2.2 The Group number of the noble gases
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

2.1 Chemical periodicity
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.7 Summary of Section 1
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.6 Binding forces in molecular and non-molecular substances – a first look
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.5 Non-molecular substances
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.4 Molecular substances
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.3 Chemical compounds
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.2 Chemical elements
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.1 Introduction
From diamonds to dynamite everything involves a chemical reaction. This unit introduces you to the concepts and principles that underpin chemistry at the molecular level. Everyday experiences are used to help you to understand the more complex issues.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

8 Enter aspirin!
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

7.3 Formation of prostaglandin
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

7.2 How enzymes work
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

7.1 Enzymes: nature's catalysts
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

4.3 Aspirin
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

3 The aspirin story
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Learning outcomes

After you have completed this unit you should be able to:

  • describe and give examples of how self-assembly enables construction ‘from the bottom up’ in natural materials;

  • explain what is meant by primary and higher-order structure in proteins and give examples;

  • give examples of the range of functions carried out by proteins within cells;

  • describe how a combination of strong and weak bonding within biopolymers and lipids is use
    Author(s): No creator set

    License information
    Related content

    Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Nucleic acids and chromatin
This unit helps you understand the properties of nucleotides and how they contribute to secondary and tertiary structures of nucleic acids at the molecular level. You will learn about the different composition and roles of nucleic acids in the cell, their interactions with each other and the use of ribozymes, aptamers, antisense and hybridization as tools in molecular research. The unit covers the function of DNA packaging within the cell, the interactions between the DNA double helix and the nu
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Genetics
Medical genetics involves the application of genetic principles in the practice of medicine. The material in this course encompasses diagnosis and treatment of genetic diseases (such as cancer genetics ), study of inheritance of diseases in families, mapping of disease genes to their chromosome locations, study of the molecular genetics and pathogenesis of inherited disorders, provision of genetic counseling for families, and investigations of methods for gene therapy. Unlike any other field, ge
Author(s): No creator set

License information
Related content

6.642 Continuum Electromechanics (MIT)
This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, p
Author(s): Zahn, Markus

License information
Related content

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative C

2.6 Three schools of classification

Activity 5

0 hours 10 minutes

This clip explores the three kinds of relationships that have been explained so far, in terms of the work of Simpson, Mayr and Hennig, which are referred
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University