Welcome to the School of Physics and Astronomy

Welcome from my colleagues and myself to the School of Physics and Astronomy at The University of Nottingham.

We have produced this booklet to help you with the important decision of what subject to study at university, and which institution to choose. These choices will have a major influence on shaping your future, both professional and personal, so it is essential to make informed decisions. In doing so, you will have to weigh up a wide variety of factors. For example, does the course contain the right sort of material, presented in an exciting way? Does the university have a strong reputation that will impress future employers? What is the social life like in both the university and the surrounding community? Is it a good and affordable place to live? Will the campus provide a nice working environment?

Obviously, there is no single correct answer to such a diverse set of questions, as each potential student has different needs and priorities, but it is important to take the time to figure out what matters most to you, and which options most closely match your requirements.

As well as reading through this booklet, please feel free to contact us and to come along to our open days, so that we can provide a full picture that will enable you to identify the right choice for you.

If you do choose to study for your degree in our school, you will be joining a vibrant, internationally renowned, Nobel Prize winning community of teaching and research, situated on a green and pleasant campus within a student-friendly city. We offer a stimulating and dynamic curriculum that will take you right to the cutting edge of modern physics, as well as providing opportunities to pursue any particular specialised sub-disciplines that capture your imagination. You can be assured that my academic colleagues, who will guide your studies, will also be dedicated to supporting you throughout your time at The University of Nottingham.

Finally, let me take this opportunity to wish you every success in your current and future studies, whatever path you ultimately choose to follow.

Professor Michael Merrifield
Head of the School of Physics and Astronomy

@UoN_Physics
Why study physics and astronomy at Nottingham?

Students have been coming to Nottingham to learn about physics since the University was founded in 1881. The first professor was Sir Ambrose Fleming, of left- and right-hand rule fame, who insisted that good teaching and high-quality original research were to have equal priority; a balance that we still strive to maintain.

The school
The School of Physics and Astronomy is a flourishing member of the Faculty of Science. We are committed to excellence and innovation in teaching and run one of the most popular undergraduate degree programmes in the country. We have more than 50 research-active members of academic staff, all of whom are closely involved in undergraduate teaching. We also draw on the skills of some 50 support staff who keep the laboratories running smoothly, maintain the school’s computing facilities, and administer the courses.

Our annual undergraduate intake is typically 165 students. This size of class allows us to maintain an important balance. The number is small enough for us to know all of our students as individuals and maintain personal contact via regular tutorials and informal meetings with lecturers – yet it is also large enough to allow us to offer a wide range of subject options, so you can tailor your degrees to your scientific interests.

Our reputation
We are proud of the high standard of teaching in our school which is well-received by our students. The school was rated highly by our final-year students in the latest National Student Survey, with 95% of our students stating 'overall satisfaction' with their physics degree course. The high quality of our degrees means that our teaching programmes are accredited by the Institute of Physics.

Equally important to a student is the quality of the institution’s research. Not only is it vital that you are taught by those currently working at the forefront of the subject, but you will also want plenty of opportunities to get involved yourself through projects, optional modules and summer internships.

We are exceptionally proud that in the recent Research Excellence Framework (2014) we were ranked equal third of all physics departments in the UK for our research. As an indication of our research quality overall, 37% was categorised to be ‘world-leading’ (4*). This assesses both the quality of recent research as well as the impact on society of earlier research by the School.

We are also proud of the international acclaim that came with the award of the Nobel Prize, in 2003, to one of our members of staff – Professor Sir Peter Mansfield – for his groundbreaking work on magnetic resonance imaging (MRI).

Teaching environment
The school is well equipped with all the facilities needed to provide a modern teaching and learning environment. Our lecture theatres have been refurbished with state-of-the-art audiovisual equipment. There are specific laboratories for each year group, each supported by a dedicated teaching technician. The highly interactive nature of the fourth year of the MSci programmes requires special facilities for the various student-led activities, so we provide a research area and computer room specifically for these students.

We have also invested heavily in the teaching laboratories to provide up-to-date experimental apparatus and information technology to ensure an environment conducive to learning practical skills. Familiarity with computer technology is a key skill for the modern physicist, and the school supports this with more than 90 open-access PCs exclusively for our students’ use. You will be given password access to various software and word-processing packages and to internet and email communications; these services can be accessed throughout the campus, in halls of residence and on the available wireless networks.

Students with disabilities
We have experience in teaching those with disabilities, such as visual impairment, and our lecture theatres are fitted with a loop system for those with hearing difficulties.

Your tutor
You will be allocated a tutor who will guide your studies and take an interest in your academic progress and personal well-being. This begins in the first year where, together with four other students, you will meet your tutor each week to review your work and answer questions on your lectures. The frequent contact with your tutor also provides a ‘safety net’ to allow us to make sure that you are thriving in the university environment, and to direct you to the University’s specialist support services.

“The facilities are very good – we are taught in newly refurbished lecture theatres, which have the very latest AV technology, and the labs are well equipped with plenty of computers.”

Physics with Medical Physics student
Degree courses

<table>
<thead>
<tr>
<th>Physics and Astronomy</th>
<th>UCAS code</th>
<th>Duration</th>
<th>A levels</th>
<th>IB</th>
<th>Places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Physics</td>
<td>F300</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics</td>
<td>F303</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with Astronomy</td>
<td>F3F5</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with Astronomy</td>
<td>F3FM</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with Nanoscience</td>
<td>F390</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with Nanoscience</td>
<td>F391</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with Medical Physics</td>
<td>F350</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with Medical Physics</td>
<td>F371</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with European Language</td>
<td>F3R9</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with European Language</td>
<td>F3RX</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with Theoretical Physics</td>
<td>F344</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with Theoretical Physics</td>
<td>F345</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Physics with Theoretical Astrophysics</td>
<td>F346</td>
<td>3 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MSci Physics with Theoretical Astrophysics</td>
<td>F340</td>
<td>4 years</td>
<td>A*AA-AAA†</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BSc Chemistry and Molecular Physics</td>
<td>FF31</td>
<td>3 years</td>
<td>AAB††</td>
<td>34**</td>
<td></td>
</tr>
<tr>
<td>MSci Chemistry and Molecular Physics</td>
<td>FFH1</td>
<td>4 years</td>
<td>AAB††</td>
<td>34**</td>
<td></td>
</tr>
</tbody>
</table>

Single honours (continued)					
BSc Mathematical Physics	F326	3 years	A*AA-AAA†	*	155^
MSci Mathematical Physics	F325	4 years	A*AA-AAA†	*	155^
Joint honours					
BSc Physics and Philosophy	FV35	3 years	A*AA-AAA†	*	155^
Foundation programmes					
Science with Foundation Year	CGFO	4 years**	BBB***	30	30
Science with Foundation Year	CFGO	5 years**	BBB***	30	30

1 Including maths and physics
2 Including chemistry, maths and physics
3† Plus GCSE maths, B or above and BB/BBB GCSE science
4 6,6,6 at Higher Level including physics and maths
5 6 in chemistry, maths and physics, preferably with two at Higher Level
6 Fully integrated programmes lead to bachelors or masters degree
^ 155 places across all physics and astronomy degrees
Three or four years?
One decision that you will have to make is whether to opt for a three-year Bachelor of Science (BSc) degree, or whether to invest the extra time in a four-year Master of Science (MSci) degree. Significantly, the final year of the MSci Physics and ‘Physics with’ degree programmes here is rather different from many other universities, in that the emphasis is on student-centred learning rather than lectures; assessment is by coursework, with no exams.

The MSci course teaches you a broader range of high-level skills, allowing you to apply and enhance your knowledge through project work. In our experience, students enjoy and respond well to this challenge; notably they value the training and experience when making their job applications.

‘Physics with’ and other ‘joint’ degrees
If you are interested in a particular area of physics, a ‘Physics with’ degree may be for you. For example, the Physics with Astronomy degrees allow you to combine the study of physics with astronomy. Similarly, the Physics with Medical Physics degrees teach you about applications in the field of medicine. The Physics with Theoretical Physics and Physics with Theoretical Astrophysics degrees explore the more theoretical side of the subject in greater detail, with correspondingly less emphasis on experimental work.

If you wish to pursue a European language to a higher level, then the Physics with European Language degrees give you the option to spend a year at universities throughout continental Europe. An exchange programme in North America allows students to spend a year at the University of Toronto. In addition, MSci project work can involve overseas travel; we have a successful exchange programme with Fudan University in which two students visit China to carry out their research project. Also, astronomy research projects in Rio de Janeiro, Brazil, have recently been added to our portfolio of fourth-year project opportunities.

Don’t worry if you’re not yet sure which of these possibilities you would like to pursue. Our programme structure provides a large amount of flexibility, which will allow you to transfer between courses.

If you wish to combine studies with other disciplines, then we offer honours degrees in Mathematical Physics (taught jointly with the School of Mathematical Sciences), Chemistry and Molecular Physics (taught jointly with the School of Chemistry), a joint honours degree in Physics and Philosophy, and Natural Sciences, for which you can choose physics as one of your pathways. A complete overview, showing the basic structure of the degree programme as well as details of the individual modules, can be found on our website: www.nottingham.ac.uk/physics
This diagram gives an overview of the typical syllabus and course structure for Physics and ‘Physics with’ courses at Nottingham. Generally all courses have the same core elements. Exceptions to this include Physics with Theoretical Physics where the laboratory components after year one are replaced by modules in the methods of theoretical physics.

The BSc degree is three years and the MSci is four years. The inner ring of the torus represents the core modules required by most physics courses. The outer ring shows the specialised options from which you can choose, enabling you to tailor your degree to suit your own interests and strengths.

Students on ‘Physics with’ courses must take the particular options that define their named degree.
BSc Physics
The BSc Physics degree forms the core of our teaching programme. Within the three years of this programme you will learn the fundamentals of modern physics, together with the mathematical, practical and computational skills that you will need to fully appreciate the subject. The modules in the first year will provide you with knowledge of key physical processes, skills in practical physics for carrying out experiments, and the mathematical tools that you will need to derive the theory that underlies the physics.

In subsequent years, you will build on these core skills to study all aspects of physics including quantum theory, statistical mechanics, solid-state physics, optics and electromagnetism. In addition, you will have the option to specialise and take more advanced modules in aspects of physics that particularly interest you.

The practical work involves learning more advanced experimental techniques such as the computer control of experiments, and applying these skills to more sophisticated experiments. In the third year, you will undertake a project on a topic in an area that interests you, and apply the theoretical, computational and experimental techniques that you have learned to a problem at the cutting edge of physics. You may also opt to take a module that enhances your written and oral presentation skills.

A unique aspect of the programme is built around the ‘synoptic’ elements that occur throughout the course. These bring together the various strands of physics in order to see how all these topics fit together. Thus, you will develop an overview of the whole structure of the current knowledge of physics (as well as where there are still large gaps!). Obtaining an understanding of this ‘big picture’ is a vital part of the training of any scientist. The synoptic elements make use of a variety of teaching methods including tutorials, problem classes and work in small groups.

“The course strikes a good balance between theoretical lectures and practical lab work.”
Physics student

Typical modules for BSc/MSci Physics (F300/F303)

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three</th>
<th>Year four (MSci only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core modules include:</td>
<td>Core modules include:</td>
<td>Core modules include:</td>
<td>Core module:</td>
</tr>
<tr>
<td>• From Newton to Einstein</td>
<td>• The Quantum World</td>
<td>• Physics Project</td>
<td>• Gravity</td>
</tr>
<tr>
<td>• Computing for Physical</td>
<td>• Thermal and Statistical</td>
<td>• Atoms, Photons and Fundamental</td>
<td>• Politics, Perception</td>
</tr>
<tr>
<td>Science</td>
<td>Physics</td>
<td>Particles</td>
<td>and Philosophy of</td>
</tr>
<tr>
<td>• Introductory Experimental</td>
<td>• Classical Fields</td>
<td>• Introduction to Solid</td>
<td>Physics</td>
</tr>
<tr>
<td>Physics</td>
<td>• Wave Phenomena</td>
<td>State Physics</td>
<td>Order, disorder and</td>
</tr>
<tr>
<td>• Quantitative Physics</td>
<td>• Intermediate Experimental</td>
<td></td>
<td>fluctuations</td>
</tr>
<tr>
<td>• Mathematics for Physics and</td>
<td>Physics</td>
<td></td>
<td>• Advanced topics in</td>
</tr>
<tr>
<td>Astronomy</td>
<td></td>
<td></td>
<td>Nanoscience Research</td>
</tr>
<tr>
<td>Optional modules include:</td>
<td>Optional modules include:</td>
<td>Optional modules include:</td>
<td></td>
</tr>
<tr>
<td>• The Structure of Stars</td>
<td>• From Accelerators to</td>
<td>• From Accelerators to</td>
<td></td>
</tr>
<tr>
<td>• The Structure of</td>
<td>Medical Imaging</td>
<td>Medical Imaging</td>
<td></td>
</tr>
<tr>
<td>Galaxies</td>
<td>• Atmospheric Physics</td>
<td>• Introduction to Cosmology</td>
<td></td>
</tr>
<tr>
<td>• Health Physics</td>
<td>• Extreme Astrophysics</td>
<td>• Functional Medical Imaging</td>
<td></td>
</tr>
<tr>
<td>• Force and Function</td>
<td>• Functional Medical</td>
<td>• Imaging and Manipulation at</td>
<td></td>
</tr>
<tr>
<td>at the Nanoscale</td>
<td>Imaging</td>
<td>the Nanoscale</td>
<td></td>
</tr>
<tr>
<td>• Molecular Biophysics</td>
<td>• Nonlinear Dynamics</td>
<td>• Light and Matter</td>
<td></td>
</tr>
<tr>
<td>• Principles of Dynamics</td>
<td>• Quantum Coherent Devices</td>
<td>• Quantum Transport</td>
<td></td>
</tr>
<tr>
<td>• Symmetry and Action</td>
<td>• Quantum Coherent Phenomena</td>
<td>• Research Techniques in</td>
<td></td>
</tr>
<tr>
<td>Principles in Physics</td>
<td>• Quantum Dynamics</td>
<td>Astronomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Soft Condensed Matter</td>
<td>• Modern Applications of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Semiconductor Physics</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Scientific Computing</td>
<td>• Theory Toolbox</td>
<td></td>
</tr>
</tbody>
</table>

For more detailed module information please visit the individual course listings at www.nottingham.ac.uk/ugstudy
MSci Physics

The four-year MSci degree allows you to cover physics in more breadth and depth than is possible on the conventional BSc degree. At Nottingham, we also place a greater emphasis on transferable skills, which are taught in an innovative 'student-centred' manner. To allow you the maximum degree of flexibility in transferring between courses, the first two years of the MSci programme are the same as the BSc.

In the third year, much of the core material remains common to both the BSc and MSci, but MSci students also receive preparation for the student-centred learning of the final year. You will act as a student consultant, and having characterised the problem you will set about devising a solution. To do this, you will draw on your extensive knowledge of physics, seeking advice from the staff here and using the resources of the school to implement your proposals. These projects offer the benefit of allowing you to apply to a real-world research problem. They also allow you to practise your transferable skills and this means that as a graduate you are well prepared for a wide variety of careers, including research and the world of business.

The transferable skills acquired in these student-centred modules (collaborative research, working to deadlines, making presentations) are highly prized by employers, giving MSci graduates a major advantage in the job market.

In the fourth year itself, the traditional structure of lectures, private study and examinations is entirely replaced by continuously assessed team-based activities such as the preparation of scientific reports, problem solving, and student presentations of advanced physics lectures. Building on the skills developed in earlier years, you will work closely with the industrial world and the hospitals and research institutions as well as the student-centred teaching of the final year. The innovative style of this project module and the quality of the work produced by our students has been highly acclaimed by the external examiners. Project sponsors include companies and industry, local hospitals and research institutions as well as leading research groups in the school. Many career paths are open to graduates of these degrees, not just astronomical research. Astronomy graduates acquire a wide range of skills in image processing and data analysis, particularly in the maintenance, organisation and processing of large and complex data sets. For this reason, astronomy graduates are much sought after in the industrial and financial sectors.

BSc/MSci Physics with Astronomy

The school offers both BSc and MSci degrees in Physics with Astronomy. You will find very similar course structures to those of the corresponding physics degrees, as you will receive the core lectures in physics that are common to all single honours physics courses. Additionally, we draw on the expertise of the school's internationally known astronomy research group to teach a number of specialised astronomy modules. The lectures are backed up by astronomy tutorial classes, pertinent practical work and directed reading.

In the first year of the course, you take a general introduction to astronomy through the Frontiers in Physics module, which assumes no prior knowledge of the subject. It is followed up in the second year with modules on the Structure of Stars and the Structure of Galaxies. In the third year, you take more advanced modules in Cosmology and Extreme Astrophysics, which are designed to deepen the physical understanding of the basic concepts, and to provide a thorough grounding in most areas of contemporary activity in astronomy.

Astronomy graduates acquire a wide range of skills in image processing and data analysis, particularly in the maintenance, organisation and processing of large and complex data sets. For this reason, astronomy graduates are much sought after in the industrial and financial sectors.
BSc/MSci Physics with Nanoscience

Two innovative degree courses in nanoscience and nanoscale physics are now offered by the School of Physics and Astronomy.

The Nottingham Nanoscience Group is internationally renowned for its research in areas such as self-assembly and self-organisation, single-molecule manipulation, molecular nanostructures, and soft surfaces and interfaces. The Physics with Nanoscience courses exploit this expertise to provide you with the highest-quality teaching and training, informed by the latest developments in the field.

Both the BSc and MSci courses provide a sound foundation in physics together with specialised nanoscience modules. Building on a year-one introduction to the fundamental physics and chemistry underpinning the interactions of atoms and molecules, year two of the course addresses questions which are at the very core of nanoscience. These include:

- How do forces at the nanoscale differ from those observed in macroscopic systems?
- What strategies should we use to build nanoscale/molecular motors and machinery?
- What are the ultimate limits of miniaturisation and what physical and chemical processes can we harness in the development of nanosensors?

In year three, the manipulation of matter via directed-assembly will be covered in a module entitled Imaging and Manipulation at the Nanoscale. Scanning probe microscopy (SPM) underpins practically every area of nanoscience, and the use of SPMs to image, move and ‘feel’ individual atoms and molecules will be covered in considerable depth. Year four covers advanced experimental and theoretical techniques for the study of nanostructures on surfaces and their self-assembly.

The third year of the course also involves a major project where you will gain hands-on experience of experimental, theoretical or computational research problems in nanoscale physics. Potential project areas include: the application of SPMs to the study of molecular nanostructures; pattern formation in nanoparticle assemblies; and the development of computer models to simulate self-assembling nanosystems. Similarly, in the final year of the MSci course, you will have the opportunity to work in a nanoscience research laboratory in the School of Physics and Astronomy and, more importantly, to get involved in collaborative work with researchers in disciplines other than physics (e.g., chemistry, pharmacy or materials science).

Nanoscience – the study and manipulation of the fundamental atomic and molecular building blocks of matter – exploits our understanding of the physics of the ultra-small to create entirely new structures and devices.
BSc/MSci Physics with Medical Physics

The BSc and MSci Physics with Medical Physics degrees give you the opportunity to study the many medical applications of advanced physics. Medical physics modules, taught by staff of the School of Physics and Astronomy, are supplemented by specialist lectures given by senior practising medical physicists from the adjacent Queen's Medical Centre (one of Europe's largest accident and emergency hospitals) and from other leading healthcare centres and research institutions.

Both the MSci and the BSc degrees have the same physics core, common to all the single honours physics courses. They also cover the basic elements of medical physics and biophysics in a coherent, interconnected series of modules. Experience of hospital physics may be gained in practice, together with an insight into medical physics research.

In the first year there is an introduction to medical physics through the Frontiers in Physics module. The subject is developed through more substantial modules in the second year, which also include aspects of molecular biology, biotechnology, the physics of the human body, medical instrumentation, radiation physics and radiotherapy. In the third year, the accent is on medical imaging, including magnetic resonance imaging (MRI) in which the school is a world leader – our invention of the technique was recognised with the award of a Nobel Prize.

At this point, the BSc and MSci courses diverge. BSc students undertake a project in the Medical School or the Magnetic Resonance Centre (a £5m research annex adjacent to the School of Physics and Astronomy, which houses the sophisticated equipment that MRI requires). The MSci degree has the unique University of Nottingham emphasis on student-centred activity, but is firmly based around topics of interest to medical physicists.

A variety of career paths are open to graduates with these degrees, not just medical physics. For example, the course forms an excellent base for a career in biotechnology, and occupational or environmental monitoring. Students are frequently inspired to study for a research degree in this area; research studentships are often available at the school and many former students have built distinguished academic and industrial careers via this route.

“So far, the course has more than exceeded my expectations; it covers a broad range of topics from environmental physics to astrophysics and I just make sure that I turn up and grab every opportunity that presents itself.”

Physics with Medical Physics student

Preparation for imaging in one of the school’s MRI scanners.
BSc/MSci Physics with European Language

The aim of these courses is to provide a broad and challenging programme in physics together with training in a second European language. The first and second years are very similar to the BSc Physics degree, but the appropriate language is also studied in the University’s Language Centre. The third year is spent abroad, assuming that you have passed the language examination to an appropriate standard and achieved the required physics average. During the year abroad, you will study physics in a foreign university in your chosen language, and all classes and examinations will be in that language.

As part of our commitment to student support, we maintain frequent contact with students, including during their year abroad, to be sure that everything is progressing satisfactorily. For the BSc degree, you will only be required to pass this year as a qualifying hurdle to continue into the fourth year of the course, which will then follow a similar pattern to the third year of the BSc Physics degree.

For the MSci, the marks will count towards your degree classification. You will take a set of physics modules chosen in consultation with your home and host universities to complement those available here. The fourth-year modules to be taken when you return are then chosen to follow on from the topics you studied abroad. At the present time, we have on-going integrated courses with:
- Institut National des Sciences Appliquées de Toulouse, France
- École Polytechnique Fédérale de Lausanne, Switzerland
- Ludwig-Maximilians-Universität München, Germany
- Universidad Complutense de Madrid, Spain

If you are interested in studying a European language not covered by these institutions, we are happy to make the necessary arrangements.

“One of the great things about studying here is the diversity of students – from different countries and cultures. I enjoy learning from other people and will probably stay on at Nottingham to pursue a masters degree.”

Physics and Philosophy student

BSc/MSci Physics with Theoretical Physics

The BSc and MSci programmes in Physics with Theoretical Physics are based on the common core of physics modules, but with no practical work after the first year. Instead, you will study a set of modules that provide knowledge of a wide range of sophisticated theoretical techniques and applications of these mathematical techniques to physical problems.

In the third year, you will carry out a theoretical physics project. In addition, you will be able to choose from a range of modules in topics such as astrophysics, condensed matter physics, and nuclear and particle physics. For the MSci course, you will also be given preparation for the different style of learning in the fourth year, including communication skills training.

The fourth year follows a similar structure to the MSci Physics degree. The final quarter of the year is dedicated to a major project carried out in small groups. These projects are based around topics drawn from the broad range of leading theoretical physics research undertaken at the school.

BSc/MSci Physics with Theoretical Astrophysics

These degrees follow the same structure as the Physics with Theoretical Physics programmes described previously. In addition to the core theoretical physics elements, you will take the astrophysics modules from the Physics with Astronomy programme.

This combination of material will provide you with a thorough grounding in theoretical astrophysics, providing an excellent springboard for those who plan to pursue research in this area, as well as those who have an interest in theoretical astrophysics but are looking to the broad range of careers available to graduates with a physics degree.

The final-year project work in these degrees will allow you to get involved in the cutting-edge theoretical astrophysics research undertaken in the school, which includes both analytic and large-scale computational studies of everything from the fluctuations in the microwave background radiation to the formation of large-scale structures in the universe.
BSc/MSci Chemistry and Molecular Physics
The School of Physics and Astronomy and the School of Chemistry have jointly developed the Chemistry and Molecular Physics degrees, with a strong emphasis on the inter-relationship between the basic disciplines of physics and chemistry. The courses offer a rare opportunity for an integrated study of molecular and solid-state physics, quantitative aspects of chemistry, and the application of modern instrumental techniques; this combination has proved very popular with students and employers alike. The physics and chemistry modules make up equal fractions of the course, and are underpinned by a supporting mathematical base.

In the first year, courses in physics, chemistry and mathematics are taken in common with other students registered on physical science degree courses. This allows the maximum of flexibility; a final choice of BSc or MSci, Physics, Chemistry or Chemistry and Molecular Physics can be made after the first-year examinations.

The topics covered in the second year include atomic and molecular spectroscopy, quantum mechanics, quantum chemistry and bonding, classical fields, chemical reaction kinetics, physical aspects of organic chemistry, interfaces, electrochemistry and thermodynamics. Laboratory sessions are conducted in both schools to develop experimental skills in physics and chemistry.

In the third year, core lectures are attended in which the unified theme of chemistry and molecular physics is developed. You can also choose from a range of specialised modules which cover topical subjects in depth. The practical components comprise a 10-week laboratory project and a major literature review exercise.

The four-year MSci course is designed to cover the subjects in more breadth and depth than is possible on the BSc course. We also teach you transferable skills in communications and problem solving in innovative ways. A substantial part of the fourth year is spent on an extended experimental or theoretical research project.

Final-year student Jasmine Rivett working in the nanoscience research laboratory.
BSc/MSci Mathematical Physics

Ever since Newton invented calculus to develop his theories of motion and gravity, mathematics and physics have been inexorably linked. Today, students on our BSc and MSci programmes in Mathematical Physics study modules taught by the School of Physics and Astronomy and the School of Mathematical Sciences that provide a thorough background in the mathematical techniques and concepts physicists and mathematicians use today.

In the first year, you will study modules in classical and relativistic physics that are core to our physics degrees, along with modules in calculus, linear mathematics and analytical foundations of mathematics that are core to our mathematics degrees. In year two, you will learn about many of the classic theories of physics including electromagnetism, quantum mechanics, thermal and statistical physics and optics. In parallel, you will learn about the mathematical language in which these theories are expressed, including vector calculus, mathematical analysis and Fourier theory. There is also the opportunity to take some option modules according to your interests.

The BSc programme allows a further range of options to be studied in the final year, along with a project in either physics or mathematics. As part of the third year project, MSci students receive training in communication skills in preparation for the more student-centred approaches taken in some of the fourth-year physics modules. The fourth year of the MSci has options that may include topics such as black holes, quantum field theory, advanced gravity and theoretical particle physics. It also includes a substantial project in either applied mathematics or theoretical physics.

There is no laboratory component to our Mathematical Physics courses. Transfer from the Mathematical Physics degrees to single-honours Physics, Physics with Theoretical Physics/ Astrophysics or Mathematics is possible at the end of the first year.

For more information on the syllabus and module structure of the BSc/MSci Mathematical Sciences, please see www.nottingham.ac.uk/ugstudy/courses/physicsandastronomy

BSc Physics and Philosophy

The close links between physics and philosophy go back at least as far as the ancient Greeks. The novel joint honours Physics and Philosophy degree allows students to explore the rich interplay between these two disciplines.

In the first year, the modules are divided between physics, philosophy and mathematics. The physics and mathematics modules are similar to those taken by the single honours physics students, which means that transfer between courses is possible. Because of the inherent diversity of a joint honours course, the full range of options offered to single honours students is not available to joint honours students – but there is still some flexibility in the modules that students on this degree programme can take, even in the first year.

In the second and third years, physics and philosophy modules are taken in parallel; the workload is equally divided between the two subjects. The physics component consists of an appropriate selection from the modules that make up the single honours Physics course, while a wide variety of topics is covered in philosophy, with options ranging from formal logic or the philosophy of science, to Wittgenstein or the philosophy of law.

In order to fit in both subjects, there is no laboratory element to the programme. However, in the final year you will have the choice of undertaking either a dissertation in philosophy or a theoretical project in physics.

For more information on the syllabus and module structure of the BSc Physics and Philosophy, please see www.nottingham.ac.uk/ugstudy/courses/physicsandastronomy

Science Foundation Programme (Physics Pathway)

The Science Foundation Programme is a one-year full-time course for students who have the potential to succeed in degree-level science subjects but do not, at the time of applying, have the appropriate qualifications for direct year-one entry. The intake requirement ‘potential to succeed’ is determined on an individual basis, taking into account previous academic experience and work-life experience. Candidates will not normally have previously studied for A levels in both mathematics and physics.

A physics pathway is defined within the broader structure of the Science Foundation Programme, and upon successful completion there is guaranteed entry to your choice of physics undergraduate degree at Nottingham.

The objective of the foundation programme is to provide you with a solid grounding in a range of relevant science subjects. All physics pathway students study 40 credits of maths, 70 credits of physics and 10 credits of study skills. The physics modules cover a core of basic and more advanced topics in everything from quantum mechanics to astronomy, as well as practical skills.

All modules are taught on University Park Campus by academic staff from the main science schools and departments. The modes of delivery include lectures, practical work in laboratories and tutorial and self-directed coursework. Modules are assessed through a combination of examinations (approximately 60%) and coursework (approximately 40%).

“I’m visually impaired but I’ve found getting around campus relatively easy. Staff in the school have been particularly helpful – the lecturers are constantly finding new ways of aiding my learning process.”

Physics and Philosophy student
How will I study?

Teaching and learning

Typically there are 10 lectures per week and, in addition, your understanding is reinforced by working through problem sheets and directed reading. The course structure ensures there are formative assessments throughout the year to help you to guide your studies and to obtain regular feedback on how you are getting on. With an ‘open door’ policy, if there is something you do not understand, you are always welcome to go and discuss it with the appropriate member of academic staff.

In addition, you will typically spend two to three hours per week on tutorials, computing and problem classes. The practical modules usually involve working six hours per week in laboratories, where, in addition to traditional experimental techniques, we emphasise the importance of computer control in the modern laboratory. To this end, we teach you to use the industry standard MATLAB software to control a variety of experiments. Many students go on to apply these skills in their research-project work.

Modules and credits

To allow you to tailor your single honours degree programme to your own interests, you have at least 10 credits per semester where you can choose what you want to study. By the third year, nearly one half of your course can be selected from a range of physics options. You can use this flexibility to explore aspects of physics that interest you in greater depth. We offer a range of module options, including:

- Medical Physics
- Nanoscience
- Particle Physics
- Principles of Dynamics
- Quantum Optics
- Semiconductor Devices
- Structure of Stars and Galaxies

However, you are also free to choose 10 credits per semester from elsewhere in the University; you might want to improve your future employability with modules in a language or business skills, or (subject to certain pre-requisite skills) you could choose to pursue an interest in anything from archaeology to zoology.

Library and computing services

At Nottingham, you will benefit from access to an extensive collection of printed and online library resources. In addition, you will have both on- and off-campus access to a very wide range of databases, ejournals and ebooks, relevant both to your subject and any modules in other subjects.

Key Information Sets

Key Information Sets (KIS) are comparable sets of information about full or part time undergraduate courses and are designed to meet the information needs of prospective students. All KIS data is published on the Unistats website: www.unistats.co.uk

For Nottingham’s KIS data, please see individual course entries at www.nottingham.ac.uk/ugstudy

“**The best thing about my course is that it allows you to cover a bit of everything to see what interests you.”**

Physics with Medical Physics student

Second-year physics student Natalie Wilson working in the laboratory with an X-ray diffractometer.
How will I be assessed?

Assessment
Most examinations are taken in May and June and in years one to three typically comprise four or five exam papers. Additionally in years two and three, one or two papers will be sat in January, which examine any specialised option modules you may have taken in the autumn semester.

For a typical ‘core’ module the examination carries a weight of 75%, the remaining 25% usually being allocated for regular coursework and workshop assignments throughout the year. Experimental and other practical work is continually assessed through laboratory notebooks and formal reports.

The fourth year of the MSci Physics and ‘Physics with’ courses has no examinations. In this year the emphasis is on learning advanced, cutting-edge physics in a student-centred and project-style environment. In this year you will be working more in the style of a professional physicist in an industrial or academic environment. All of the assessment is through reports and assignments.

The professional and transferable skills highly valued by employers form an important part of the fourth year, so training includes report writing, presentations, problem solving and application of advanced mathematical skills to complex physics systems.

One-third of the fourth year is the Physics Research Project which assesses the full range of physics and transferable skills required of a professional physicist.

The teaching year
The teaching year is divided into two semesters. The first semester lasts for 14 weeks, with 12 weeks for teaching and revision and 2 weeks for assessment. The second semester follows the same pattern, but there is an additional two weeks at the end to complete the assessment process and to enable returning students to discuss their results with tutors and begin to plan the next session’s work.

Although the teaching year is divided into two semesters for organisational purposes, this is fitted into the traditional pattern of three terms: one before Christmas; one between Christmas and Easter; and one after Easter.

Your final degree classification
The first year of our physics courses is a qualifying year, meaning the assessments do not contribute summatively to your degree. For BSc courses the second and third years are weighted 30:70 respectively in determining your final degree (for BSc Mathematical Physics the ratio is 30:70).

For MSci courses the second, third and fourth years are weighted 20:40:40, except Physics with European Language which is 25:25:50.
Career and employability prospects

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers*.

Physics is a fundamental subject that serves as a foundation for most areas of science and engineering. Due to their training, physicists are adaptable and proficient at mathematics and problem solving. Employers see a physics graduate as someone who has demonstrated an ability to work through a demanding course of study and who has gained a wide variety of transferable technical skills.

The range of careers enjoyed by our graduates, and their success in finding lucrative positions, are measures of just how many employers appreciate the value of a physics degree.

Graduate career destinations
Approximately 39% of the school’s graduates go on to study for a higher degree, either here or elsewhere. About 25% go into science or engineering, 20% enter the financial sector, 10% move into management roles, and the remainder take up a wide variety of careers including teaching, law, meteorology and in the media.

Average starting salary
In 2013, 87% of first-degree graduates in the school/department who were available for employment had secured work or further study within six months of graduation. The average starting salary was £23,046 with the highest being £30,000.*

Recent graduates
Recent graduates include David Farmer – studying for a PhD at The University of Nottingham; Clare Goddard – Research Scientist, Tokyo University; Helen Sheehan – Aerothermal Engineer, Rolls-Royce Fuel Cells Systems.

The University’s Careers and Employability Service
Our Careers and Employability Service, which is based on University Park Campus, offers an extensive range of careers-oriented services, including CV-writing sessions, interview advice, presentations by major employers and general career advice. As a University of Nottingham graduate, you will receive lifelong support from the service. This means that you can ask a careers adviser to look over your job application by email or Skype, or in person, and you can also access a database of graduate vacancies. For more information see www.nottingham.ac.uk/careers

The Nottingham Advantage Award
The University’s Advantage Award is a programme of activities developed to recognise and reward extracurricular responsibilities. It allows you to gain recognition for participating in a wide range of activities accredited by the University and delivered by top graduate employers, professional services and members of staff of the University. It also shows employers that you have gone above and beyond your degree and gained valuable transferable skills. For further information, please visit www.nottingham.ac.uk/careers/advantage

** Known destinations of full-time home and EU first-degree graduates, 2012/13.
"I went to Uzbekistan to do a placement in biophysics. That was incredible. I was there for a month and studied things that I never dreamed I would study. I got some really good experiences – not only in physics but also of a country I would never have been to otherwise."

Anisa Mazidian/MSci Physics (third year)

Find out more about Anisa’s experience at www.nottingham.ac.uk/ugvideos/anisamazidian

Anisa is working on an experiment called Optical Pumping of Rubidium which investigates the differences in energy levels of atoms in a rubidium vapour and energy interactions between atoms.
Your student experience

You’ve read lots about the degree programme you’re interested in, now it’s time to explore life outside the lecture theatre. There’s so much for you to get involved in and explore at the University and around the city. We are proud to be one of the leading universities for student experience in the UK*, which will ensure that you have a university experience you’ll never forget.

Your University of Nottingham – at home and around the world

We are proud of our stunning campuses and are continually investing in our grounds, buildings and amenities to ensure that you only have the best surroundings in which to live and study. Our main UK campuses have a mix of state-of-the-art facilities, including sports centres, places to eat and excellent learning facilities on every campus. We’ve made getting from campus to campus as easy as possible and students can benefit from our free inter-campus Hopper Bus, so you’re never far away from the striking architecture and innovative technology of Jubilee Campus, the rolling parkland and period buildings at University Park, or the cutting-edge features of Sutton Bonington.

The University of Nottingham is Britain’s global university with campuses in the UK, China and Malaysia. We also have links with more than 300 universities in over 40 countries, adding a truly global flavour to your degree and giving you the chance to explore the world. Find out more: www.nottingham.ac.uk/about/campuses

Your opportunity to study abroad

As a University of Nottingham student, you will be able to apply for a variety of study abroad options. Whether studying at a partner institution or undertaking a work experience placement, spending time abroad is a fantastic opportunity to broaden your horizons, experience different cultures, meet new people and develop skills that will prove invaluable in the future and look good on your CV. If you do decide to apply to study abroad, the University will offer support from the application stage right through to your return to the UK, with advice on everything from immigration to possible sources of financial support. Find out more: www.nottingham.ac.uk/studyabroad

Your support network

Throughout your university journey there will be numerous people on hand to support you, including tutors and dedicated staff who will be able to advise you on various aspects of life as a student. We have Student Services Centres on all three of our UK campuses, which provide a range of support, information and specialist services to enhance your student experience. This support includes:

- **Academic Support** – can provide practical advice on areas of academic study; the service also provides specialist academic support for students with dyslexia, dyspraxia and other specific learning difficulties
- **Disability Support** – coordinates support and access arrangements for students with a disability or long-term medical condition
- **Financial Support** – provides information on the sources of finance available from government agencies and the University itself, and gives advice about financial matters
- **Student Services** – also advise on issues ranging from childcare, counselling and health to international student support, chaplaincy and faith support, as well as offering advice on paying your tuition and accommodation fees

Whatever you may need support with, they will either be able to help or point you in the direction of someone who can. Find out more: www.nottingham.ac.uk/studentservices

** Providing you submit your returners’ application in line with the requirements of the accommodation providers.
Getting involved in your Students’ Union
As soon as you start at The University of Nottingham, you are automatically enrolled as a member of our Students’ Union, which is considered to be one of the best in the country. There are hundreds of activities that you could be part of, providing you with the perfect opportunity to take up a new hobby or pursue existing interests. Choose from over 200 student-run societies, covering all interests and abilities, as well as local and national volunteering projects, to which you can commit as much or as little time as you wish.

Our Students’ Union is home to a number of award-winning student-run media groups, which give you the chance to gain practical work experience both behind the scenes or centre stage as a presenter, actor or journalist. The Nottingham New Theatre, Impact magazine, Nottingham Student Television (NSTV) and University Radio Nottingham (URN) have all been recognised as the best in their field, winning a clutch of awards for outstanding achievements.

However you decide to become involved in the Union, you can be sure you will make new friends and learn new skills, all while having a lot of fun! Find out more: www.su.nottingham.ac.uk

Sports
We offer sport at all levels and an excellent all-inclusive student membership offer, so whether you enjoy sport as a hobby or are an elite athlete we will have just what you need. We have over 70 sports clubs, which means we have the 2nd highest number of sports clubs of any UK university. If you’re not interested in joining a team but want to stay fit, we have sports centres on all of our main UK campuses. Find out more: www.nottingham.ac.uk/sport

Exploring your new city
With Nottingham city centre just a 10-minute bus ride away from University Park Campus, our students are always close to the action. Buses run through campus regularly and many run late-night services too, which is handy if you’re a night owl.

For music lovers, you can take your pick from the world-famous Rock City, Capital FM Arena or one of the smaller gig venues for a more intimate live show. Nottingham is rich in performance venues, with comedy clubs and theatres catering for lovers of drama, musicals, ballet and panto. We are very proud of our sporting heritage, and with football clubs Nottingham Forest and Notts County in the city, as well as Trent Bridge cricket ground and the National Ice Centre on your doorstep, you might just become a sports fan if you’re not one already.

History and culture can be found in all corners of the city, with Nottingham Castle, Nottingham Contemporary arts centre, the Galleries of Justice Museum, Nottingham Lakeside Arts – the University’s public arts centre located on our University Park Campus, art house cinemas and three of the world’s oldest pubs all providing points of interest. If you enjoy shopping, Nottingham is perfect for you; independent boutiques and vintage shops in the bohemian area of Hockley mix with high street names in our large shopping centres to make Nottingham a veritable shopping haven.

Find out more: www.nottingham.ac.uk/nottinghamlife

Download our city guide: www.nottingham.ac.uk/go/cityguide
Applying for a place

We are looking for students who have the ability and motivation to benefit from our courses, and who will make a valued contribution to the department and the University. Candidates for full-time admission are considered on the basis of their Universities and Colleges Admissions Service (UCAS) form. For more information on how to make your application stand out, have a look at our online prospectus:
www.nottingham.ac.uk/ugstudy/applying

Application process
All applications for an undergraduate place to study at The University of Nottingham (including applications by overseas students) must be made through UCAS. Applications should be made online at www.ucas.com. Candidates will be notified of decisions through UCAS Track at track.ucas.com

Your personal statement
This is the section of your UCAS form that tells us the most about you, and you should make the best use of it. Be as specific and detailed as you can – we would like to see that you are a student who can work hard, be self-motivating and make the best possible use of the opportunities this course might have to offer you.

Required subjects
Most applicants will have studied three or more A levels (to A2 level) and we require physics and mathematics to be among these (unless you undertake the Science Foundation Programme). Our offer grades will usually be in levels (to A2 level) and we require physics.

Most applicants will have studied three or more A levels (to A2 level) and we require physics and mathematics to be among these (unless you undertake the Science Foundation Programme). Our offer grades will usually be in levels (to A2 level) and we require physics.

Alternative qualifications
In this brochure you will find our A level entry requirements but we accept a much broader range of qualifications. These include:
- Access to HE Diploma
- Advanced Diploma
- BTEC HND/HNC
- BTEC Extended Diploma
- Cambridge Pre-U
- International Baccalaureate
- Irish Leaving Certificate
- Scottish Advanced Higher
- Welsh Baccalaureate Advanced Diploma

This list is not exhaustive; we will consider applicants with other qualifications on an individual basis. The entry requirements for alternative qualifications can be quite specific; for example you may need to take certain modules and achieve a specified grade in those modules. Please contact us to discuss the transferability of your qualification.

Flexible admissions policy
In recognition of our applicants’ varied experience and educational pathways, we employ a flexible admissions policy. If we judge that your situation has adversely affected your achievement, then we will consider this when assessing your academic potential. If you wish to mention information about your experiences in your personal statement, then you should ask the teacher or tutor writing your reference to confirm what you have written. We may ask for further evidence and may consider a range of factors. For more information, please see www.nottingham.ac.uk/go/admissionspolicies

Mature applicants
We encourage applications from mature students (which means all those aged 21 or over when the course begins). You should apply in the normal way through UCAS (unless you want to study part-time, in which case you should apply directly to the department). While we accept a range of qualifications, you should check our specific requirements on UCAS course entry profiles. If in doubt, please contact the admissions tutor, who will be happy to answer any specific queries you have about applying as a mature student.

We normally invite mature applicants in whom we are interested to come for an interview, where we will look for evidence of your ability to study at a high academic level and of commitment to the subject. If relevant include this paragraph For more information about being a mature student, please see www.nottingham.ac.uk/mature

International students
We welcome applications from international students and have students from many parts of the world studying with us at undergraduate and postgraduate level. All international candidates for undergraduate courses should apply through UCAS. The University’s International Office offers guidance and advice on matters such as visas and immigration regulations, working and living in the UK, entry requirements and preparing for coming to Nottingham – and arranges a Welcome Programme for new international students each September. If you would like to visit the University and are unable to attend an open day, the International Office will be happy to arrange an individual visit for you. For further information please visit www.nottingham.ac.uk/studywithus/international-applicants

Each year we offer scholarships to well-qualified international applicants. Please contact us to discuss entrance qualifications.

English language requirements
IELTS 6.5 (no less than 6.0 in any element)
TOEFL iBT 100 (no less than 20 in speaking and 19 in each other element). For more information and a list of the alternative English language requirements we accept, please see www.nottingham.ac.uk/go/alternativeresources
Frequently asked questions

How much are the fees?
Like many universities in England, Nottingham charges full-time UK and EU students an annual tuition fee of £9,000. However, you will not have to pay your fees while studying – the government will lend eligible students the money, which you will start to pay back once you have left university and are earning at least £21,000. For more information, please see www.nottingham.ac.uk/fees

Fees for students from outside the EU vary from subject to subject. For more information, please see the ‘New international students’ section on www.nottingham.ac.uk/fees

What bursaries are available?
The School of Physics and Astronomy is pleased to offer Sir Peter Mansfield High-Achiever Scholarships to physics applicants who enter the University with high grades at A level or equivalent qualifications. These are cash payments that will not have to be repaid. All candidates who meet the defined criteria will automatically receive an award to assist in financing their studies.

The school also offers first-year scholarships that reward hard work and achievement during the first year. Full details of our scholarships will be supplied at the UCAS visit days.

Although bursary figures for 2016/17 are yet to be finalised, the University will continue to offer a generous package of bursary support to students from lower income households. These are in addition to any support you may receive from the government. For more information please see please see www.nottingham.ac.uk/financialsupport or take a look at the funding tab on the relevant course entry in our online prospectus: www.nottingham.ac.uk/ugstudy

What support do you offer for students with a disability or dyslexia?
The School of Physics and Astronomy, like the University, is committed to promoting access for students who have a disability, dyslexia or a long-term medical condition. Services provided by the University aim to enable students to fulfil the inherent requirements of the course as independently as possible. The University’s Disability Statement, which lists services, facilities and opportunities available throughout the University can be viewed at www.nottingham.ac.uk/disability

What support is available for students with children?
There are a range of services provided to support students with children, including a University day nursery, a playscheme and playcentre day care. There is also a scheme to help students fund childcare. For more information, see www.nottingham.ac.uk/child-care

Visit our website for more frequently asked questions: www.nottingham.ac.uk/faqs

If you are an international applicant (outside of the EU), please see the ‘New international students’ section on www.nottingham.ac.uk/fees
Visiting and contacting us

Open days
If you’re considering applying to The University of Nottingham we recommend that you try to attend one of the University-wide open days, which are held in June and September each year and attract around 30,000 visitors. Find out more: www.nottingham.ac.uk/opendays

Mini open days
Mini open days are much smaller than the main open days but offer the same opportunities to attend various talks and tours as well as speak to current students and academics. Find out more www.nottingham.ac.uk/go/miniopendays or call +44 (0)115 951 5559.

Virtual open day
If you can’t attend one of our open days in person, or would like to explore our campuses before visiting, take a look at our virtual open day: www.nottingham.ac.uk/virtualnottingham

UCAS visit days
Once you’ve been offered a place at Nottingham, you may be invited to attend a UCAS visit day, which is an opportunity for you to visit the school and to find out more about your chosen course. You will also be given a short tour of the campus by current students.

Other visits
If you wish to make an informal visit to the University prior to applying here, you are welcome to do so, but you should contact us in advance if you wish to visit the school or speak to an admissions tutor, and we will do our best to oblige.

Contact us
Undergraduate Admissions Secretary
School of Physics and Astronomy
The University of Nottingham
University Park
Nottingham
NG7 2RD

t: +44 (0)115 951 5165
t: +44 (0)115 951 5180
e: julie.kenney@nottingham.ac.uk
w: www.nottingham.ac.uk/physics

For international student enquiries, contact:
The International Office
t: +44 (0)115 951 5247
t: +44 (0)115 951 5155
e: international-office@nottingham.ac.uk
w: www.nottingham.ac.uk/international

You can also connect with fellow applicants and current students on our applicants’ Facebook and Twitter pages:

UoNApplicants
@UoNApplicants

This publication is available in alternative formats:
t: +44 (0)115 951 5559

The University of Nottingham has made every effort to ensure that the information in this brochure was accurate when published. Please note, however, that the nature of the content means that it is subject to change from time to time, and you should therefore consider the information to be guiding rather than definitive. You should check the University’s website for any updates before you decide to accept a place on a course.

© The University of Nottingham 2015. All rights reserved.

Printed May 2015.
Design: www.campbellrowley.com