How Far Does a Lava Flow Go?
While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.
Author(s): UCLA Science and Engineering of the Environment of

License information
Related content

Copyright 2011 - UCLA Science and Engineering of the Environment of Los Angeles (SEE-LA) GK-12 Program,,http://www.teachengineering.org/policy_ipp.php

Under Pressure
Students learn about Pascal’s law, an important concept behind the engineering of dam and lock systems, such as the one that Thirsty County wants Splash Engineering to design for the Birdseye River (an ongoing hypothetical engineering scenario). Students observe the behavior of water in plastic water bottles spilling through holes punctured at different heights, seeing the distance water spurts from the holes, learning how water at a given depth exerts equal pressure in all directions, and how
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Counting Calories
The students discover the basics of heat transfer in this activity by constructing a constant pressure calorimeter to determine the heat of solution of potassium chloride in water. They first predict the amount of heat consumed by the reaction using analytical techniques. Then they calculate the specific heat of water using tabulated data, and use this information to predict the temperature change. Next, the students will design and build a calorimeter and then determine its specific heat. After
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Snow vs. Water
Engineers work in many fields associated with precipitation. Engineers study glaciers to better understand their dates of formation and current demise. They deal with issues of pollution transport and water yield, and they monitor reservoirs and dams to prevent flooding.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Ramp and Review (for High Scool)
In this hands-on activity — rolling a ball down an incline and having it collide into a cup — the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables and review the relationships between these concepts.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Simon Says Big Amplitude, Small Wavelength!
In this activity, students play the game Simon Says to make the amplitudes and wavelengths defined by the teacher. First they play alone, and then they play with a partner using a piece of rope.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Plant Cycles: Photosynthesis & Transpiration
What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of mo
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

The Fundamental Building Blocks of Matter
This lesson plan explores the fundamentals of atoms and their structure. The building blocks of matter (protons, electrons, neutrons) are covered in detail. Students think about how atoms and molecules can influence new technologies developed by engineers.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2009 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Moon Walk
Students learn about the Earth’s only natural satellite, the Moon. They discuss the Moon’s surface features and human exploration. They also learn about how engineers develop technologies to study and explore the Moon, which also helps us learn more about the Earth.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Chair Design
Students become familiar with the Engineering Design Process as they design and build prototypes for a chair. The miniature chair must be sturdy and functional enough to hold a wooden, hinged artist model or floppy stuffed animal.
Author(s): The Tufts Center ,

License information
Related content

Copyright 2011 - The Tufts Center , for Engineering Educational Outreach,http://www.teachengineering.org/policy_ipp.php

Using Spectral Data to Explore Saturn and Titan
Students use authentic spectral data from the Cassini mission of Saturn and Saturn’s moon, Titan, gathered by instrumentation developed by engineers. Taking these unknown data, and comparing it with known data, students determine the chemical composition of Saturn’s rings and Titan’s atmosphere.
Author(s): Laboratory for Atmospheric and Space Physics (LASP

License information
Related content

Copyright 2011 - Laboratory for Atmospheric and Space Physics (LASP), University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Engineering in Reverse!
Students learn about the process of reverse engineering and how this technique is used to improve upon technology. In this activity, students analyze a push-toy and draw a diagram of the predicted mechanisms inside the toy. Then, they disassemble the toy and draw the actual inner mechanisms. By understanding how the push-toy functions, students make suggestions for improvement, such as cost effectiveness, improved functionality, ecological friendliness and any additional functionality they deter
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2010 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Energy Sources Research
Fact sheets are provided for several different energy resources as a starting point for students to conduct literature research on the way these systems work and their various pros and cons. Students complete a worksheet for homework or take more time in class for research and presentation of their findings to the class. This approach requires students to learn for themselves and to teach each other – rather than having a teacher lecture about the various sources and systems.
Author(s): Office of Educational Partnerships,

License information
Related content

Copyright 2011 - Office of Educational Partnerships, Clarkson University, Potsdam, NY,http://www.teachengineering.org/policy_ipp.php

Energy Systems Activity
Posters are provided for several different energy conversion systems. The students are provided with cards that give the name and a description of each of the components in the energy system. They have to match these with the figures on the diagram. Since the groups look at different systems, they must also describe their results with the class to share their knowledge.
Author(s): Office of Educational Partnerships,

License information
Related content

Copyright 2011 - Office of Educational Partnerships, Clarkson University, Potsdam, NY,http://www.teachengineering.org/policy_ipp.php

You’re the Expert
Student teams learn about and devise technical presentations on four reproductive technology topics — pregnancy ultrasound, amniocentesis, in-vitro fertilization or labor anesthetics. Each team acts as a panel of engineers asked to make a presentation to a group of students unfamiliar with the reproductive technology. Each group incorporates non-lecture elements into its presentation for greater effectiveness. As students learn about the technologies, by creating a presentation and listening t
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Sound Booth Construction
Students explore the sound dampening ability of numerous materials by designing and prototyping model sound booths. As a result, students learn about how sound is reflected, absorbed and travels through various materials, thus giving them an overview of sound dampening, energy absorption and sound propagation in the context of engineering. Students also create blueprints and document their findings in a formal lab report.
Author(s): Electrical and Computer Engineering Department,

License information
Related content

Copyright 2011 - Electrical and Computer Engineering Department, Drexel University GK-12 Program,http://www.teachengineering.org/policy_ipp.php

My Mechanical Ear Can Hear!
Students are introduced to various types of hearing impairments and the types of biomedical devices that engineers have designed to aid people with this physical disability.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Protect Those Eyes
Students design and build prototypes for protective eyewear. They choose different activities or sports that require protective eyewear and design a device for that particular use. Students learn about the many ways in which the eyes can be damaged and how engineers incorporate different features and materials into eyewear designs to best protect the eyes.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Power Your House with Water
Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Students work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Exploring Light: Absorb, Reflect, Transmit or Refract?
In a hands-on way, students explore light’s properties of absorption, reflection, transmission and refraction through various experimental stations within the classroom. To understand absorption, reflection and transmission, they shine flashlights on a number of preselected objects. To understand refraction, students create indoor rainbows. An understanding of the fundamental properties of light is essential to designing an invisible laser security system.
Author(s): VU Bioengineering RET Program, School of Engineeri

License information
Related content

Copyright 2011 - VU Bioengineering RET Program, School of Engineering, Vanderbilt University,http://www.teachengineering.org/policy_ipp.php