1.3.3 Position–time graphs
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

1.3.2 Describing positions along a line
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

1.3.1 Simplification and modelling
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

1 2 From drop-towers to Oblivion – some applications of linear motion
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

1.1 The description of motion
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

Introduction
Motion is vital to life, and to science. This unit will help you to understand why classical motion is probably the most fundamental part of physics. You will examine motion along a line and the ways in which such motion can be represented, through the use of graphs, equations and differential calculus.
Author(s): The Open University

Our People: Craig Rodger
An interview with Dr. Craig Rodger, Department of Physics.
Author(s): No creator set

Alumni Reunion 2008 - Innovating the social experience
Michael Birch, Imperial alumnus (Physics 1991), co-founder of Bebo, delivers the Reunion keynote lecture
Author(s): No creator set

2008 Gabor Annual Lecture - The Energy Challenge
Professor Sir Chris Llewellyn Smith, Theoretical Physics, Oxford and Chair ITER Council, presents the seventh Gabor Annual Lecture
Author(s): No creator set

1-D and 2-D Kinematics, Projectile Motion
Description not set
Author(s): No creator set

Risk as Feeling: New Perspectives on Risk Perception
Editor's note: We apologise for the poor audio quality of this podcast. Dr. Slovic will describe the laboratory experiments that led to the concept of risk as feelings and illustrate some insights gleaned from this perspective for behaviors as diverse as cigarette smoking and apathy toward large scale natural and human caused disasters. Dr. Slovic studies judgment and decision processes with an emphasis on decision making under conditions of risk. His work examines fundamental issues such as the
Author(s): No creator set

Quantum Information Processing
Quantum Information Processing aims at harnessing quantum physics to conceive and build devices that could dramatically exceed the capabilities of today's "classical" computation and communication systems. In this course, we will introduce the basic concepts of this rapidly developing field.
Author(s): No creator set

Mesoscopic Physics
Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world. The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.
Author(s): No creator set

Simple Nature: An Introduction to Physics for Engineering and Physical Science Students
Simple Nature is a physics textbook intended for students in a three-semester introductory calculus-based course.
Author(s): No creator set

Extreme Events: Analysis and Prediction
Holger Kantz, Max Planck Institute for the Physics of Complex Systems.
Author(s): No creator set

Physics of the Impossible
Professor Michio Kaku poses the question: "where does the realm of science fiction end?" He explores the actual possibilities of ideas such as time travel, force fields, teleportation, star ships and invisibility. On Friday May 29th 2009, world renowned physicist, broadcaster and author, Professor Michio Kaku spoke at the Said Business School, Oxford as part of the St Cross College Science Lecture Series. Presenting "Physics of the Impossible", Professor Kaku believes that 'anything that is no
Author(s): Professor Michio Kaku

(Audio) Nobel Lecture Series - Anthony Legett.
Presentation of professor Tony Leggett - 2003 Nobel Laureate in Physics.
Author(s): No creator set

(Audio) Nobel Lecture Series - Howard Trottier.
Einstein`s Miracle Year: Frontier Physics for the Subatomic to the Cosmological.
Author(s): No creator set

18. Search for Extraterrestrial Intelligence (March 13, 2008)
Science, Astrobiology, Astronomy, Cosmology, Chemistry, Engineering, Physics, Physiology, NASA, technology, Earth, Mars, planet, star, space, galaxy, universe, solar system, human, rocket, SETI, life, kepler, smart, alien, Roswell, Dyson sphere, energy, a
Author(s): No creator set

15. Controlled Environmental Life Support (March 4, 2008)
Science, Astrobiology, Astronomy, Cosmology, Chemistry, Engineering, Physics, Physiology, NASA, technology, Earth, planet, space, universe, solar system, human, astronaut, Skylab, gravity, shuttle, spacecraft, water, air, carbon dioxide, oxygen, fuel cell
Author(s): No creator set