Lecture 17: Recombinant DNA 3
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 16: Recombinant DNA 2
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 15: Recombinant DNA 1
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 14: Protein Localization
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 13: Gene Regulation
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 12: Molecular Biology 3
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 11: Molecular Biology 2
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 10: Molecular Biology 1
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 09: Human Genetics
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 08: Genetics 3
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 07: Genetics 2
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 05: Biochemistry 4
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 03: Biochemistry 2
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Lecture 01: Introduction
This course covers the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. The focus of the c
Author(s): No creator set

License information
Related content

Digestive System
The digestive system is amazing: it takes the foods we eat and breaks them into smaller components that our body can use for energy, cell repair and growth. This lesson introduces students to the main parts of the digestive system and how they interact. In addition, students learn about some of the challenges astronauts face when trying to eat in outer space.
Author(s): No creator set

License information
Related content

Fundamentals of Cancer Research: Introduction and Overview
This inaugural address lays the groundwork for an 11-part series on MIT’s efforts in cancer research. Susan Hockfield views MIT’s Center for Cancer Research as a central example of how “life sciences are coming into conversation with engineering in a powerful way.” Robert Silbey provides histo
Author(s): No creator set

License information
Related content

Network-Driven Transportation
Today, cell phones are a menace to safe driving, as they distract operators who should otherwise focus on the road. Tomorrow, cell phones could actually improve our driving, and help drivers avoid traffic congestion, use the road system more effectively, and manage the parking supply. Li-Shiuan Peh says that the key to these serv
Author(s): No creator set

License information
Related content

Acknowledgements
Genomes are composed of DNA, and a knowledge of the structure of DNA is essential to understand how it can function as hereditary material. DNA is remarkable, breathtakingly simple in its structure yet capable of directing all the living processes in a cell, the production of new cells and the development of a fertilized egg to an individual adult. DNA has three key properties: it is relatively stable; its structure suggests an obvious way in which the molecule can be duplicated, or replicated;
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

References
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Learning outcomes
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2