9 Summary
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.8 Enter aspirin!
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.7.3 Formation of prostaglandin
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.7.2 How enzymes work
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.7.1 Enzymes: nature's catalysts
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.6 How does aspirin relieve pain?
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.5 Some chemistry involving esters
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.4.3 Aspirin
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.4.2 The functional group approach
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.4.1 Salicylic acid
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.3 The aspirin story
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

1.2 How does it hurt?
What causes pain and how do we stop it? This unit looks at how the human body responds to the release of certain chemicals and as a result feels pain. Pain can be reduced by inhibiting the formation of such chemicals and you will learn how the molecular structure of aspirin has been formulated to help in this process.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

Introduction
This unit lays the foundation of Newtonian mechanics and in particular the procedure for solving dynamics problems. The preresquisite skills needed for this unit are the ability to solve first and second-order differential equations, a knowledge of vectors, and an understanding of the concept of a force
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

13. NASA's Planetary Policy: History and Implementation (February 21, 2008)
Science, Astrobiology, Astrology, Cosmology, Chemistry, Engineering, Physics, Molecular Biology, Earth, sun, Mars, planetary protection policy, space, solar system, universe, galaxy, evolution, life, eukaryote, prokaryote, organism, cell, chlorophyll, hyd
Author(s): No creator set

License information
Related content

Lecture 14 - Banking and Finance
Description not set
Author(s): No creator set

License information
Related content

Amino Acids and Protein Structure
This is a general introduction to cell structure and function, molecular and organism genetics, animal development, form and function. Intended for biological sciences majors, but open to all qualified students.
Author(s): No creator set

License information
Related content

2.14 Summing up
This unit is concerned with macroevolution – the patterns and processes of evolution above the species level. A crucial consideration in macroevolutionary studies is that of the evolutionary relationships (phylogeny) of the organisms in question. The unit begins with an introduction to the scope of macroevolutionary studies and illustrates methods of reconstructing phylogeny, from both morphological and molecular data.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

2.12 Translating a cladogram into a classification
This unit is concerned with macroevolution – the patterns and processes of evolution above the species level. A crucial consideration in macroevolutionary studies is that of the evolutionary relationships (phylogeny) of the organisms in question. The unit begins with an introduction to the scope of macroevolutionary studies and illustrates methods of reconstructing phylogeny, from both morphological and molecular data.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

2.11 Consequences of human / chimp pairing
This unit is concerned with macroevolution – the patterns and processes of evolution above the species level. A crucial consideration in macroevolutionary studies is that of the evolutionary relationships (phylogeny) of the organisms in question. The unit begins with an introduction to the scope of macroevolutionary studies and illustrates methods of reconstructing phylogeny, from both morphological and molecular data.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2

2.10 Chimps, gorillas and humans
This unit is concerned with macroevolution – the patterns and processes of evolution above the species level. A crucial consideration in macroevolutionary studies is that of the evolutionary relationships (phylogeny) of the organisms in question. The unit begins with an introduction to the scope of macroevolutionary studies and illustrates methods of reconstructing phylogeny, from both morphological and molecular data.
Author(s): The Open University

License information
Related content

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2