Physics with Astronomy MSci

   
   
  

Fact file - 2017 entry

UCAS code:F3FM
Qualification:MSci Hons
Type and duration:4 year UG
Qualification name:Physics with Astronomy
UCAS code
UCAS code
F3FM
Qualification
Physics with Astronomy | MSci Hons
Duration
4 years full-time (available part-time)
A level offer
A*AA-AAA
Required subjects
Maths and physics
IB score
36 (6 in maths, plus 6 in physics and 6 in a third subject, all at Higher Level
Course location
University Park Campus 
Course places
185 places for all courses in the School of Physics and Astronomy
School/department
 

Overview

This degree provides a broad knowledge of theoretical and experimental physics and astronomy.
Read full overview

The MSci programme builds from the core of the BSc Physics with Astronomy programme, leading you to the highest levels of astrophysics. As such, it is designed for those interested in careers as professional astronomers and other high-flying employment.

The degree will provide you with a broad knowledge of theoretical and experimental physics and astronomy. You will undertake projects in astronomy, either using the school's optical telescopes or its radio telescopes, or analysing data brought in from state-of-the-art facilities like the Hubble Space Telescope. Theoretical project work can make use of the school's astrophysical supercomputing facilities. The MSci programme will lead you to the highest levels of astrophysics – your first published research paper may well arise from your MSci project work.

Years one and two

The programme in the first two years is designed to be identical to the BSc Physics with Astronomy. This gives you maximum flexibility in allowing you to choose quite late on whether you wish to pursue the three- or four-year programme.

Year three 

In addition to the core physics modules, and the Extreme Astrophysics and Cosmology astronomy modules, you will take the modules in mathematical applications and communication skills that will prepare you for the innovative way in which the final year of our MSci degree is taught. You will undertake an astronomy project to develop your research skills in the subject.

Year four

As in the final year of all our MSci programmes, there are no examinations, with assessments carried out on the basis of mini projects, presentations, etc. The synoptic element is targeted towards subjects of interest to astronomers, with modules on image processing and studying topical research problems in astrophysics. A true research astronomical project forms the final component of the programme.

 

Entry requirements

A levels:  A*AA-AAA, including physics and maths at A level

English language requirements 

IELTS 6.5 (no less than 6.0 in any element)

Students who require extra support to meet the English language requirements for their academic course can attend a presessional course at the Centre for English Language Education (CELE) to prepare for their future studies. Students who pass at the required level can progress directly to their academic programme without needing to retake IELTS. Please visit the CELE webpages for more information.

Alternative qualifications 

For details see the alternative qualifications page

Flexible admissions policy

We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances.

Notes for applicants 

Scholarships - we offer a range of scholarships designed to assist you in settling in to your studies and meeting the financial requirements of your course. Some of these are means-tested but we also offer special scholarships that reward academic achievement. 

One is offered on the basis of performance in the qualifying examinations for university entrance (eg A levels). A scholarship package is also offered to reward good performance in the qualifying (first-) year examinations. This scheme includes special prizes that have been inaugarated in collaboration with our commercial partners. Full details of all scholarship prizes will be provided at the UCAS open days.

For more details about scholarships, please see www.nottingham.ac.uk/physics

 
 

Modules

Typical Year One Modules

From Newton to Einstein
This year-long module aims to introduce core topics in physics which will underpin all subsequent physics modules. You’ll discuss classical mechanics in the language of vectors and the key notion of harmonic motion which is extended to cover wave phenomena. You’ll have an introduction to Einstein's special theory of relativity as well as the basic ideas of electromagnetism and electrical circuits and quantum physics.
 
Introductory Experimental Physics
In this module you will receive: an introduction to the basic techniques and equipment used in experimental physics; training in the analysis and interpretation of experimental data; opportunities to observe phenomena discussed in theory modules and training in the skills of record keeping and writing scientific reports.
 
Frontiers in Physics
This module introduces you to major areas of physics beyond those encountered in the core modules, including those at the forefront of modern research. Particular focus is placed on introductions to astronomy, biophysics and nanoscience. Other topics include condensed matter physics, atomic and particle physics and the physics of the environment.
 
Mathematics for Physics and Astronomy
You will study a selection of mathematical techniques that are useful for analysing physical behaviour. The module topics are: complex numbers, calculus of a single variable, plane geometry and conic sections, ordinary differential equations, calculus of several variables and matrices and matrix algebra.
 
Computing for Physical Science
In this year-long module you’ll learn the techniques for solving physical problems using MatLab. Topics will include variables and operators, vectors and arrays and plotting 2D and 3D graphs among others.

 
 


Typical Year Two Modules

The Structure of Stars 
This module will develop your knowledge of the various physical processes occurring in stars of different types. You’ll use this knowledge to build both mathematical models and your qualitative physical understanding of stellar structure and evolution will be enhanced. You’ll have two hours per week of lectures studying this module.
 
Thermal and Statistical Physics
In this year-long module you’ll learn about the two main themes relating to the description of important physical properties of matter; thermodynamics and statistical mechanics. You’ll discover that they share common features through two hours of lectures weekly and four practical workshops throughout the year.
 
Classical Fields
In this module, you are introduced to the concepts of scalar and vector fields, and introduced to the mathematics of vector calculus that can be used to describe these fields. The mathematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism.
 
Wave Phenomena 

Many physical systems support the propagation of waves, from the familiar waves on the surface of water to the electromagnetic waves that we perceive as light. The first half of the module will focus on optics: the study of light. Topics to be covered will include: geometrical optics; wave description of light; interference and diffraction; optical interferometry. The second half of the module will introduce more general methods for the discussion of wave propagation, and Fourier methods.

 
Intermediate Experimental Physics

In this module you will develop your experimental technique and gain experience of some key instruments and methods. The experiments will cover electrical measurements, optics and radiation. You will also learn how to use a computer to control experiments and to record data directly from measuring instruments.

 
The Structure of Galaxies
This module will develop your current understanding of the various physical processes that dictate the formation, evolution and structure of galaxies. You’ll explore a number of topics including The Milky Way, The Dynamics of Galaxies, Active Galaxies and Galaxy Evolution among others. You’ll spend two hours per week in lectures studying this module.

 
 


Typical Year Three Modules

Atoms, Photons and Fundamental Particles
In this year-long module you’ll be introduced to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. You’ll gain knowledge about the quantum mechanical description of their interactions. Every week, you’ll have two hours of lectures; you'll also have five 90-minute workshops throughout the year to aide your understanding.
 
Quantum Dynamics
In this module you’ll develop your knowledge of quantum theory with a focus on how quantum systems evolve over time. You’ll enhance your knowledge of mathematical formalism of quantum mechanics as well as introducing important physical models and calculation techniques. You’ll cover the dynamics of operators and wavefunctions which can be applied to time-dependant problems. These ideas will then be used to explore some of the quantum dynamical properties of the harmonic oscillator and the two-level system. You’ll have two hours of lectures per week plus two ninety-minute workshops studying this module.
 
Introduction to Solid-State Physics
In this year-long module you’ll be introduced to solid state physics. You’ll explore the topics of bonding, crystal structures, band theory, semi-conductors, phonons and magnetism among others. You’ll apply theoretical ideas to the quantitative analysis of physical situations. You’ll have two hours per week of lectures plus five 90 minute workshops throughout the year.
 
Extreme Astrophysics
In this module you’ll explore the physical processes involved in extreme and explosive high-energy events known in astronomy and the relative importance of different processes in different situations. You’ll make models of extreme astrophysical sources and environments based on physical theory. You’ll also learn to interpret observational data according to relevant physical theory. You’ll have two hours of lectures per week studying this module.
 
Introduction to Cosmology
In this module you’ll be introduced to modern cosmology – the scientific study of the Universe as a whole. Topics will cover recent observations and theoretical developments including Friedmann models, the thermal history of the Big Bang and classical cosmological tests among others. You’ll have two hours per week of lectures along with two 2 hour workshops to assist your learning whilst studying this module.

 
 


Typical Year Four Modules

Research Techniques in Astronomy
This module develops a range of modern astronomical techniques through student-centered approaches to topical research problems. You’ll cover a range of topics related to ongoing research in astronomy and astrophysics, and will encompass theoretical and observational approaches. This module is based on individual and group student-led activities involving the solution of topical problems including written reports and exercises, and a project.
 
Imaging and Image Processing
This module aims to provide you with a working knowledge of the basic techniques of image processing. The major topics covered will include: acquisition of images, image representation, resolution and quantization, image compression and non-Fourier enhancement techniques, among others. You’ll spend around four hours in lectures, eight hours in seminars and have a one-hour tutorial each week. 
 
 


Typical Optional Modules

Atmospheric Physics
In this module you’ll explore the theoretical aspect of atmospheric physics. Topics will include planetary atmosphere, troposphere, solar radiation and the Energy budget, radiation transfer and Photochemistry among others. You’ll have two hours of lectures per week studying this module.
 
From Accelerators to Medical Imaging 
In this module you’ll learn about the radiation source and detectors with a focus on those used in medical imaging applications. You’ll be introduced to the experimental techniques of nuclear physics and their applications in medical diagnosis and therapy. You’ll have two hours per week of lectures studying this module.
 
Scientific Computing 
This module aims to provide you with the skills necessary to use computational methods in the solution of non-trivial problems in physics and astronomy. You’ll also sharpen your programming skills through a three hour computing class and one hour of lectures per week. 
 
Functional Medical Imaging 
The techniques for magnetic resonance imaging (MRI) and spectroscopy (MRS) are explored. You’ll be introduced to the brain imaging technique of functional magnetic resonance imaging (fMRI), giving an overview of the physics involved in this technique. You’ll spend two hours per week in lectures. 
 
Quantum Coherent Phenomena
This module will introduce you to a range of physical phenomena which exhibit macroscopic quantum coherence including Bose condensation in cold atomic gases, superfluidity in Helium-4 and superconductivity in metals and alloys. You’ll discuss their common features and general theoretical ideas as well as some of their applications. You’ll have two hours per week of lectures studying this module. 
 
Imaging and Manipulation at the Nanoscale
This module will introduce you to the basic ideas of scanning probe microscopy and the way in which scanning probe systems such as scanning tunnelling microscopes (STM) can be used to carry out nanoscale manipulation of solid surfaces. Throughout the course images from the current research literature will be introduced to inform you of the range of possible applications of these techniques. You’ll have two hours per week of lectures studying this module. 
 
Gravity

This module provides an introduction to the modern theory of gravitation: Einstein's general theory of relativity. This module is based on a regular series of two one-hour lectures per week supplemented by a two-hour workshop once a fortnight.

 
Science, Technology & Business 

This module will introduce you to the importance of, and the processes involved in the commercialisation of science and technology. The content of the course is highly relevant in the current climate where Government is placing much evidence on the wealth creation process. You’ll have 11 90-minute lectures plus two one-hour tutorials to cover material in this module.

 
Modern Cosmology

This module introduces you to the key ideas behind modern approaches to our understanding of the role of inflation in the early and late universe, in particular through the formation of structure, the generation of anisotropies in the cosmic microwave background radiation, and the origin of dark energy. You’ll study through a series of staff lectures and student-led workshops.

 
Theoretical Elementary Particle Physics

In this module you’ll have an introduction to theoretical aspects of the standard model of particle physics. You’ll learn about ideas such a symmetry and conservation laws through a number of different topics including relativistic notation, relativistic particles, Feynman diagrams and discrete symmetries among others. You’ll have two hours per week of lectures studying this module.

 
 

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. This list is an example of typical modules we offer, not a definitive list.

 
 

Careers

You will have developed a thorough understanding of physics and astronomy, both through study and practical work. You will be prepared for employment in a range of areas, as well as for a career as a professional astronomer or physicist.

Professional accreditation

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired. 

An accredited integrated masters degree fulfils the academic requirements for Chartered Physicist.

institute of physics
 

Average starting salary and career progression

In 2014, 87% of first-degree graduates in the School of Physics and Astronomy who were available for employment had secured work or further study within six months of graduation. The average starting salary was £23,046 with the highest being £30,000.*

* Known destinations of full-time home and EU first-degree graduates, 2013/14.

Careers Support and Advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our Careers page for an overview of all the employability support and opportunities that we provide to current students.  

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help.

Home students*

There are several types of bursary and scholarship on offer. Download our funding guide or visit our financial support pages to find out more about tuition fees, loans, budgeting and sources of funding.

To be eligible to apply for most of these funds you must be liable for the £9,000 tuition fee and not be in receipt of a bursary from outside the University.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

The University of Nottingham provides information and advice on financing your degree and managing your finances as an international student. The International Office offers a range of High Achiever Prizes for students from selected schools and colleges to help with the cost of tuition fees.  
 
 

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

 

How to use the data

Imagine...

answering the questions about our universe
It's #MeantToBe
Get in touch: 
+44 (0)115 951 5165 
Find us on FacebookFollow us

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Contact

Admissions Tutor:
Prof Philip Moriarty
Admissions Secretary:
Mrs Julie Kenney
 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: www.nottingham.ac.uk/faqs
Make an enquiry