Welcome to the School of Physics and Astronomy

What and where you choose to study at university will have a major influence on shaping your future, so it is important to make an informed decision. We hope this brochure will provide you with the information you need to make that choice.

The School of Physics and Astronomy at Nottingham offers a vibrant academic community that is amongst the very top in both research and teaching. In research, our Nobel Prize winning work placed us amongst the top three physics departments in the UK in both of the last national research assessments, while in teaching, the National Student Survey regularly ranks us amongst the top physics programmes in the country.

Most exciting of all, is the way we integrate teaching and research to ensure that our students enjoy an undergraduate programme that takes them right to the cutting-edge of physics, setting them up for careers in a wide range of disciplines. We hope to welcome you to Nottingham soon.

Professor Michael Merrifield
Head of the School of Physics and Astronomy

To find out where a degree in physics could take you, please visit nottingham.ac.uk/physics
Studying physics and astronomy at Nottingham

Students have been coming to Nottingham to learn about physics since the University was founded in 1881. The first professor was Sir Ambrose Fleming, of left- and right-hand rule fame, who insisted that good teaching and high-quality original research were to have equal priority; a balance that we still strive to maintain.

Investments in the school
The school is well equipped with all the facilities needed to provide a modern teaching and learning environment. Our lecture theatres have been refurbished with fantastic audio-visual equipment. There are specific laboratories for each year group, each supported by a dedicated teaching technician.

Research excellence
We were ranked equal third of all physics departments in the UK for our research in the Research Excellence Framework, 2014. This assesses both the quality of recent research as well as the impact the school's research has had on society.

You will be taught by those who are working at the forefront of the subject. You will get plenty of opportunities to be involved in projects, optional modules and summer internships. We have more than 50 research-active members of academic staff, who are closely involved in undergraduate teaching.

At a glance
- 94% of physics and astronomy students satisfied with the quality of their degree.*
- Ranked joint third in the UK for research**
- High-quality courses accredited by the Institute of Physics

Personal tutors
You will be assigned a tutor who will guide your studies and take an interest in your academic progress and personal well-being. You will meet your tutor each week in year one, to review your work and answer questions on your lectures.

To find out where a degree in physics could take you, please visit nottingham.ac.uk/physics

Why study with us?

Our courses

<table>
<thead>
<tr>
<th>Degree title</th>
<th>UCAS code</th>
<th>Duration</th>
<th>A levels</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics</td>
<td>F300/F303</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with Astronomy</td>
<td>F3F5/F3FM</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with Nanoscience</td>
<td>F390/F391</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with Medical Physics</td>
<td>F350/F371</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with European Language</td>
<td>F3R9/F3RX</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with Theoretical Physics</td>
<td>F344/F340</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Physics with Theoretical Astrophysics</td>
<td>F346/F345</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Chemistry and Molecular Physics</td>
<td>FF31/FFH1</td>
<td>3/4 years</td>
<td>AAB^^</td>
</tr>
<tr>
<td>BSc</td>
<td>MSci Mathematical Physics</td>
<td>F326/F325</td>
<td>3/4 years</td>
<td>A*AA-AAA^</td>
</tr>
<tr>
<td>Joint honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Physics and Philosophy</td>
<td>FV35</td>
<td>3 years</td>
<td>A*AA-AAA^</td>
<td>38†</td>
</tr>
</tbody>
</table>

Foundation programmes

| Foundation Engineering and Physical Sciences | H100/H10Y | 4/5 years*** | BBB^*** | 30 |

* A* (maths) A (physics) or A*(physics) A (maths) (with an A grade in a third A level subject).
** Including chemistry, maths and physics.
*** Plus GCSE maths and physics (or double science) at grade 7; GCSE English at grade 5.
** 6 in chemistry, maths and physics, preferably with two at Higher Level.
*** Fully integrated programmes lead to bachelors or masters degree.
† 6,6 at Higher Level in maths and physics.

Applicants taking A level biology, chemistry and/or physics are also required to pass the practical element of assessment (where it is assessed separately).

English language requirements
IELTS 6.5 (no less than 6.0 in any element) TOEFL iBT 87 (no less than 20 in speaking and 19 in each other element). For more information and a list of the alternative English language requirements we accept, please see nottingham.ac.uk/ugstudy/physics/alternativerequirements

Developing your academic English and study skills
The Centre for English Language Education (CELE) offers you the opportunity to develop your English language skills at one of the world’s top universities. Accredited by the British Council for the teaching of English, CELE provides high-quality teaching, facilities and support. Our presessional courses take your English language and academic skills to the level you need to progress to undergraduate study without taking IELTS again. Find out more at nottingham.ac.uk/cele

For more information about our courses please visit nottingham.ac.uk/ugstudy/physics
BSc | MSci Physics

The BSc Physics degree forms the core of our teaching programme. Across the three years you will learn the fundamentals of modern physics, together with the mathematical, practical and computational skills that you will need to fully appreciate the subject.

The four-year MSci degree allows you to cover physics in more breadth and depth than is possible on the conventional BSc degree. To allow you the maximum degree of flexibility in transferring between courses, the first two years of the MSci programme are the same as the BSc.

Year one
The modules in the first year will provide you with knowledge of key physical processes, skills in practical physics for carrying out experiments, and the mathematical tools you will need to derive the theory that underlies the physics.

Year two
You will build on the core skills developed in year one to study aspects of physics including quantum theory, statistical mechanics, solid-state physics, optics and electromagnetism. In addition, you will have the option to specialise and take more advanced modules in aspects of physics that particularly interest you.

Year three (BSc)
In the third year of the BSc, you will undertake a project in an area that interests you, and apply the theoretical, computational and experimental techniques you have learned to a problem at the cutting-edge of physics. You may also opt to take a module that enhances your written and oral presentation skills.

In the third year of the MSci, much of the core material remains common to the BSc, but MSci students will receive additional support to help them prepare for independent learning in their final year.

Year four (MSci students)
In the fourth year, the traditional structure of lectures, private study and examinations is replaced by continuously assessed team-based activities such as the preparation of scientific reports, problem solving, and student presentations of advanced physics lectures.

The other aspect of the fourth year is a large research project. The innovative style of this project and the quality of the work produced has been highly acclaimed by external examiners. Project sponsors include companies and industry, local hospitals and research institutions as well as leading research groups in the school.

For more detailed course content visit nottingham.ac.uk/ugstudy/physics

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three</th>
<th>Year four (MSci only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Core</td>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>From Newton to Einstein</td>
<td>The Quantum World</td>
<td>Physics Project</td>
<td>Physics Research Project</td>
</tr>
<tr>
<td>Computing for Physical Science</td>
<td>Thermal and Statistical Physics</td>
<td>Atoms, Photons and Fundamental Particles</td>
<td>Gravity</td>
</tr>
<tr>
<td>Introductory Experimental Physics</td>
<td>Classical Fields</td>
<td>Introduction to Solid State Physics</td>
<td>Politics, Perception and Philosophy of Physics</td>
</tr>
<tr>
<td>Quantitative Physics</td>
<td>Wave Phenomena</td>
<td>Optional</td>
<td>Order, Disorder and Fluctuations</td>
</tr>
<tr>
<td>Mathematics for Physics and Astronomy</td>
<td>Intermediate Experimental Physics</td>
<td>Advanced Topics in Nanoscience</td>
<td>Advanced Topics in Nanoscience Research</td>
</tr>
<tr>
<td>Frontiers in Physics</td>
<td>Optional</td>
<td></td>
<td>Imaging and Image Processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modern Cosmology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quantum Coherent Devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light and Matter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quantum Transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research Techniques in Astronomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modern Applications of Physics</td>
</tr>
</tbody>
</table>

Typical modules

- **Core**
 - From Newton to Einstein
 - Computing for Physical Science
 - Introductory Experimental Physics
 - Quantitative Physics
 - Mathematics for Physics and Astronomy
 - Frontiers in Physics

- **Optional**
 - The Structure of Stars
 - The Structure of Galaxies
 - Health Physics
 - Force and Function at the Nanoscale
 - Molecular Biophysics
 - Principles of Dynamics
 - Symmetry and Action
 - Principles in Physics

- **Year three**
 - Physics Project
 - Atoms, Photons and Fundamental Particles
 - Introduction to Solid State Physics

- **Year four (MSci only)**
 - Physics Research Project
 - Gravity
 - Politics, Perception and Philosophy of Physics
 - Order, Disorder and Fluctuations
 - Advanced Topics in Nanoscience Research
 - Imaging and Image Processing
 - Modern Cosmology
 - Quantum Coherent Devices
 - Light and Matter
 - Quantum Transport
 - Research Techniques in Astronomy
 - Modern Applications of Physics

Modules may change, for example due to curriculum developments. The above list is a sample of typical modules that we offer, not a definitive list. The most up to date information can be found on our website at nottingham.ac.uk/ugstudy
Our courses

BSc | MSci Physics with Astronomy

These degrees offer a very similar course structure to those of the corresponding physics degrees, as you will receive the core lectures in physics that are common to all single honours physics courses.

We draw on the expertise of the school’s internationally known astronomy research group to teach a number of specialised modules. The lectures are backed up by astronomy tutorial classes, practical work and directed reading.

Year one
In the first year, you will take a general introduction to astronomy through the Frontiers in Physics module, which assumes no prior knowledge of the subject.

Year two
You will study the same core modules as BSc Physics, but with astronomy modules, The Structure of Stars and The Structure of Galaxies, replacing two of the options in the BSc Physics degree.

Year three
You will take more advanced modules in Cosmology and Extreme Astrophysics, which are designed to deepen the physical understanding of the basic concepts, and to provide a thorough grounding in most areas of contemporary activity in astronomy.

You will also undertake projects designed to give you hands-on experience of working with astronomical data. The data for these projects is obtained using either the school’s optical, solar and radio telescope facilities on the roof of the physics building, or as part of the extensive astronomy research programme in the school. This gives you access to cutting-edge astronomical facilities around the world and in space, such as the Hubble Space Telescope.

Year four (MSci students)
For the MSci, you take synoptic courses that illustrate the interplay between astronomy and other areas of physics, and also undertake a larger project within the astronomy research group.

The structure of the fourth year, with its emphasis on student-centred activity, is very similar to the MSci Physics degree, but focuses this activity in areas of relevance to astronomy as well as physics.

Careers and employability
Many career paths are open to graduates of these degrees, not just astronomical research. Astronomy graduates acquire a wide range of skills in image processing and data analysis, particularly in the maintenance, organisation and processing of large and complex data sets. For this reason, astronomy graduates are much sought after in the industrial and financial sectors.

For more detailed course content visit nottingham.ac.uk/ugstudy/physics

BSc | MSci Physics with Nanoscience

The Nottingham Nanoscience Group is internationally renowned for its research in areas such as self-assembly and self-organisation, single-molecule manipulation, molecular nanostructures, and soft surfaces and interfaces.

The Physics with Nanoscience course exploits this expertise to provide you with high-quality teaching and training, informed by the latest developments in the field.

Year three
In year three, the manipulation of matter via directed-assembly will be covered in a module entitled Imaging and Manipulation at the Nanoscale. Scanning probe microscopy (SPM) underpins practically every area of nanoscience, and the use of SPMs to image, move and ‘feel’ individual atoms and molecules will be covered in considerable depth.

The third year also involves a major project where you will gain hands-on experience of experimental, theoretical or computational research problems in nanoscale physics.

Year four (MSci students)
In the final year of the MSci course, you will have the opportunity to work in a nanoscience research laboratory in the School of Physics and Astronomy. You will get involved in collaborative work with researchers in disciplines other than physics, such as chemistry, pharmacy or materials science.
Both the BSc and MSci degrees have the same physics core as the BSc Physics degree and cover the basic elements of medical physics and biophysics in a coherent, interconnected series of modules. Experience of hospital physics may be gained in practice, together with an insight into medical physics research.

Medical physics modules are supplemented by specialist lectures given by senior practising medical physicists from the adjacent Queen’s Medical Centre and from other leading healthcare centres and research institutions.

Year one
The degree follows the same syllabus as the BSc Physics programme with an introduction to medical physics and other cutting-edge research provided by the Frontiers in Physics module.

Year two
The subject is developed through more substantial modules in the second year, which include aspects of molecular biology, biotechnology, the physics of the human body, medical instrumentation, radiation physics and radiotherapy.

Year three
In the third year, the focus is on medical imaging, including magnetic resonance imaging (MRI) in which the school is a world leader – our invention of the technique was recognised with the award of a Nobel Prize. The BSc degree has a project in the Medical School or the Magnetic Resonance Centre, a £5m research annex adjacent to the School of Physics and Astronomy, which houses the sophisticated equipment that MRI requires.

Medical physics modules are supplemented by specialist lectures given by senior practising medical physicists from the adjacent Queen’s Medical Centre and from other leading healthcare centres and research institutions.

Year four (MSci students)
As in the final year of all our MSci programmes, there are no examinations, with assessments carried out on the basis of mini projects, presentations and similar. The synoptic element is targeted towards subjects of interest to medical physicists, with a module on image processing and analysis. You will also undertake a major research project in a medical physics environment.

Careers and employability
A variety of career paths are open to graduates with these degrees, not just medical physics. For example, the course forms an excellent base for a career in biotechnology, and occupational or environmental monitoring. Students are frequently inspired to study for a research degree in this area; research studentships are often available at the school and many former students have built distinguished academic and industrial careers via this route.

For more detailed course content visit nottingham.ac.uk/ugstudy/physics

“The aim of these courses is to provide a broad and challenging programme in physics together with training in a second European language.”

Year four (BSc students)
The fourth year will follow a similar pattern to the third year of the BSc Physics degree.

Year four (MSci students)
You will choose your modules for the fourth year following on from the topics studied abroad.

At the present time, we have ongoing integrated courses in France, Switzerland, Germany and Spain. If you are interested in studying a European language not covered by these institutions, we are happy to make the necessary arrangements.

Studying physics at Nottingham is great! You are part of a really open, friendly department, the campus offers beautiful surroundings to work in and there’s always something interesting going on in town.

Keir Birchall, MSci Physics
BSc | MSci Chemistry and Molecular Physics

The School of Physics and Astronomy and the School of Chemistry have jointly developed the chemistry and molecular physics degrees, with a strong emphasis on the inter-relationship between the basic disciplines of chemistry and physics.

The courses offer a rare opportunity for an integrated study of molecular and solid-state physics, quantitative aspects of chemistry, and the application of modern instrumental techniques; this combination has proved very popular with students and employers alike.

Year one
In the first year, courses in physics, chemistry and mathematics are taken in common with other students registered on physical science degree courses. This allows for maximum flexibility; a final choice of BSc or MSci, physics, chemistry or chemistry and molecular physics can be made after the first-year examinations.

Year two
The topics covered in the second year include atomic and molecular spectroscopy, quantum mechanics, quantum chemistry and bonding, classical fields, chemical reaction kinetics, physical aspects of organic chemistry, interfaces, electrochemistry and thermodynamics. Laboratory sessions are conducted in both schools to develop experimental skills in physics and chemistry.

Year three
In the third year, core lectures are attended in which the unified theme of chemistry and molecular physics is developed. You can also choose from a range of specialised modules, which cover topical subjects in depth. The practical components comprise a 10-week laboratory project and a major literature review exercise.

Year four (MSci students)
The four-year MSci course is designed to cover the subjects in more breadth and depth than is possible on the BSc course. We also teach you transferable skills in communications and problem solving in innovative ways. A substantial part of the fourth year is spent on an extended experimental or theoretical research project.

For more detailed course content visit nottingham.ac.uk/ugstudy/physics

BSc | MSci Physics with Theoretical Physics

The BSc and MSci programmes are based on the common core of physics modules, but with no practical work after the first year.

Year one and two
You will study a set of modules that provide knowledge of a wide range of sophisticated mathematical techniques and applications of these techniques to physical problems.

Year three
In the third year, you will carry out a theoretical physics project. In addition, you will be able to choose from a range of modules in topics such as astrophysics, condensed matter physics, and nuclear and particle physics. For the MSci course, you will also be given preparation for the different style of learning in the fourth year, including communication skills training.

The course offers a great insight into the hot topics in physics, which I found invaluable in finding my favourite field. The Students’ Union and other services have provided me with great opportunities to be involved in something I enjoy and would like to try.

David Collomb, MSci Physics

Physics at Nottingham allows me to see the application of physics in an academic environment and the real world, allowing me to explore all my employment options. The campus is beautiful and there are so many societies to get involved with that there is something for everyone. Nottingham is always buzzing with excitement and the city is so close by, there is always something to do.

Shivani Dave, MSci Physics

For more detailed course content visit nottingham.ac.uk/ugstudy/physics
Our courses

BSc | MSci Physics with Theoretical Astrophysics

These degrees follow the same structure as the physics with theoretical physics programmes. In addition to the core theoretical physics elements, you will take the astrophysics modules from the physics with astronomy programme.

Year three
The final-year project work in these degrees will allow you to get involved in the cutting-edge theoretical astrophysics research undertaken in the school. This includes both analytic and large-scale computational studies of everything from the fluctuations in the microwave background radiation to the formation of large-scale structures in the universe.

Year four (MSci students)
The synoptic element brings together the advanced theoretical physics and the astrophysics. You will also undertake a major research project, working on a cutting-edge problem in theoretical astrophysics.

Ever since Newton invented calculus to develop his theories of motion and gravity, mathematics and physics have been inextricably linked.

Students on our BSc and MSci programmes in mathematical physics study modules taught by the School of Physics and Astronomy and the School of Mathematical Sciences that provide a thorough background in the mathematical techniques and concepts physicists and mathematicians use today.

Year two
In year two, you will learn about many of the classic theories of physics including electromagnetism, quantum mechanics, thermal and statistical physics and optics. You will also learn about the mathematical language in which these theories are expressed, including vector calculus and Fourier theory and have the opportunity to study some elements of pure mathematics, such as mathematical analysis. There is also the opportunity to take some optional modules according to your interests.

Year three
The BSc programme offers a further range of options to be studied in the final year, along with a project in either physics or mathematics. As part of the third-year project, MSci students receive training in communication skills in preparation for the more student-centred approaches taken in some of the fourth year physics modules.

Year four (MSci students)
The fourth year of the MSci course offers optional modules in topics including black holes, quantum field theory, advanced gravity and theoretical particle physics. It also includes a substantial project in either applied mathematics or theoretical physics.

There are so many great things about studying here! The course offers both the depth and breadth of physics I wanted all taught by enthusiastic lecturers. On top of this, opportunities through both the department and the university have meant I’ve had plenty of new and exciting experiences during my time here.

Emma Woods, MSci Physics

The beautiful campus, handy city links and a course that perfectly combines the complementary aspects of mathematics and physics together, are just a few of the reasons why studying here was one of the best choices I ever made.

Alex McCarron, BSc Mathematical Physics

For more detailed course content visit nottingham.ac.uk/ugstudy/physics
BSc Physics and Philosophy

The close links between physics and philosophy go back at least as far as the ancient Greeks. Our joint honours physics and philosophy degree will allow you to explore the rich interplay between these two disciplines.

Year one

In the first year, the modules are divided between physics, philosophy and mathematics. The physics and mathematics modules are the same as those taken by the single honours physics students, which means that transfer between courses is possible.

Years two and three

In the second and third years, physics and philosophy modules are taken in parallel; the workload is equally divided between the two subjects. The physics component consists of an appropriate selection from the modules that make up the single honours physics course, while a wide variety of topics are covered in philosophy, with options ranging from formal logic or the philosophy of science, to Wittgenstein or the philosophy of law.

In order to fit in both subjects, there is no laboratory element to the programme. However, in the final year you will have the choice of undertaking either a dissertation in philosophy or a theoretical project in physics.

My degree allows me to explore many aspects of physics while also studying a variety of mathematics modules. This gives me a broad view of how the two fields work together to form an understanding of how the world around me works. Partnered with the idyllic campus, friendly city and proximity to the Peak District, my time in Nottingham is an enjoyable and stimulating one.

Jacob Puhalo-Smith, MSci Mathematical Physics

Foundation Engineering and Physical Sciences

This course offers an alternative route into studying your degree of choice at university. Designed for talented applicants who are not eligible for direct entry to an undergraduate course, a foundation year enables you to gain the subject-specific knowledge and skills required to embark onto degree-level studies.

Successful completion of this programme may offer progression to almost 90 degree programmes within the following schools at the University:

Physical Sciences:
- Computer Science
- Mathematical Sciences
- Physics and Astronomy

Engineering:
- Architecture and Built Environment
- Chemical and Environmental Engineering
- Civil Engineering
- Electrical and Electronic Engineering
- Mechanical, Materials and Manufacturing
- Engineering

How will I study and be assessed?

Typically, you will receive scheduled lectures and problem workshops supported by hands-on laboratory experience and tutorials. Additional directed study and reading will also be recommended. To ensure you make steady progress and achieve the required grades, your learning will be assessed through coursework and examinations.

For most routes you are required to pass the foundation programme and obtain a 50% course average at the first attempt in order to progress onto year one of your chosen undergraduate degree. Progression to some degree courses may have additional criteria, restrictions or non-academic requirements. For further information about progression, see nottingham.ac.uk/go/feps

For more detailed course content visit nottingham.ac.uk/ugstudy/physics

Find out more nottingham.ac.uk/go/foundationcourses
Engaging study, incredible results

Group teaching sizes are small enough for us to know all of our students as individuals and the total class size is large enough to allow us to offer a wide range of modules. This means that you will be able to tailor your degree to your scientific interests.

Teaching
Typically there are 10 lectures per week including problem sheets and directed reading. You will learn a modern programming language so that you can solve equations and model physical situations. The course structure ensures there are formative assessments throughout the year to help you to guide your studies and gain regular feedback on how you’re getting on. If there is something you do not understand, you are always welcome to discuss it with a member of staff.

You will take part in weekly small group tutorials (typically five students), where your tutor will provide support and guidance. The practical modules involve working between three and six hours per week in laboratories, where, in addition to traditional experimental techniques, we emphasise the importance of computer control and simulation throughout the course.

How will I be assessed?
For a typical core module the examination carries a weight of 80%, the remaining 20% usually being allocated for regular coursework and workshop assignments throughout the year. Experimental and other practical work is continually assessed through laboratory notebooks and formal reports.

Modules and credits
Tailor your single honours degree programme to your own interests by selecting credits that you want to study. You can use this flexibility to explore aspects of physics that interest you in greater depth.

We offer a range of module options, including:
- Astronomy
- Atmospheric Physics
- Biophysics
- Chaos and Non-Linear Physics
- Computational Physics
- Cosmology
- Extreme Astrophysics
- Medical Imaging
- Medical Physics
- Nanoscience
- Particle Physics
- Principles of Dynamics
- Quantum Optics
- Semiconductor Devices
- Structure of Stars and Galaxies

You are also free to choose 10 credits per semester from elsewhere in the University; you might want to improve your future employability with modules in a language or business skills, or you could choose to pursue an interest in anything from archaeology to zoology.

How do I apply?
All applications for an undergraduate place to study at the University of Nottingham, including applications by international students, must be made through UCAS.

Applications should be made online at ucas.com and candidates will be notified of decisions through UCAS Track.

Your personal statement
This is the section of your UCAS form that tells us most about you, and you should make the best use of it. Be as specific and detailed as you can – we would like to see that you are a student who can work hard, be self-motivated and make the best possible use of the opportunities that our courses offer you. We would also like to hear about any skills you have gained through extracurricular activities.

Alternative qualifications
In this brochure you will find our A level entry requirements but we accept a much broader range of qualifications.

These include:
- Access to HE Diploma
- Advanced Diploma
- BTEC HND/HNC
- BTEC Extended Diploma
- Cambridge Pre-U
- International Baccalaureate
- Irish Leaving Certificate
- Scottish Advanced Higher
- Welsh Baccalaureate Advanced Diploma

Flexible admissions policy
We recognise that some educational and personal circumstances affect achievement. If we judge that you have experienced circumstances that have adversely affected your achievement, we will consider them when assessing your academic potential. Some courses may vary the offer as a result. For the most up to date information about our offers, please see the entry requirements section of our course pages on our online prospectus. For more information about this policy, please see nottingham.ac.uk/ugstudy/applying

Mature applicants
We encourage applications from mature applicants who have a significant gap in education. You should apply in the normal way through UCAS. More information for mature students can be found at nottingham.ac.uk/mature

International applicants
The University provides a range of information and advice for international applicants. If you are unable to attend an open day, we can meet you in your country at one of our overseas events or arrange an individual visit to the University. For further information please visit nottingham.ac.uk/go/international-applicants

Deferred entry
Applicants who wish to defer their entry by a year will not be at a disadvantage. Please tell us something about your plans for your gap year in your UCAS personal statement.

Equal opportunities policy
The University aims to create the conditions whereby students and staff are treated solely on the basis of their merits, abilities and potential, regardless of gender, race, colour, nationality, ethnic or national origin, age, socio-economic background, disability, religious or political beliefs, trade union membership, family circumstances, sexual orientation or other irrelevant distinction.
World class for employability

Physics is a fundamental subject that serves as a foundation for most areas of science and engineering. Due to their training, physicists are adaptable and proficient at mathematics and problem solving. Employers see a physics graduate as someone who has demonstrated an ability to work through a demanding course of study and who has gained a wide variety of transferable technical skills. The range of careers enjoyed by our graduates, and their success in finding lucrative positions, are measures of just how many employers appreciate the value of a physics degree.

93% of first-degree graduates in the school who were available for employment had secured work or further study within six months of graduation.*

£25,389 was the average starting salary with the highest being £40,000.*

Careers and Employability Service

Our Careers and Employability Service has a team dedicated to Faculty of Science students. They will be on hand to offer you specialist support and guidance throughout your degree and for life after you graduate. Whether you need help writing a CV, preparing for an interview or exploring career ideas, you can book one-to-one appointments or come along to a workshop. Each term there is also an exciting events schedule, bringing you face-to-face with employers offering real-life insight into their professions. Find out more about the Careers and Employability Service at nottingham.ac.uk/careers

The Nottingham Advantage Award

The award-winning Nottingham Advantage Award recognises and rewards your extracurricular activities. With a choice of over 200 modules, you can hone the key skills employers want. From developing your leadership skills and learning a language to public speaking and volunteering, you will leave university with demonstrable experience that sets you apart from other graduates. For further information, please visit nottingham.ac.uk/careers/advantage

Recent graduate destinations:
- postgraduate study
- science
- engineering
- financial sector
- management roles
- teaching
- law
- meteorology
- media

Find out more about the Careers and Employability Service at nottingham.ac.uk/careers

* Known destinations of full-time home first-degree undergraduates 2014/15. Salaries are calculated based on those in full-time paid employment within the UK.
Experience it in a world beyond ordinary

There's so much for you to get involved in and explore at the University and around the city. Whether you're interested in sports, learning a language or just having fun with friends alongside studying, you'll be spoilt for choice.

Getting involved in your Students’ Union
University of Nottingham Students’ Union (UoNSU) is a brilliant, diverse community, and whether you are an undergraduate or postgraduate, first-year or final-year student, you are a part of it. With 300+ student-led groups, clubs and societies, hundreds of volunteering opportunities and support for every stage of your university journey, your Students’ Union offers something for everyone. Find out more: su.nottingham.ac.uk

Your new home from home
At Nottingham we offer a wide range of room types across the campuses in both catered and self-catered accommodation. From standard single rooms with shared bathrooms to large en-suite studios and flats, there’s something to suit every budget and personal choice. For current pricing and to review all accommodation options please visit nottingham.ac.uk/accommodation

Exploring your new city
Nottingham city centre is around a 10-minute bus ride away from University Park Campus, so you’re always close to the action. There are plenty of music venues, from the world-famous Rock City to the Motorpoint Arena or one of the smaller gig venues for a more intimate live show. If you enjoy shopping, there are independent boutiques and vintage shops as well as high street names in our large shopping centres. Nottingham is also a hotspot for dining, with a great choice of cuisines on offer. Find out more: nottingham.ac.uk/nottinghamlife

Your support network
Throughout your university journey there will be numerous people on hand to support and advise you, including tutors and dedicated staff. We have Student Service Centres on all three of our UK campuses, which provide a range of support, information and specialist services. Find out more: nottingham.ac.uk/studentservices

Sport
The University of Nottingham is one of the UK’s leading universities for sport and is currently ranked 4th in the university sport rankings*. We have one of the biggest portfolios of sports facilities in the country including the brand new £40m David Ross Sports Village. We also have a rich heritage of supporting Olympic medallists and we have more than 70 student sports clubs to choose from. Find out more: nottingham.ac.uk/sport

*British Universities and Colleges Sport Standings, 2015-16.

Your opportunity to study abroad
We offer a range of study abroad opportunities with many students having the option to live and study in another country as part of their university career. Studying or working abroad is a fantastic opportunity to broaden your horizons, experience different cultures, and develop the key skills that employers are looking for. Find out more: nottingham.ac.uk/studywithus/studyabroad

Learn a language
The University’s Language Centre gives you the opportunity to study a language alongside your course. All languages are offered from beginners’ level with some going up to near native competency. There are nine languages to choose from: Modern Standard Arabic, Dutch, French, German, Italian, Japanese, Mandarin Chinese, Russian, and Spanish. Find out more: nottingham.ac.uk/language-centre

Music
All student musicians at the University of Nottingham are encouraged to get involved with the vibrant musical life on campus. Find out more: nottingham.ac.uk/music/performance
For undergraduate enquiries contact:
Student Recruitment Enquiries Centre

© University of Nottingham 2017. All rights reserved. Printed June 2017.

This brochure has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information contained in this brochure is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publication and commencement of the course. It is therefore very important to check our website for any updates before you apply for the course by following nottingham.ac.uk/ugstudy. Where there is a difference between the contents of this brochure and our website, the contents of the website take precedence.