Physics with European Language BSc

   
   
  

Fact file - 2017 entry

UCAS code:F3R9
Qualification:BSc Hons
Type and duration:4 year UG (year 3 out)
Qualification name:Physics with European Language
UCAS code
UCAS code
F3R9
Qualification
Physics with European Language | BSc Hons
Duration
4 years full-time/year 3 out (available part-time)
A level offer
A*AA-AAA
Required subjects
Maths and physics, plus a GCSE in a relevant language, A or above
IB score
36 (6 in maths, plus 6 in physics and 6 in a third subject, all at Higher Level, plus a GCSE in a relevant language, A or above
Course location
University Park Campus 
Course places
185 places for all courses in the School of Physics and Astronomy
School/department
 

This course may still be open to international applicants for 2016 entry. Please visit our international pages for details of courses and application procedures from now until the end of August.

Overview

This degree provides a broad and challenging course in physics together with training in a continental European language and experience of the wider European culture.
Read full overview

This degree provides a broad and challenging course in physics together with training in a continental European language and experience of the wider European culture. You will spend the third year of the course studying at one of a variety of institutions, currently including universities in France, Spain, Germany and Switzerland. For the BSc, the degree classification is based on marks obtained in years two and four.

Year one 

You will undertake the same core of fundamental physics material as the Physics BSc (F300), and use some of your available options to raise the level in your chosen European language.

Year two

You will continue to pursue your studies in physics as in the BSc/MSci programmes and take the modules necessary to raise your language skills to stage three in the University's system.

Year three

This year is spent at one of our European partner universities, studying in the appropriate European language. Since different universities offer different modules, we tailor the programme to both the individual's interests and what the particular institution has to offer. For the BSc degree, you simply have to pass the year; the marks attained do not count toward your final degree classification.

Year four

The final year in Nottingham is also tailored to you as an individual, using a range of modules to cover those aspects of the syllabus that have not been studied during the year abroad. You will also take the presentation skills and mathematical application modules, and the synoptic modules for which they prepare you. The final major element is a research project.

More information 

See also the Language Centre

 

Entry requirements

A levels: A*AA-AAA, including physics and maths at A level; also GCSE grade A in an appropriate language

English language requirements 

IELTS 6.5 (no less than 6.0 in any element)

Students who require extra support to meet the English language requirements for their academic course can attend a presessional course at the Centre for English Language Education (CELE) to prepare for their future studies. Students who pass at the required level can progress directly to their academic programme without needing to retake IELTS. Please visit the CELE webpages for more information.

Alternative qualifications 

For details see the alternative qualifications page

Flexible admissions policy

We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances.

Notes for applicants 

Scholarships - we offer a range of scholarships designed to assist you in settling in to your studies and meeting the financial requirements of your course. Some of these are means-tested but we also offer special scholarships that reward academic achievement.

One is offered on the basis of performance in the qualifying examinations for university entrance (eg A levels). A scholarship package is also offered to reward good performance in the qualifying (first) year examinations. This scheme includes special prizes that have been inaugurated in collaboration with our commercial partners. Full details of all scholarship prizes will be provided at the UCAS visit days.

For more details about scholarships, please see www.nottingham.ac.uk/physics

 
 

Modules

Typical Year One Modules
Mathematics for Physics and Astronomy
You will study a selection of mathematical techniques that are useful for analysing physical behaviour. The module topics are: complex numbers, calculus of a single variable, plane geometry and conic sections, ordinary differential equations, calculus of several variables and matrices and matrix algebra.
 
From Newton to Einstein
This year-long module aims to introduce core topics in physics which will underpin all subsequent physics modules. You’ll discuss classical mechanics in the language of vectors and the key notion of harmonic motion which is extended to cover wave phenomena. You’ll have an introduction to Einstein's special theory of relativity as well as the basic ideas of electromagnetism and electrical circuits and quantum physics.
 
Introductory Experimental Physics 
In this module you will receive: an introduction to the basic techniques and equipment used in experimental physics; training in the analysis and interpretation of experimental data; opportunities to observe phenomena discussed in theory modules and training in the skills of record keeping and writing scientific reports.
 
Computing for Physical Science
In this year-long module you’ll learn the techniques for solving physical problems using MatLab. Topics will include variables and operators, vectors and arrays and plotting 2D and 3D graphs among others.
 
Quantitative Physics
This year-long module will train you in the mathematical modelling of physical processes. You’ll be trained in topics such as basic statistics and errors, dimensional analysis, curve sketching, orders of magnitude and estimates and integrating problems in physics among others. You’ll have an hour per week of lectures plus a number of 90 minute workshops throughout the year to assist in your learning.
 
Appropriate Language Modules
You will choose from French, German or Spanish language modules appropriate to your level of prior training and level of understanding and achievement.
 
 


Typical Year Two Modules

The Quantum World 
This module will provide an introduction to the theory and applications of quantum mechanics, a theory that is one of the key achievements of 20th century physics. This module will begin with a discussion of simple systems and develop the mathematical formulation of quantum mechanics. The module will then extend the formalism to cope with the movement of particles and make links to the material that you have seen in the 'From Newton to Einstein' module.
 
Thermal and Statistical Physics
In this year-long module you’ll learn about the two main themes relating to the description of important physical properties of matter; thermodynamics and statistical mechanics. You’ll discover that they share common features through two hours of lectures weekly and four practical workshops throughout the year.
 
Classical Fields
In this module, you are introduced to the concepts of scalar and vector fields, and introduced to the mathematics of vector calculus that can be used to describe these fields. The mathematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism.
 
Wave Phenomena
Many physical systems support the propagation of waves, from the familiar waves on the surface of water to the electromagnetic waves that we perceive as light. The first half of the module will focus on optics: the study of light. Topics to be covered will include: geometrical optics; wave description of light; interference and diffraction; optical interferometry. The second half of the module will introduce more general methods for the discussion of wave propagation, and Fourier methods.
 
Intermediate Experimental Physics
In this module you will develop your experimental technique and gain experience of some key instruments and methods. The experiments will cover electrical measurements, optics and radiation. You will also learn how to use a computer to control experiments and to record data directly from measuring instruments.
 
Appropriate Language Modules
You will continue with your chosen language to raise your skills to stage three in the University's system.
 
 


Typical Year Three Modules

This year will be spent studying physics at a European university. Module selection will be made in consultation with your host University. For more information, please contact fill out an enquiry form.
 


Typical Year Four Modules

Atoms, Photons and Fundamental Particles
In this year-long module you’ll be introduced to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. You’ll gain knowledge about the quantum mechanical description of their interactions.  Every week, you’ll have two hours of lectures; you'll also have with five 90-minute workshops throughout the year to aide your understanding.
 
Introduction to Solid-State Physics
In this year-long module you’ll be introduced to solid state physics. You’ll explore the topics of bonding, crystal structures, band theory, semi-conductors, phonons and magnetism among others. You’ll apply theoretical ideas to the quantitative analysis of physical situations. You’ll have two hours per week of lectures, plus five 90-minute workshops throughout the year.
 
Physics Project

You will carry out a project drawn from one of several areas of physics. The project may be experimental, theoretical or computational in nature. Many of the projects reflect the research interests of members of academic staff. You’ll work in pairs and will be expected to produce a plan of work and to identify realistic goals for your project. Each pair has a project supervisor responsible for setting the project.

 
Appropriate Language Modules
You will continue with your chosen language studies.
 
 


Typical Optional Modules

Introduction to Cosmology
In this module you’ll be introduced to modern cosmology – the scientific study of the Universe as a whole. Topics will cover recent observations and theoretical developments including Friedmann models, the thermal history of the Big Bang and classical cosmological tests among others. You’ll have two hours per week of lectures along with two two-hour workshops to assist your learning whilst studying this module.
 
From Accelerators to Medical Imaging 
In this module you’ll learn about the radiation source and detectors with a focus on those used in medical imaging applications. You’ll be introduced to the experimental techniques of nuclear physics and their applications in medical diagnosis and therapy. You’ll have two hours per week of lectures studying this module.
 
Scientific Computing
This module aims to provide you with the skills necessary to use computational methods in the solution of non-trivial problems in physics and astronomy. You’ll also sharpen your programming skills through a three hour computing class and one hour of lectures per week. 
 
Extreme Astrophysics
In this module you’ll explore the physical processes involved in extreme and explosive high-energy events known in astronomy and the relative importance of different processes in different situations. You’ll make models of extreme astrophysical sources and environments based on physical theory. You’ll also learn to interpret observational data according to relevant physical theory. You’ll have two hours of lectures per week studying this module.
 
Imaging and Manipulation at the Nanoscale
This module will introduce you to the basic ideas of scanning probe microscopy and the way in which scanning probe systems such as scanning tunnelling microscopes (STM) can be used to carry out nanoscale manipulation of solid surfaces. Throughout the course images from the current research literature will be introduced to inform you of the range of possible applications of these techniques. You’ll have two hours per week of lectures studying this module. 
 
Theoretical Elementary Particle Physics
In this module you’ll have an introduction to theoretical aspects of the standard model of particle physics. You’ll learn about ideas such a symmetry and conservation laws through a number of different topics including relativistic notation, relativistic particles, Feynman diagrams and discrete symmetries among others. You’ll have two hours per week of lectures studying this module.
 
The Structure of Stars
This module will develop your knowledge of the various physical processes occurring in stars of different types. You’ll use this knowledge to build both mathematical models and your qualitative physical understanding of stellar structure and evolution will be enhanced. You’ll have two hours per week of lectures studying this module.
 
Force and Function at the Nanoscale
This module will provide an introduction to how forces at the nanoscale are radically different to those observed in macroscopic systems and how they can be exploited in nanometre-scale processes and devices. You’ll spend two hours per week in lectures and have two workshops during the semester.
 
The Structure of Galaxies
This module will develop your current understanding of the various physical processes that dictate the formation, evolution and structure of galaxies. You’ll explore a number of topics including The Milky Way, The Dynamics of Galaxies, Active Galaxies and Galaxy Evolution among others. You’ll spend two hours per week in lectures studying this module.
 
Symmetry and Action Principles in Physics
Symmetry is a powerful notion, both in the development of theories of physical phenomena and in the solution of physical models. In this module the basic aspects of the mathematical language of symmetry will be introduced and applied to a range of physical phenomena, as well as the principle of least action, introduced in The Principles of Dynamics module, will be further developed.
 
 

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. The above list is a sample of typical modules we offer, not a definitive list.

 
 

Careers

You will have a thorough understanding of the fundamental theories of physics and will have applied them in practical research work. You will have perfected your command of your chosen language and developed both your language and physics skills during the year abroad.

Professional accreditation 

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired. 

An accredited bachelor degree partially fulfils the academic requirement for Chartered Physicist status. Further study to masters level, or equivalent work-based experience, is required to achieve Chartered Physicist.

institute of physics
 

Average starting salary and career progression

In 2014, 87% of first-degree graduates from the School of Physics and Astronomy who were available for employment had secured work or further study within six months of graduation. The average starting salary was £23,046 with the highest being £30,000.*

* Known destinations of full-time home and EU first-degree graduates, 2013/14.

Careers Support and Advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our Careers page for an overview of all the employability support and opportunities that we provide to current students.  

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

The University of Nottingham provides information and advice on financing your degree and managing your finances as an international student. The International Office offers a range of High Achiever Prizes for students from selected schools and colleges to help with the cost of tuition fees.

 
 
 

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

Assessment

This course contains a year of study abroad. The estimated values for assessment on the year abroad are:

  • written exam 65%
  • coursework 15%
  • practical 20%

Actual values depend on the host institution and option choices. Values given are averages over institutions.

How to use the data

Imagine...

finding the perfect course
It's #MeantToBe
Get in touch: 
+44 (0)115 951 5165 
Find us on FacebookFollow us

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Contact

Admissions Tutor:
Prof Philip Moriarty 
Admissions Secretary:
Mrs Julie Kenney  
anisamazidian

Video

 
robinmurphy

Video 

 

 

 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: www.nottingham.ac.uk/faqs
Make an enquiry