the various major signalling systems in mammals including signal transduction in G-protein coupled signalling systems, growth factors, cytokines and their receptors, cell-cell signalling and the extracellular matrix (ECM) and the role of the ubiquitin-proteasome system. The regulation and integration of various metabolic pathways will be covered in health and disease illustrated with specific examples and related to the signalling pathways covered in this module to provide an understanding of how biochemical processes are integrated and regulated. The module also includes laboratory classes where you will use techniques to study signal transduction and metabolism.
 
Structure, Function and Analysis of Genes

This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.

 
Higher Skills in Biochemistry and Molecular Medicine
This module further develops and enhances the skills you will have learned in the year one skills module. In year two you will write a short dissertation, solve biochemical problems, explore the scientific method applied to biochemistry, learn how to present science to the public and look issues around the ethics of science and research. The module includes lectures, tutorials and workshops.
 
The Pharmacological Basis of Therapeutics

This module will provide an in-depth analysis of drug action, and its application to the design and use of current therapeutics. You will learn to define what drugs are, the different ways they act at the cellular and molecular level, and the pharmacokinetic principles underlying drug absorption, distribution, metabolism and elimination. You will explore examples in cardiovascular and respiratory disease, diabetes and obesity, CNS disorders, cancer and infectious disease. Overall, you will develop a deep understanding of what the discipline of pharmacology represents, and its application to both basic biological research and current and future medical advances.

 


Optional modules

In addition to the above compulsory modules you have 20 credits of optional modules you can choose from including:

Concise Inorganic and Organic Chemistry
This module develops your chemical knowledge and understanding from year one with organometallics: structure, bonding and principal reaction types, stereochemistry: definitions, examples and applications, organic spectroscopy: determination of structure through NMR, IR and MS, functional group interconversion: of alcohols, amines, carbonyls, and alkenes, synthesis and retrosynthesis: introduction to retrosynthetic analysis and synthesis.
 
From Genotype to Phenotype
This module serves as an introduction to the key skills of experimental design and data interpretation related to genomic analysis. You will design a series of ‘virtual’ laboratory experiments, with appropriate controls in order to probe the function of a particular gene in a physiological condition.
 
Molecular Imaging

This module enables you to develop an elementary understanding of modern molecular imaging techniques, in addition to a historical overview of microscopy. You will acquire theoretical and practical knowledge of how to localise and analyse macromolecule behaviours in fixed and living cells.

 
Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

 
Infection and Immunity

In this module you will study basic immunology, learning about the organs, cells and molecules of the immune system and the mechanisms engaged in the generation an of immune response to pathogens. You will learn by studying examples of types of human pathogens (viral, bacterial, fungal, protozoa and helminths), the varied nature of the immune response, depending on the pathogen, its niche(s) in the host and pathogen strategies for invading and surviving in the host. You will learn how immunological methods can be effectively utilized for disease diagnosis and vaccine development, and about the consequences of failure of normal immune function, including autoimmunity and hypersensitivity.

 
Macromolecular Systems: Structure and Interactions
This module explores the structures of macromolecules (proteins, nucleic acids) and how these interact (“the interactome”) to perform complex functions in living cells.
 
 

Typical year three modules

Biochemistry of Disease
This module will encourage you to use your biochemical knowledge to explain topics such as the hormonal control of metabolism, how fasting and overfeeding affects the body, and how problems within human body processing can lead to diseases. In addition, you will be able to describe two classes of important biochemical diseases including the inborn errors of metabolism and neurological disorders. There will be one hour of lectures a week for a full year.
 
Biochemistry Research Project
This project aims to give students the ability to analyse a relevant biological problem in-depth in a modern research environment. There will be three different approaches available including the opportunity to research a laboratory-based project on a topic related to the interests of academic staff, a group-lab based project with outcomes to be decided by the student or an individual topic of interest with an in-depth literary survey of its background. There will be two days a week of project work.
 
Advanced Biochemistry
This module is divided into three parts: Firstly the application of genetic engineering to construct vectors that maximize the expression the expression of protein from cloned genes or cDNAs in heterologous systems will be discussed. Modern methods for the purification of recombinant proteins will be described. In the spring the module covers the life history of a protein from birth (synthesis) to death (apoptosis). The other major aspects that are involved include a discussion of protein folding, the cytoskeleton, protein and vesicle trafficking including endocytosis and protein degradation.
 
Molecular Basis of Medicine
During this module you will be building on previous learning and acquiring knowledge, skills and attitudes required for assessment and management of patients with a core spectrum of clinical presentations and conditions which involve or result from alterations to biochemical pathways. This includes an understanding of the normal structure and function of important biological molecules in human cells and of important metabolic processes that occur within cells and the structure and function of our genetic material. This will predominantly be within lectures and seminars.
 


Optional modules

In addition to the above modules you have 40 credits of optional modules to choose from which includes:

Signal Transduction
In this module you will examine the molecular hardware and operational concepts used by eukaryotic cells to govern their growth, proliferation and phenotypic development. You will study how cells respond to their environment and communicate via the exchange of signalling factors that bind to specific target receptors. There will be two hours of lectures a week.
 
Biochemistry of Cancer
This module covers some of the more modern ideas surrounding tumourigenesis and tumour progression. The first part of the course covers our current understanding of the molecular basis of tumour progression. Following lectures will focus both on research into the fundamentals of cancer biology and the biochemical basis for the treatment of patients with cancer. 
 
Cellular and Molecular Immunology
This module will introduce you to advanced ideas about aspects of cellular and molecular immunology. You will learn about innate and humoral immunity and how humans can mount defence against infections from agents such as the HIV and diseases such as asthma. In addition you will find out about the major proteins involved and the genes coding for some of the proteins will be discussed. There will be two hours of lectures a week.
 
Molecular Microbiology and Infections
This module focuses on the molecular biology that drives the fundamental principles behind the survival of microorganisms and their interaction with humans. Lectures will discuss the interaction between the host and pathogens and how they drive the mechanisms of infection and immunity. There will be two hours of lectures a week.
 
Molecular Diagnostics and Therapeutics
This module covers the use of various biochemical and molecular biological analytical techniques employed in clinical diagnosis, as well as the development of new molecular therapies based on modern biochemical and molecular biological techniques. By the end of the module you will understand the scientific basis behind a variety of molecular medical diagnostics and the methods for the development of new molecular therapies. The module is assessed by a two-hour essay based exam. 
 
 

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. The above list is a sample of typical modules we offer, not a definitive list.

 
 

Careers

You will have a thorough understanding of the fundamental aspects of cell biology, biochemistry and genetics. You will have undertaken practical studies in cell biology, classical and molecular genetics, analysis of proteins and enzymes, and gene cloning. Through a major individual project, which may be lab, bioinformatics or literature-based, you will have carried out your own research and developed transferable skills in presentation, interpretation and criticism of scientific data. Your research skills will have developed to a level that allows you to compete for the best postgraduate positions.

Find out more about the career options available to biochemistry graduates, including recent Nottingham graduate destinations by visiting our careers page.

Average starting salary and career progression

In 2016, 92% of undergraduates in the school secured work or further study within six months of graduation. The average starting salary was £21,037 with the highest being £42,000.*

* Known destinations of full-time home undergraduates, 2015/16. Salaries are calculated based on the median of those in full-time paid employment within the UK.

 

There are many opportunities for biochemistry graduates, below are some of them:

Research degrees

A third, or more, of our graduates carry on their training to complete a higher degree by research (a “Doctor of Philosophy” or PhD) at Nottingham or at other universities. The fact that many of our graduates are able to find PhD studentships elsewhere shows how well thought of our courses are by other universities. After completing their PhD studies many of these students will carry on with a research career in universities, research institutes and industry.
 

Employment

Biochemistry graduates enter many professions including research in industry (especially the pharmaceutical industry), clinical science in hospitals, forensic science, bioinformatics, information science and technical writing, patenting, marketing, and teaching. In addition, some of our graduates choose to enter very different careers such as banking, accountancy and management. The Biochemical Society produce a very useful guide to careers for those considering biochemistry as a profession.
 

Medicine

An increasing number of our graduates obtain places on Graduate Entry Medicine (GEM) courses. These courses are becoming an increasingly popular route to attain a medical degree and enter the medical profession. The University of Nottingham offers a Graduate Entry Medicine course at Derby. If you are currently unsure that medicine is a career that you wish to pursue, or if you are looking at alternative ways to enter the medical profession, then an undergraduate degree in biochemistry will place you in a strong position to achieve this. Of course biochemistry graduates can also apply for places on undergraduate medical courses.
 

Careers support and advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is the best university in the UK for graduate employment, according to the 2017 The Times and The Sunday Times Good University Guide.

the-140px

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

Our International Baccalaureate Diploma Excellence Scholarship is available for select students paying overseas fees who achieve 40 points or above in the International Baccalaureate Diploma. We also offer a range of High Achiever Prizes for students from selected countries, schools and colleges to help with the cost of tuition fees. Find out more about scholarships, fees and finance for international students.

 
 
 

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

 

How to use the data

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Imagine...

being part of the latest research
+44 (0)115 951 5559 Make an enquiry

Contact

School Secretary
Yanisnew

Video

 
 

 

 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: Frequently asked questions
Make an enquiry