Introduction
Managing eutrophication is a key element in maintaining the earth's biodiversity. Eutrophication is a process mostly associated with human activity whereby ecosystems accumulate minerals. This unit explains how this process occurs, what its effects on different types of habitat are, and how it might be managed.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.4 Human-induced eutrophication
Managing eutrophication is a key element in maintaining the earth's biodiversity. Eutrophication is a process mostly associated with human activity whereby ecosystems accumulate minerals. This unit explains how this process occurs, what its effects on different types of habitat are, and how it might be managed.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.3 Natural eutrophication
Managing eutrophication is a key element in maintaining the earth's biodiversity. Eutrophication is a process mostly associated with human activity whereby ecosystems accumulate minerals. This unit explains how this process occurs, what its effects on different types of habitat are, and how it might be managed.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.2 Resource availability and species diversity
Managing eutrophication is a key element in maintaining the earth's biodiversity. Eutrophication is a process mostly associated with human activity whereby ecosystems accumulate minerals. This unit explains how this process occurs, what its effects on different types of habitat are, and how it might be managed.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.1 Origin of the term ‘eutrophication’
Managing eutrophication is a key element in maintaining the earth's biodiversity. Eutrophication is a process mostly associated with human activity whereby ecosystems accumulate minerals. This unit explains how this process occurs, what its effects on different types of habitat are, and how it might be managed.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Next steps
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

End of of unit questions
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Summary of Section 8
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

8.4 The organisation of the mitotic chromosome
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

8.3 Chromosome distribution within the nucleus
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

8.2 Chromosome scaffolds
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

8.1 Introduction
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Summary of Section 7
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Core histone tail modification regulates DNA compaction
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Nucleosomal DNA packaging into a 30 nm fibre: the role of histone H1
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

The histone fold and formation of the nucleosome
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

The histone proteins
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

7.3 The eukaryotic chromosome
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

The DPS protein compacts the eubacterial chromosome during stress
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

DNA supercoiling and protein binding in the E. coli chromosome
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2